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Abstract

On Spinor Condensates as Amplifiers, Sensors and Tunable Quantum Playgrounds

for Studies of Spin

by

Sabrina Rose Ann Leslie

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dan M. Stamper-Kurn, Chair

Spinor Bose Einstein condensates are employed as nearly quantum-limited sensors. In ad-

dition, this magnetic quantum fluid serves as a platform for studies of quantum dynamics.

Using a spin sensitive imaging method, its vector magnetization is measured in situ with high

spatial and temporal resolution. As a first application toward metrology, 87Rb spinor Bose

Einstein condensates are employed as precision magnetic microscopes. The demonstrated

field sensitivity of 8.3 pT/Hz1/2 over a measurement area of 120 µm2 marks an improvement

over the low-frequency field sensitivity of modern SQUID magnetometers. Second, dynam-

ical instabilities in a 87Rb F = 1 spinor Bose Einstein condensate are used as a parametric

amplifier of quantum spin fluctuations. The performance of this spin amplifier is observed

to be nearly quantum-limited at a gain as high as 30 dB. Third, the possibility of preparing

spin squeezed states is investigated theoretically, projecting 10 dB and 17 dB of spin squeez-

ing to be attainable in the multi-mode and single-mode regimes. In addition to serving as

quantum-limited sensors of spin, spinor condensates provide a compelling opportunity to

access the dynamical properties of a magnetic superfluid. For example, the evolution of

helical spin textures in F = 1 87Rb Bose condensates is observed to be significantly affected

by dipole-dipole interactions, presenting a new experimental arena for studies of dipolar



2

quantum fluids.

Professor Dan M. Stamper-Kurn
Dissertation Committee Chair
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the magnitude of the applied field. . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 The spectrum of spin excitations Es(k)2, here normalized by c2n, has a gap
for q > 2|c2|n, in other words Es(k)2 > 0 and all perturbations about the
initial paramagnetic state are stable (a). The gap closes at q = 2|c2|n as q
is lowered (b), and a set of excitation modes become unstable. The unstable
modes, for which Es(k)2 < 0, are characterized by small k in the case of
|c2|n < q < 2|c2|n (c). As q is lowered further toward q = 0, the most
unstable modes are characterized by finite k (d). . . . . . . . . . . . . . . . 80

4.2 Quantum fluctuations initially symmetric in Fx, Nyz are amplified and de-
amplified along k−dependent axes given by vamp, vsq in the Fx, Nyz plane. 86

4.3 The total field-induced quadratic shift due to modulated and static magnetic
fields, qf (V ), as a function of the control setting for the applied microwave
field, V . Here, qµ(V ) = −Ω2

R(V )/4δ and qB = 70 Hz/G2B2. The cir-
cles (squares) correspond to measurements performed at magnetic bias fields
Bz = 190(235) kHz, and microwave field detuning |δ| = 35 kHz. The mag-
nitude of the control setting reflects Ω2 and the sign of the control setting
reflects the sign of the microwave field detuning δ. . . . . . . . . . . . . . . 90

4.4 The fractional population in mz = ±1, measured 110 ms after the quench,
as a function of the final quadratic shift, qf , at the end point of the quench.
The squares (circles) correspond to measurements at magnetic bias fields
gF µBBz = 190(235) kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Representative images of the condensate transverse magnetization density,
M̃x,y, for the quench of a paramagnetic condensate to qf = 2 Hz. At evolution
times t = 47, 87, 127 ms, four examples of M̃x,y are shown in order to delineate
the stochastic variation in the observed amplified spin fluctuations. . . . . 93

4.6 The saturated condensate transverse magnetization density as a function
of the endpoint of the quench, qf . For the deep quench, characterized by
0 < qf < 8 Hz, the transverse magnetization profile is characterized by
short-range features, which increase with qf . As qf is raised from 8 to 16 Hz,
long-range features are observed and the magnetization diminishes. . . . . 108



viii

4.7 Snapshots of the amplitude, phase, and spatial correlations of the transverse
magnetization of a central region of the condensate,for a range of values of qf .
The amplifier’s spatial spectrum, and its tunability with qf , is characterized
using the magnetization correlations. . . . . . . . . . . . . . . . . . . . . . 109

4.8 The temporal evolution of the magnetization correlation function for qf = 2,
averaged over 8 repetitions of the experiment. The characteristic feature size
remains roughly constant over time. . . . . . . . . . . . . . . . . . . . . . . 110

4.9 The power spectrum of the spatial Fourier transform of the condensate mag-
netization, as described in the text (circles). An approximate theory for a
homogeneous condensate of the same average density as the experiment is
shown in comparison (line). . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.10 The amplitude variance 〈ALP (r)2〉 increases as a function of the peak preces-
sion amplitude, ALP,max = fA. The simulated amplitude variance averaged
over ten repetitions (red circles) agrees with its theoretical value (blue trian-
gles). It is systematically lower if we do not include fluctuations in the photon
field (green circles) by an approximately constant offset (green squares). . . 111

4.11 The boost in the measured variance of the precession amplitude which results
from taking into account the fluctuations in the photon field, as compared to
ignoring these fluctuations, in a numerical simulation. It is found to increase
slightly with the average precession amplitude. It reflects the detection noise
of our measurement of spin fluctuations and corresponds to photon shot-
noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.12 The amplitude variance of a fully transversely magnetized cloud, is deter-
mined empirically (circles) as well as theoretically (squares). Due to the loss
of atoms from the trap, the measured amplitude variance decreased over time. 113

4.13 The time evolution of G(0), with the introduction of a variable hold time, ts
between the purification pulse and magnetic field quench. For the two cases
shown (ts = 30, 100 ms), the time evolution for G(0) is good agreement. . . 113

5.1 Experimental sequence to prepare and observe a magnetization-squeezed
state. Quantum fluctuations (a) are amplified and de-amplified along k−dependent
axes (dotted lines given by vamp, vsq) in the Fx, Nyz plane (b). A magnetization-
squeezed state is prepared by rotating the de-amplified fluctuations onto the
Fx−axis (c,R1). In order to measure the squeezed fluctuations, they must
be re-amplified into view. A second rotation (c,R2) is performed, and then
the amplifier is reactivated. After a re-amplification period equal to the ini-
tial squeezing period, the fluctuations are again quantum-limited (d). After
further amplification they are macroscopic and measurable(e). . . . . . . . 118



ix

5.2 The time evolution of the transverse magnetization |Fx,k|2 throughout the
aforementioned experimental sequence normalized by the initial quantum-
limited fluctuations (solid line). In addition, one would probe the evolution
of quantum fluctuations throughout the re-amplification stage (dotted line).
Following re-amplification, the measured ratio of squeezed fluctuations vs.
quantum fluctuations (Smeas) would correspond to the achieved degree of
squeezing (Ssq). Experimental parameters are taken to be qamp/h = 4 Hz,
qrot/h = 50 Hz, tamp = 40 ms, trot = 4.4 ms, k = π/10µm−1. For reference,
the steps of the outlined experimental sequence are schematically shown be-
low, described by Fig. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 The squeezing spectrum, corresponding to the degree of squeezing per mode
k, is shown in the linear homogeneous case (a). Maximum squeezing is ob-
served for the mode k for which the applied rotation angle (θappl ≈ qrottrot),
matches the optimal rotation angle, θ(k), shown in (b). Experimental pa-
rameters are taken to be qamp/h = 4 Hz, tamp = 40 ms, qrot/h = 2 kHz,
qrottrot = π/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 For a single mode, the amplification and de-amplification axes are shown
with respect to Fx and Nyz and φR, φI , which are oriented at 45 degrees with
respect to one another. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Spatial distribution of amplified spin fluctuations, G11(|r|, t = 6τ) (dashed
line); squeezed spin fluctuations, G22(|r|, t = 6τ) (red line); and U(|r|, t =
6τ)(grey line). Position is normalized by the spin healing length, τ = 1/(c2n)
and q = 1.5c2n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6 The position-space distribution of the maximum gain mode, set by γ0(r), is
shown to be localized at the center of the trap. . . . . . . . . . . . . . . . . 135

5.7 A description of the spin-mixing interaction which takes into account the de-
pletion of the pump results in the saturation of spin-squeezing. The depleted
pump results in a reduced amplifier gain, thus both the amplification and
squeezing of spin fluctuations reach saturation. The variance of the squeezed
fluctuations (|φI |2) is reduced from ϑ(N) to ϑ(1) after an optimal evolution
time on the order of the saturation time. Experimental parameters corre-
spond to |c2|n/~ = 2π(8 Hz). . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.8 A description of the spin-mixing amplifier which fully accounts for the deple-
tion of the pump results in the saturation of spin-squeezing after a shorter
evolution period. In this case, the variance of the squeezed fluctuations is
reduced from ϑ(N) to ϑ(

√

(N)). Experimental parameters correspond to
N = 104 atoms, |c2|n/~ = 2π(8 Hz). . . . . . . . . . . . . . . . . . . . . . . 140

5.9 The squeezing spectrum for an inhomogeneous nonlinear condensate is shown
for reasonable experimental parameters (similar to the amplifier demonstra-
tion experiment) for the multi-mode case. . . . . . . . . . . . . . . . . . . . 141



x

5.10 Examples of the RF and microwave pulses described in the text are schemat-
ically shown with respect to the ground state 5 S1/2, F = 1, 2 hyperfine
manifolds of 87Rb. The RF pulse serves to rotate the F = 1 condensate
order parameter, a three-component vector composed of atoms in the three
magnetic Zeeman sublevels, |F = 1,mF 〉. The frequency of the RF pulse
is given by the Zeeman splitting between the sublevels, ωB = gF µBBz, and
its magnitude and phase determines the desired rotation. In addition, a
two-photon microwave pulse is shown which is used to transfer population
between the |F = 1,m = 0〉 and |F = 1,m = 1〉 levels. It is chosen to be
detuned with respect to the |F = 1,mz = 0〉 to |F = 2,mz = 0〉 hyperfine
transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.1 (Right) A sequence of phase contrast images characterizing the Larmor pre-
cession of a uniformly transversely magnetized condensate (a) and a helical
spin texture imposed upon the condensate (b). (Left) An instantaneous snap-
shot of the condensate spin depicts its homogeneous or helical spatial profile. 152

6.2 Long-range helical textures evolved into a finely modulated transverse mag-
netization profile M̃x,y. Shown here, due to a slight astigmatism in the optical
trap alignment, this pattern of magnetized domains was observed to nucleate
most often at one end of the condensate. . . . . . . . . . . . . . . . . . . . 153

6.3 The power spectrum of the spatial Fourier transform of the vector magneti-
zation M̃(kx, kz). The spectral weight of the initial spin helix is concentrated
in a central region of k-space, reflecting its long-range order (a). Following
the dissolution of the spin helix into a finely modulated magnetization pat-
tern, the spectral weight of short-range features, characterized by modulation
frequencies ∼ 2π/10 µm−1, is apparent [10]. . . . . . . . . . . . . . . . . . 154

6.4 The short- and long-range magnetic order of the evolving spin texture are
found to increase and decrease respectively, at a rate which depends upon
the initial pitch of the helix (inset) [10]. . . . . . . . . . . . . . . . . . . . . 155

6.5 The evolution of the short-range order acquired by the condensate magneti-
zation is characterized with and without the application of dipole-cancelation
pulses. The initial helix pitch was λ = 80 µm [10]. . . . . . . . . . . . . . . 157

6.6 Correlations in the spatial correlation function of the condensate magnetiza-
tion reveal magnetic order characterized by a spatial periodicity of roughly
10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



xi

Acknowledgments

Thank you to everyone whose support and good company have made these explorations

stimulating and rewarding. Thank you to my advisor, Dan Stamper-Kurn, for his guidance

and his example. Thank you to my research team, Jay Deep Sau, Jennie Guzman, and

Mukund Vengalatorre, for their comradeship and dedicated team work. Thanks to my

friends Andrea Tao, Dan Butter, Naomi Ginsberg and Erin Quealy for their considerable

support. Thanks to Tom Purdy for being an expert at electronics; to Tony Oettl for being

an expert on microwave fields; to Kater Murch for helping me keep a steady supply of

dewars filled with LN2 at critical times; and to Lorraine Sadler and James Higbie for their

mentorship and dedication to our spinor condensate apparatus. Thanks to Ken Brown and

Neil Shenvi for their mentorship and teamwork in my introduction to research at Berkeley.

Thanks to Dima Budker and Birgitta Whaley for reading my thesis and for their support;

to Irfan Siddiqi for teaching me how to teach physics through his example; and to the

Stamper-Kurn research group, Daniel Tatum, and the Physics Department staff for their

help. Thanks to Friedhelm Serwane and Julia Hartmann for showing me California and to

Sharon Jue and Allie for showing me the Berkeley Hills; to Dori Aspuru-Takata and Alan

Aspuru-Guzik for their constant positive outlook; to Lianne Beltran and Tony Dutoi for

being in Karlsruhe when a conference took me there; and to Quelani Penland for performing

the Bach Double Concerto with me, providing a release from labwork. Thank you to my

undergraduate mentors, Jess Brewer, Mark Halpern and Douglas Scott, and to my high

school physics teacher, Mr. Millet, for inspiring my studies in physics from an early age.

Thank you to my oboe teacher Beth Orson; to my sisters, Alexandra and Simone Leslie;

and to my parents and grandparents, for their support and understanding.



1

Chapter 1

Why Study Spinor Condensates?

To embark upon this exploration of the salient features and potential applications

of spinor Bose Einstein condensates, we begin with an overview of our experiments. To gain

perspective on this work, we briefly survey prior research on quantum fluids with spin and

outline the basic theory of spinor Bose gases – the energetic landscape which our experiments

serve to investigate. To access the rich array of magnetic phenomena at our disposal, we

must first surmount a number of technical hurdles; here, we document the principal additions

to our experimental apparatus which have made these explorations possible.

1.1 Motivation for and overview of our experiments

The spinor Bose Einstein condensate offers the experimentalist the opportunity to

grapple with fundamental questions about quantum dynamics in the most tangible of ways:

to image the dynamics of a macroscopic quantum system directly. Emerging from such

experimental explorations are a deepened theoretical understanding and sophisticated level

of control over these systems which may be directed toward their application as quantum-

limited measurement devices. Permeating this work are the themes of quantum dynamics

and quantum-limited measurements, whose central questions and formalism lie at the in-

tersection of the fields of quantum optics and condensed matter physics.

The unique opportunity to probe out of equilibrium dynamics in spinor conden-

sates is afforded by the long timescales and long-range spatial features which characterize the

spin dynamics of interest. In our experiments, we focus on two studies of quantum dynamics

using F = 1 87Rb Bose Einstein condensates. First, we take advantage of the dynamical
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instabilities which accompany a quantum phase transition between two phases of the spinor

condensate to study the amplification of quantum fluctuations. In describing the dynamics

which follow the rapid quench of the spinor condensate across this transition, we interpret

the observed macroscopic magnetization pattern, first presented in Ref. [1], as an amplified

version of the noise seeding its formation. By mapping the spin-dependent Hamiltonian

which describes our system onto a parametric amplifier of spin fluctuations, we have been

able to compare our experimental findings with the predictions of a quantum amplification

theory at a quantitative level. Our experimental characterization of the “spinor condensate

amplifier” indicates that in future studies of quantum magnetism, we may employ F = 1

87Rb spinor condensates as tunable, low-noise amplifiers of magnetization [2].

Studies of dipolar interactions in atomic systems, which are relevant to materials

science and underly the complex many-body phases exhibited by a range of condensed mat-

ter systems, have previously focussed on atomic gases with high magnetic moments such

as 52Cr [3] or polar molecules [4]. In a second study of quantum dynamics, we study the

evolution of spin textures in F = 1 87Rb Bose condensates. We find, much to our surprise,

that a long-wavelength spin helix dissolves spontaneously into short-range spatially modu-

lated patterns of spin domains [10]. Following extensive experimental tests, we are able to

attribute the observed dissolution of helical spin textures to be a consequence of the dipole-

dipole interactions inherent to the magnetized spinor gas. In this way, our characterization

of F = 1 87Rb Bose condensates as dipolar magnetic fluids serves as a gateway toward a rich

landscape of studies of quantum magnetism, featuring short- and long-range interactions

of separately controlled magnitudes. By manipulating its spin-dependent Hamiltonian to

simulate other condensed matter systems [5], spinor condensates may be employed in the

future to gain insight on the magnetic phenomena displayed by magnetic thin films [6],

ferrofluids [7], strongly correlated electronic systems [8], and frustrated quantum magnets

[9].

And what would our explorations of quantum magnetism be without a sophis-

ticated tool-kit suitable for performing quantum measurements? In this spirit, we make

use of our understanding and control of the spinor condensate to develop sensitive spinor-

condensate-based measurement devices. One such device corresponds to a spatially-resolved

magnetometer. Following the ground work presented in Ref. [11], extensive experimental

activity lead to our demonstration of spinor condensate magnetometry with a low-frequency

field sensitivity, surpassing that of modern SQUID magnetometers for small measurement
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areas (. 150 µm2).

To broaden our set of spinor-condensate based tools, we consider the possibility of

preparing spin squeezed states in these systems, which may serve as sub-shot-noise magnetic

field sensors. We outline an experimental scheme to prepare spin squeezed condensates,

finding that we may achieve roughly 17 dB of spin squeezing in the single mode regime and

10 dB of spin squeezing in the multi mode regime, for reasonable experimental parameters

[13].

1.2 Some perspective: prior work on quantum fluids with

spin

The first experimental realization of a multi-component superfluid of 3 He atoms,

reported in 1949 [15], lead to a fascinating series of experiments on quantum fluids with

spin. Nearly fifty years later, the creation of multi-component Bose Einstein condensates of

dilute alkali vapors has provided an opportunity to investigate the equilibrium properties

and dynamics of magnetic quantum fluids in a novel physical system. Spinor Bose Einstein

condensates have the advantage of being described by a mathematically tractable theory,

due to their weak interactions. Since their realization in dilute alkali vapors, they have

served as a prototype system in the development of our understanding of quantum fluids

with spin.

Focussing on the bulk properties of these systems, the past decade of research

on multi-component condensates has developed the pathway to our own spatially-resolved

studies of these systems. The first multi-component Bose condensate of alkali atoms was

realized using two distinct magnetically trapped states of 87Rb at JILA in 1996, following the

group’s creation of the first Bose Einstein condensate of alkali atoms in 1995 [16]. Pioneering

experiments on quantum dynamics of spinor gases, one of the themes of the work presented

in this dissertation, were subsequently performed by the same research group.

Spinor condensates of F = 1 23 Na atoms, characterized by three spin components,

were first studied by the Ketterle group at MIT. By employing a spin-independent optical

trap to confine the condensate, and in so doing, liberating its spin degree of freedom [17],

the MIT research team was able to determine the equilibrium properties of the spinor gas

[18]. Phase separation and spin transport in the spinor gas were subsequently characterized
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by this team of researchers [19, 20].

More recently, experiments characterizing the temporal evolution of the popu-

lation in each spin component of F = 1 and F = 2 87Rb Bose condensates have been

performed by a few research groups to discern their bulk properties and ground state char-

acter. Interestingly, while the ground state character of F = 1 23Na and F = 2 87 Rb

condensates is antiferromagnetic [22, 23], that of F = 1 87 Rb condensates is ferromag-

netic [21, 24, 25, 26]. To spatially separate each spin state, allowing its population to be

determined, a magnetic field gradient pulse was applied; subsequently the gas was allowed

to expand and was imaged. The inherent poor spatial resolution and destructive nature

of this “Stern-Gerlach method of separations” limited these findings to describing the bulk

properties of the system.

Spatially-resolved studies of spin dynamics in F = 1 87Rb spinor condensates have

widened the experimental characterization of these systems to include the observation of

topological defects and spatially inhomogeneous spin structures [1]. The multi-component

order parameter of the spinor Bose condensate gives rise to a variety of topological defects,

including spin vortices, spin textures and skyrmions, predicted by a flurry of theoretical

work following its experimental realization [27, 28, 29, 30, 31]. Further, due to the dynami-

cal instabilities characterizing small fluctuations about a given coherent state, most studies

of the dynamics of spinor condensates, which are inherently multi-mode systems, are in-

evitably probing the evolution of spatially inhomogeneous spin structures [32, 33, 34, 35].

An exception to this rule are experiments carried out in the single mode regime, imposed by

a tightly confining potential [24, 26], which may be described theoretically using a single-

mode treatment [25, 36].

Spinor condensates have recently received attention as prototype systems for stud-

ies of quantum magnetism in solids, a field of research traditionally explored by condensed

matter physicists [37, 38]. By virtue of the variety of tunable interaction strengths char-

acterizing these systems, such as local spin-dependent contact interactions and long-range

dipolar interactions, and the “purity” of these experimental samples in comparison with

real materials, spinor condensates offer many advantages towards studies of quantum mag-

netism [39]. Implemented in optical lattice potentials, spinor gases provide a means to

“simulate” the phase diagrams predicted by many-body Hamiltonians. Conceivably, spinor

Bose condensates may also enable the first experimental realization of a magnetic supersolid,

an idea under current experimental and theoretical investigation. In addition, controllable
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arrays of multi-component quantum gases have been proposed as quantum-limited sensors

of miniature magnetic structures [12] or as prototype systems for developing new materials.

Recently, spinor condensates have served as a platform for theoretical studies of quantum

entanglement and in the future, may be applied as components of a quantum computer [40].

1.3 The energetic landscape of spinor condensates: a theo-

retical treatment

In setting the stage for our experimental characterization of the dynamics of F = 1

spinor condensates, we begin with a description of their underlying energetics. In this treat-

ment, we represent an F = 1 Bose condensate by a three-component spinor, reflecting its

three magnetic Zeeman sublevels mz = +1, 0,−1 [27]. In our experiments, the ẑ quantiza-

tion axis corresponds to the orientation of the applied magnetic field, B = Bẑ. The relevant

energy scales for the homogeneous spinor condensate are described by the second-quantized

Hamiltonian, [18, 27, 41, 42]:

H = Hkin + HZ + HInt + Hdip (1.1)

Hkin =

∫

dr φ†
m(r)

[

− ~2

2m
∇2

]

φm(r)

HZ =

∫

dr (gF µBBF̂z(r) + qF̂z(r)
2)

Hint =
1

2

∫

dr c0φ
†
mφ†

m′φm′φm +
1

2

∫

dr c2F̂(r) · F̂(r)

where mz = +1, 0,−1 label the z−projection of the condensate spin. Here, φ0(φ
†
0), φ+(φ†

+),

φ−(φ†
−) are the destruction (creation) operators for condensate atoms in the mz = 0, 1,−1

states respectively; the condensate spin, F̂(r), may be expressed as,

F̂m(r) =
∑

m,n

φ̂(r)†mJm,nφ̂(r)n; (1.2)

and Jmn,i correspond to the standard spin-one matrices,

Jx =
1√
2









0 1 0

1 0 1

0 1 0









; Jy =
1√
2









0 −i 0

i 0 −i

0 i 0









; Jz =
1√
2









1 0 0

0 0 0

0 0 −1









. (1.3)
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Field-induced energy shifts

The interaction of the condensate spin with a homogeneous magnetic field, B =

Bẑ, is described by

HZ =

∫

dr (gF µBBF̂z(r) + qF̂z(r)
2), (1.4)

including the linear and quadratic Zeeman energy [43]. When the applied field is spatially

homogeneous, it is convenient to view the evolution of the system in the rotating frame, the

frame rotating about the ẑ axis at the Larmor frequency, ωL = gF µBB/~. In this frame,

linear Zeeman shift is identically zero. The field-induced energy shift which is quadratic in

B, however, remains nonzero. For an F = 1 gas of 87Rb atoms, an applied magnetic field

induces a quadratic energy shift corresponding to q/h = 70B2 Hz/G2. We can see that when

the quadratic Zeeman shift is very large, e.g. at high magnetic fields, the mz = ±1 states

will be significantly raised in energy with respect to the mz = 0 state; thus, the quadratic

Zeeman shift favors an unmagnetized condensate. In our experiments, the magnitude of the

induced quadratic Zeeman shift is controlled using the magnitude of the applied bias field,

in addition to the magnitude of an applied AC magnetic field, to discussed in Section 1.6.

Contact interactions in spinor Bose gases

Low-energy collisions in spinor Bose condensates lead to spin-dependent contact

interactions, which are key to their behavior at low magnetic fields. In the dilute Bose gases

that we consider, we may focus on two-body collisions, neglecting higher order collisions

which are suppressed by the low density of the gas. Due to the low temperature of the gas,

we need only consider low-energy collisions described by s-wave scattering.

Due the symmetry requirements imposed by Bose statistics, the total angular

momentum of two colliding F = 1 87Rb atoms in the condensate is given by either f=0 or

f=2, where f = F1 + F2. As presented in Ref. [27, 41], s-wave scattering may be modeled

by a hard-sphere potential, characterized by an effective scattering length, af . Here af

takes distinct values for the f = 0 and f = 2 collision channels. The contact interaction

resulting from the s-wave collisions in the spinor gas may be described using the interaction

potential,

U(r − r′) =
∑

f=0,2

4π~2af

m
δ(r − r′)P̂f (1.5)
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where Pf is the projection operator defined with respect to the total angular momentum f

state. The interaction Hamiltonian is then given by [43],

HInt =
1

2

∫

dr c0φ
†
mφ†

m′φm′φm +
1

2

∫

dr c2F̂(r) · F̂(r) (1.6)

c0 =
4π~2

3m
(2a2 + a0)

c2 =
4π~2

3m
(a2 − a0).

The contribution to the spinor condensate Hamiltonian due to contact interactions is given

by a sum of two terms. The interaction strength of the first, spin-independent term is char-

acterized by c0; the interaction strength of the second, spin-dependent term is characterized

by c2 and we see that it is symmetric with respect to rotations about ẑ.

For a spinor gas of 87Rb atoms, both a2 and a0 are positive; thus collisions charac-

terized by f = 0 and f = 2 are described by repulsive interactions. The difference in scatter-

ing lengths between the two collision channels is small and negative, i.e., ∆a = (a2−a0) < 0

and c2 < 0. This has a clear consequence for the energetics of the spinor Bose gas: the

spin-dependent contact interaction will be minimized when 〈F2〉 is large. This is made

transparent by its mean-field value ∼ c2〈F2〉. Thus, spin-dependent contact interactions

favor the condensate to be in a uniformly magnetized state.

Physically, we may interpret the total angular momentum f=0 (f=2) collisions

to correspond to collisions in which the incoming spins are anti-aligned (aligned). Since

a0 > a2, it is slightly more costly for the atoms to be anti-aligned vs. aligned with respect

to one another. This tends to favor the spin of the atoms to co-align over the spatial extent

of the gas, a phenomenon referred to as the ferromagnetic character of a spinor Bose gas.

Despite their magnitude being small, the spin-dependent contact interactions break

the degeneracy between the magnetic Zeeman sublevels and are therefore critical in der-

mining the observed magnetic phenomena in spinor gases. For example, for the values of

a2 and a0 reported in Ref. [44], and taking a condensate density n = 2.1 × 1014/cm3, we

find ∆a = − 1.4 aB, and c2n/h= -7.6 Hz. For the same density, the spin-independent

mean-field interaction strength is given by c0n/h = 1.6 kHz, corresponding to the conden-

sate chemical potential. The spin dynamics of the system are consequently characterized by

longer timescales and long range spatial features, in comparison to the evolution of features

in the condensate density profile.
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Dipole-dipole interactions in spinor Bose gases

In a spinor Bose gas, the magnetic dipole interactions are characterized by an in-

teraction strength which is comparable in magnitude to the aforementioned spin-dependent

contact interactions. Dipolar interactions may therefore influence the spin dynamics and

ground state character of the spinor Bose gas. In our experiments, we take advantage of an

imaging technique which relies upon the Larmor precession of the condensate magnetiza-

tion. Thus in considering the role of magnetic dipolar interactions in our experiments, we

consider the precession-averaged dipole-dipole interaction energy.

The dipole-dipole interaction energy due to two magnetic dipoles, characterized

by dipole moments ℘1 and ℘2 and located at positions r1 and r2, is characterized by

Udip =
µ0

4π

(

℘1 · ℘2 − 3(℘1 · R̂)(℘2 · R̂)

R3

)

(1.7)

where R̂ = (r1 − r2)/|r1 − r2| is the unit vector pointing between r1 and r2. We consider

the dipoles to be Larmor precessing about the D̂ axis (typically corresponding to ẑ in

our experiments) and without loss of generality, define a right-handed coordinate system,

formed by x̂, ŷ, D̂, in which to study the above interaction. First, x̂ is chosen to correspond

to a unit vector in the plane of R̂ and D̂, satisfying x̂ · =̂0. Next, ŷ is determined by

ŷ ≡ D̂ × x̂ and satisfies R̂ · ŷ = 0. The interaction energy then becomes,

Udip =
µ0

4π

(

℘1D℘2D + ℘1x℘2x + ℘1y℘2y − 3 (℘1D cos θ + ℘1x sin θ)(℘2D cos θ + ℘2x sin θ)

R3

)

,

(1.8)

where R̂ · D̂ = cos(θ). As a given magnetic dipole ℘ undergoes Larmor precession about

the D̂ axis, ℘x, ℘y vary sinusoidally in time and are characterized by a temporal average,

〈℘x〉 = 0, 〈℘y〉 = 0 whereas ℘D and ℘1 · ℘2 remain invariant. By symmetry we expect

〈℘1x℘2x〉 = 〈℘1y℘2y〉 (1.9)

= (℘1 · ℘2 − ℘1D℘2D)/2 (1.10)

and using these observations, the Larmor-precession averaged interaction simplifies to,

Ūdip =
µ0

4π

(

1 − 3 cos2(θ)

2R3
(3℘1D℘2D − ℘1 · ℘2)

)

. (1.11)
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The dipole-dipole interaction energy which characterizes a spinor gas may be similarly de-

fined using its magnetization density, taking ℘̂(ri) = F̂(ri). The total energetic contribution

due to dipolar interactions in the condensate is then described as [45],

Ūdip = cdd

∫

dr1dr2 K(r1, r2) (3F1DF2D − F1 · F2) /2 (1.12)

K(r1, r2) =
1 − 3 cos2(θ)

R3

cdd = µ0(gF µB)2/4π

where we have separated the prefactor cdd, reflecting the strength of the interaction, and

the anisotropic kernel K(r1, r2), reflecting the system geometry.

Having determined the precession-averaged form of the dipolar interactions rel-

evant to our experiments, we ask, what are its salient features? The role of dipolar in-

teractions in the spinor gas is in general quite subtle. In a given experiment, it depends

significantly upon the sample geometry, dimensionality, and orientation with respect to the

magnetic field. To put the dipolar and aforementioned contact interactions on the same

footing, it is insightful to define an effective interaction strength which takes both interac-

tions into account. Including both the spin-dependent contact interaction and dipole-dipole

interaction, one may define an effective spin-dependent interaction,

Hint,spin ≡
∫

dr c2n(r)F̂(r)2 + Hdip (1.13)

=

∫

dr1dr2 c2,eff (r1, r2)F̂1 · F̂2 + 3

∫

dr1dr2 cddK(r1, r2)F̂1DF̂2D/2

c2,eff (r1, r2) = c2δ(r1 − r2) − cddK(r1, r2)/2

Physically, the dipole interactions effectively renormalize c2 in a manner specific to the

system geometry. We elucidate this behavior by considering a homogeneous condensate

in three-dimensions, in which case it is natural to express c2 as a function of a mode’s

wavevector k. We find,

c2,eff (k, χ, η) = c2 − cddK(k, χ, η)/2 (1.14)

K(k, χ, η) = −4π

3
(1 − 3 sin2 χ cos2 η).

where k is taken to be k = kẑ; χ and η correspond to the polar angles describing the

orientation of the precession axis D̂ with respect to the condensate axis, ẑ, as shown in

Fig. 1.1. In our experiments, the magnetic field is typically oriented along ẑ, corresponding



10

to the case χ = π/2, η = 0. Since c2 < 0, the magnitude of c2,eff is increased when

η = 0, corresponding to the case when the precession axis is aligned to the wavevector k;

in contrast, the magnitude of c2,eff is lowered when the mode k of interest is transverse to

the precession axis (η = π/2).

In our experiments, the condensate may be considered as two-dimensional with re-

spect to spin dynamics. For ease of presentation, K(k, χ, η) is simply shown in Fig. 1.1 [45].

We are typically interested in wavevectors characterized by k < 0.6 µm−1, corresponding

to spatial features in the condensate magnetization profile larger than roughly 5 µm in size.

Taking the precession axis to be aligned to the condensate axis (ẑ), we observe that as k

approaches zero, cddK(k) decreases in magnitude and eventually becomes negative. Thus,

for small k, the dipole interactions serve to increase the magnitude of c2,eff ; for large k, we

observe the opposite behavior. When the precession axis is transverse to the wavevector of

interest, the role of the dipole interactions for small and large k modes is reversed. It is

interesting to note that in the case of large k, the dipolar interactions renormalize c2 is a

similar way in two- and three-dimensions, whereas in the case of small k, they behave differ-

ently. We see that varying the orientation of the precession axis relative to the condensate

axis provides an experimental means to study the influence of dipole-dipole interactions

upon the behavior of the spinor condensate.

By modifying the spin-dependent contact interactions, the dipole-dipole interac-

tions influence the behavior of the spinor condensate in each of our experiments. In our

study of the amplification of spin fluctuations atop an m = 0 condensate, the form of

c2,eff affects the gain by which the initial spin fluctuations are amplified, in addition to

the characteristic lengthscale of the saturated pattern of transversely magnetized domains

(to be discussed in Ch. 4). In our study of helical spin textures imprinted upon a trans-

versely magnetized gas, the dissolution of long-range features into highly-corrugated spatial

patterns in the condensate magnetization is attributed to dipole-dipole interactions (to be

discussed in Ch. 6).

1.4 The experiments as a team effort

With a rich landscape of physics on the horizon to explore, we must first overcome

a number of technical hurdles. A detailed account of the construction and operation of

the majority of our experimental apparatus is provided by References [11, 14], to which we
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Figure 1.1: The contribution to c2,eff (k) from dipolar interactions is described by cddK(k),
where K(k) is the anisotropic dipole interaction kernel (Eq 1.11) [45]. The dependence of
the interaction upon k, taking k = kẑ, is shown for a few precession axis orientations, where
the condensate geometry is held fixed. Here cdd = 0.8 × 2π and c2 = − 8 × 2π rad/s.
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shall direct the reader throughout this work. More recent additions to our experimental

apparatus, such as the implementation of microwave fields (Sec 1.6) are presented here in

detail. Our improved level of control over the background magnetic field in our apparatus

(Sec 1.5.2) in addition to the specific optical trap geometries used to perform the discussed

experiments (Sec 1.5.1) are summarized.

To characterize the spinor gas optically, we use an in situ phase contrast imaging

technique which relies upon its dielectric properties. Developments in both the design and

alignment of the imaging system (Sec 2.2.2) and the imaging techniques and data analysis

(Sec 2.3) are discussed; in particular, our characterization of both the longitudinal and

transverse magnetization of a spinor Bose gas is outlined in detail. Taking the improvements

made to our imaging methodology into account, a current assessment of our detection noise

floor is presented (Sec 3.2.1).

A brief chronology of our work

The experimental work presented in this thesis represents the outcome of a collab-

orative endeavor carried out by four team players including myself, fellow graduate student

Jennie Guzman, post-doctoral fellow Mukund Vengalatorre, and Professor Dan Stamper-

Kurn. The lines of inquiry that we pursued and the apparatus that we used for our exper-

iments relied significantly upon the dissertation work of James Higbie and Lorraine Sadler

(Ref. [11, 14]).

Following Ref.[11], which introduced the concept behind and first demonstration of

the spinor condensate magnetometer, this dissertation begins by describing the experimen-

tal work performed from December 2005 to July 2006, leading to a photon shot-noise-limited

demonstration of this device Ref.[12]. I contributed to both the experimental work and the

data analysis over the course of this experiment. My primary responsibility in the prelim-

inary stage of our data analysis was to assess the phase detection noise characteristic of

our background magnetic field measurements. In addition, to accompany our implemen-

tation of a spin-echo sequence in the Fall of 2005, I designed, built and implemented a

polarization-stabilization unit for the laser beam which was used to optically-induce a local

magnetic field. Synchronized with the π pulse implemented in the spin-echo sequence, this

unit reversed the polarization of the laser beam from σ+ to σ−; this enabled the contin-

ued application of the optically-induced field while the effect of spatial inhomogeneities in
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the background field was reversed. The polarization of the laser beam was manipulated

using an electro optic modulator, controlled by electronic feedback circuitry. However, fol-

lowing the construction of this device, our improved level of control over background field

inhomogeneities rendered it unnecessary to use a spin-echo sequence in the experiments.

Following our demonstration of the spinor condensate magnetometer, our experi-

mental work followed two lines of inquiry, the first of which included an exploration of the

salient features predicted for the spin-mixing amplifier. The technical noise floor of our ex-

perimental apparatus at the time included spin-flip noise sources (corresponding to Larmor

frequencies up to roughly 200 kHz), contaminating the performance of the spin-mixing am-

plifier. Following extensive efforts to characterize and reduce this noise floor, we eventually

decided to perform our experiments at higher bias fields, using an independent microwave

field induced quadratic shift to vary the total quadratic shift. I calibrated and implemented

the microwave source in January 2007 (Sec 1.6); the experimental characterization of the

spin-mixing amplifier was carried out by myself and Jennie Guzman. I was responsible for

the analysis of our findings in addition to developing our theoretical understanding of the

system.

Supporting our efforts to compare our experimental characterization of the spin-

mixing amplifier to a quantum amplification theory has been a flurry of theoretical work.

In particular, Jay Deep Sau, a fellow graduate student in the group of Marvin L. Cohen,

has contributed significantly to this effort. Following the insights that we gained on the

amplification of spin fluctuations in the spinor gas, we theoretically considered how to

harness this parametric amplifier to generate spin squeezed states, an endeavor that has

seen significant contributions from myself, Jay and Dan.

A second research direction evolved from a peculiar observation made during our

preparation for the quantum quench experiment (Ref. [1]), which required a homoge-

neous magnetic field environment. To measure and cancel the inhomogeneities present in

the magnetic field environment, we would routinely characterize the precession of a trans-

versely magnetized cloud, using the spatial-inhomogeneity of the accrued precession phase

to determine the spatial-inhomogeneity of the background magnetic field. Surprisingly, fol-

lowing roughly 200 ms of precession in fairly homogeneous environment (∆B < 12 µG),

we observed the condensate magnetization to dissolve into short-range magnetic structures.

Returning to this puzzling observation, we systematically studied the evolution of helical

textures in a spinor gas. In the Spring of 2007 we implemented a new imaging system in the
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apparatus, which was characterized by Mukund. Wondering whether the observed corru-

gated magnetic structures reflected a ground state for the spinor gas, we performed a slow

evaporation of an initially incoherent gas and indeed observed it to condense into a spatially

corrugated magnetic structure. While all the team players contributed significantly to the

demanding experimental work involved, not the least of which was the perpetual resuscita-

tion of our sensitive experimental apparatus, the analysis of the data for the publications

emerging from these experiments was performed by Mukund.

In parallel to running our experiments in the basement, we have been designing

and assembling the components for a new experimental apparatus over the past few years,

gearing up toward studies of spinor gases in optical lattices. My contributions to this effort

include the design and collection of components for the vacuum system (Summer 2005); the

design of specialized in-vacuum components which were fabricated by in-house machinists

(Fall 2005); and, in collaboration with Jennie, the assembly and testing of a preliminary

capillary-based oven and 87Rb Zeeman slower (early 2006). In addition, I designed and

collected the optical components for the dual species (Rb, Li) MOT, optical trap, and

diagnostic imaging systems for the new experiment (Spring 2007). Much of this work has

been modified, over time, to accommodate a widened set of goals. The new apparatus will

soon replace the current one, with Jennie and a new team at its helm; thus, its operational

form will be documented in her thesis.

A few contributions of mine to the apparatus described in Refs [11, 14], including

the optical trap’s intensity stabilization unit and a new repump laser, are documented

elsewhere. A theoretical treatment pertinent to the cavity experiment QED next door to

our lab is included in Appendix D. This work characterizes the transmission spectrum of

an optical cavity, taking into account the effects of atomic motion, as a tool for counting

atoms in a cavity.

1.5 Elements of the experimental apparatus

To the extent that the construction and operation of our spinor-condensate ap-

paratus is described in detail in Ref. [11, 14], we focus on the significant changes made

to the experiment since their publication. Briefly, we discuss the geometry of the optical

traps used in the series of experiments presented in Chapters 3, 4 and 6 (Sec 1.5.1); we

describe our improved control over the background magnetic field in the apparatus and the
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procedures we used to achieve this control (Sec 1.5.2); and we present the calibration and

implementation of microwave fields in our experiments (Sec 1.6).

1.5.1 The spin-independent trap

The optical dipole trap used to confine the atoms is provided by the focus of a

linearly polarized, single mode laser beam tuned to approximately 830 nm. The spatial

intensity profile of the laser beam, separately controlled in the x, y directions by means of

beam-shaping optics, induces a spatially-varying AC stark shift which serves as an attrac-

tive potential for the atoms. For a description of the optical components used in shaping

the optical trap, the techniques used in its alignment, and the measurement of its charac-

teristic trapping frequencies, the reader is directed to Ref. [11, 14]. In conjunction with

its experimental characterization, a theoretical description of the trapping potential is also

provided.

In our demonstration of the spinor condensate magnetometer presented in Chapter

3, we made use an optical dipole trap characterized by trap frequencies (ωx, ωy, ωz) = 2π ×
(165, 440, 4.4) s−1. A condensate containing 1.4 × 106 atoms was characterized by Thomas

Fermi radii (rx, ry, rz) = (5.2, 2.0, 196) µm (Fig 1.2(a)). In particular, tight confinement of

the condensate along the imaging (ŷ) axis enforced the spinor condensate to be effectively

two-dimensional with respect to its spin degree of freedom. By imaging the spinor gas

along the ŷ axis, we are discarding information about its magnetization profile along this

direction, assuming it to be homogeneous.

In employing the condensate as a magnetic microscope, the x̂ dimension of the

condensate profile was purposefully made to be narrow. Since our characterization of the

background magnetic field was less sensitive to inhomogeneous features along the x̂ axis

than the ẑ axis, our ability to control field inhomogeneities in the x̂ direction was compar-

atively less robust. To obtain quantitative measurements of an applied magnetic field, we

integrated over the narrow (x̂) dimension of the condensate, yielding a low-noise measure-

ment of the field profile along the ẑ direction (to be discussed in Chapter 3). Enforcing a

relatively tight confinement of the condensate in the x̂ dimension had the additional advan-

tage of suppressing the nucleation of undesirable short-range spin excitations. As we have

since observed, magnetic field inhomogeneities, which were controlled along the narrow x̂

dimension of the condensate to a lesser degree, can lead to short-range spatially modulated
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spin structures. While this behavior may be suppressed using techniques analogous to NMR

(to be discussed in Chapter 6), the trap geometry employed in the demonstration of the

spinor condensate magnetometer simplified its presentation.

m
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µm

330µm

m

390µm

(a) (b)

x

z

trapping beam

condensate profile

Figure 1.2: The geometry of the condensate profile, dictated by the geometry the optical
trapping potential, is selected to meet the requirements of a few experimental studies. When
the spinor condensate is applied as a magnetic microscope, its density profile along x̂ is made
to be narrow, enabling robust field measurements along the ẑ axis (a). By widening the
confinement potential, the evolution of magnetic domain structures in the spinor gas could
be examined in two spatial dimensions (b).

In our characterization of the spinor condensate as an amplifier of spin fluctuations

(to be discussed in Chapter 4), and as a playground for studying the evolution of spin tex-

tures (to be discussed in Chapter 6), the optically-trapped condensates were characterized

by a larger diameter along the x̂ axis. By widening the confinement potential, the evolution

of magnetic domain structures could be examined in two spatial dimensions. Further, the

dynamical instabilities underlying the formation of these structures were influenced by the

trap geometry. The same trap was used for both experiments, characterized by trap frequen-

cies (ωx, ωy, ωz) = 2π× (39, 440, 4.2) s−1. The Thomas Fermi radii describing these conden-

sates, which typically contained 2×106 atoms, corresponded to (rx, ry, rz) = (17.6, 1.6, 165)

µm (Fig 1.2(b)).

As a future outlook for studies of spinor gases, it would be intersting to investigate

the behavior of these systems as a function of the aspect ratio of the condensate density



17

profile. In particular, probing the dynamics of an isotropic spinor condensate (potentially

produced using a high-power laser in a cross-dipole trap configuration) would enable a more

straight-forward comparison with theory. By tuning the trap geometry, one can vary the

dynamical instabilities in the spinor gas. In addition, one can vary the effect of dipole-

dipole interactions in the spinor gas. For example, in a single-mode, three-dimensional

system, such as the spherical node of an optical lattice potential, the effect of dipole-dipole

interactions is geometrically averaged to zero.

1.5.2 Controlling the background magnetic field

Our studies of spinor condensates require precise control over the magnitude, ori-

entation, and spatial variation of the background magnetic field. The characterization and

control of the bias magnetic field used in our experiments is described by Ref. [11, 14].

The bias field was produced using three pairs of coils, each of which was arranged in a

Helmholtz configuration outside the vacuum system. Both the magnitude and orientation

of the applied magnetic field were calibrated as a function of the current in each pair of bias

coils, to the level of a few mG. The magnetic field reproducibility, upon multiple repetitions

of the experiment, was similarly at the level of a few mG.

Due to the imperfect geometry of the bias coils and contributions to the magnetic

field from various components of the experimental apparatus, the magnetic field at the

location of the condensate was spatially inhomogeneous. With the use of suitable gradient

and curvature coils, the residual inhomogeneities in the background magnetic field could be

controlled. In our experiments, the magnetic bias field was typically given by B = Bẑ. The

magnetic field gradients along the x̂ and ẑ directions, given by dBz/dz and dBz/dx, were

controlled using two pairs of coils located outside the vacuum chamber. Each pair of coils

was arranged in an anti-Helmholtz configuration, the first of which, denoted as the “axial

gradient coils”, was aligned to the ẑ axis; the second of which, denoted as the “transverse

gradient coils”, was aligned to the x̂ axis. In addition, the magnetic field curvature along

the ẑ axis was controlled by running a small current through a ẑ−oriented pair of coils,

located inside the vacuum chamber. During the initial stage of the experimental sequence

in which a cold gas of magnetically trapped atoms was produced, this same pair of coils

served as the “curvature coils” for the magnetic trap [11, 14].

To enable sensitive magnetic field measurements and to follow the temporal evo-
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lution of the spinor condensate out to long evolution times, we required a homogeneous

background magnetic field whose spatial variation was less than a few µG across the spa-

tial extent of the condensate. Without this level of control, the field sensitivity of the

magnetometer was limited by inhomogeneities in the background magnetic field. In addi-

tion, dynamics in the spinor gas were found to be sensitive to field inhomogeneities. Prior

to performing a given experiment, several hours were typically dedicated to obtaining a

homogeneous background magnetic field,

To spatially resolve the background magnetic field in two dimensions, we imaged

the Larmor precession of the condensate magnetization (to be discussed in Section 2.3).

The condensate was initially prepared in a uniformly magnetized state, e.g. M(x, z) = Mx̂,

oriented transverse to the bias magnetic field, Bẑ. At a given location in the condensate, the

condensate spin precesses according to the magnitude of the local magnetic field. The local

phase of precession, accrued following a given evolution period, is proportional to the local

value of the magnetic field. By constructing a spatial map of the relative phase of precession

δφLP (r), accrued at different locations in the condensate, we were able to determine the

spatial variation of the background magnetic field, i.e., δB(r) = (~/gF µB)(δφ(r)/t). This

corresponds to the principle of operation of the spinor condensate magnetometer, to be

discussed in more detail Section 3.1.3.

Following a given evolution period, the contribution to the background field from

a ẑ-oriented magnetic field gradient was measured using,

dBz

dz
=

~

gF µBt

dφz

dz
, (1.15)

where the phase gradient dφz/dz was determined from a polynomial fit to φ(r), averaged

in the x direction over a central region of the condensate. The control current for the axial

gradient coils was adjusted to compensate for the measured field gradient. By gradually

increasing the evolution time, t, more sensitive measurements of dBz/dz were made. At long

evolution times (up to 350 ms), the current was adjusted at the level of 0.1 mA, such that the

field variation along the ẑ direction was reduced to the level of |∆Bz| = |dBz/dz|∆z < 3

µG. For typical experiment conditions, |dBz/dz| was reduced to a level of 0.1 mG/cm;

however prior to achieving this level of control, measurements of other contributions to the

field inhomogeneities had to be characterized.

In addition to the contribution to the background magnetic field from a ẑ-oriented

field gradient, the contribution from a x̂-oriented field gradient was also measured and re-
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duced. However, due to the narrow x-dimension of the condensate, this measurement was

performed with a different bias field configuration; instead, a bias field directed along x̂,

provided by the same Helmholtz coils, was used. This was motivated by the observation

that since magnetic field is curl-free in free space, |dBz/dx| = |dBx/dz|. In this configura-

tion, the inhomogeneity of the accrued Larmor phase, measured along the advantageously

larger z dimension of the condensate, could be used to sense dBx/dz. Using the above

procedure, the measured gradient dBx/dz was determined; next, by adjusting the control

current for the transverse gradient coils, it was systematically reduced. Ideally the trans-

verse gradient coils would be oriented along the x̂ axis, but due to the constraints imposed

by the vacuum chamber, they were oriented at roughly 30 degrees to this axis. In practise,

the control currents for the axial and transverse coils were adjusted in iteration, using the

above procedures.

To observe the homogeneous Larmor precession of the condensate magnetization

following evolution periods greater than roughly 200 ms, small adjustments to the control

currents for both the axial and transverse gradient coils were made with the bias field orien-

tation held fixed; for our experiments, B = Bẑ. Contributions to dBz/dz were compensated

for by measuring and reducing dφz/dz, as discussed. Somewhat less trivially, contributions

to dBz/dx were compensated for by enforcing the spatially homogeneous precession of the

gas. For instance, when the control current for the transverse gradient coils was tuned

away from its optimal value (corresponding to |dBz/dx| < 0.3 mG/cm), the condensation

magnetization pattern was found to dissolve into small-scale magnetic domains following

long evolution periods (t > 200 ms), to be discussed in Chapter 6. The final control current

settings for the axial and transverse gradient coils were on the order of 1-3 A; the measured

magnetic field gradients were reduced to the level of |dBz/dz|, |dBz/dx| < 0.1−0.3 mG/cm.

In addition, the contribution to the background ẑ-oriented magnetic field curvature

could be separately controlled using a small current directed through “curvature coils” of

the magnetic trap. Typically on the order of 0.3 A, this control current enabled the magnetic

field curvature to be reduced to a level of d2Bz/dz2 < 10 − 20 mG/cm2.

1.5.3 Applying modulated magnetic fields

Noise sources in the magnetic field environment, characterized by RF frequencies

up to roughly 140 kHz, prevented the study spin dynamics at very small magnetic fields.
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In order to study spin dynamics which were unaffected by spurious sources of spin-flips,

our experiments were performed at higher magnetic fields, gF µBB/h > 140 kHz (B > 200

mG). However, the field-induced quadratic shift, qB/h = 70 Hz/G2 B2, quickly becomes

comparable to the relevant spin-dependent energy scales as the magnetic field is raised; for

example, qB/h = c2n/h ≈ 8 Hz for B ≈ 460 mG. In order to study the behavior of the

spinor condensate at low quadratic shift, one requires an additional control of its magnitude

which is independent of the bias magnetic field.

This control was achieved by introducing a modulated magnetic field, provided by

a linearly polarized microwave field, detuned from the |F = 1,mz = 0〉 to |F = 2,mz = 0〉
hyperfine transition. The applied microwave field induced an AC quadratic Zeeman shift,

which was either positive or negative in sign, depending upon its detuning from resonance.

Microwave field induced AC Zeeman shift

|2,-2>

|2,-1>

|2,0>

|2,1>
|2,2>

|1,-1>
|1,0>

|1,1>

Rb 5 S  | F, m > 
F
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  1/2

Figure 1.3: The ground state 5 S1/2, F = 1, 2 hyperfine manifolds of 87Rb are shown. The
dominant shift in energy of the magnetic hyperfine levels, mF , is due to the linear Zeeman
shift, hωB = gF µBBz, at low magnetic fields. An applied microwave field, driven at a
frequency ωµ = ωR + δ, is detuned from the |F = 1,mz = 0〉 to |F = 2,mz = 0〉 transition
by δ. It is used to apply an AC Zeeman shift to the |F = 1,mz = 0〉 state, which is quadratic
in mF and the applied microwave field. This applied quadratic shift may be tuned using
both the amplitude and detuning and the microwave field.

An applied magnetic field, modulated at a frequency ωµ, and detuned from the

|F = 1,mz = 0〉 to |F ′ = 2,m′
z = 0〉 hyperfine transition by a frequency δ, couples the
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F = 1 and F ′ = 2 ground state manifolds (Fig. 1.3). Here, we are interested in making

use of the AC Zeeman shift of a ground state |F = 1,mi〉 resulting from its coupling to

the states |F ′ = 2,m′〉 by means of the applied field ~Bµ(t) = ~Bµeiωµt. The resulting AC

Zeeman shift is given by,

εZ =
∑

m

|Vm′,mi
|2

ωµ − ωm′,mi

, (1.16)

where V = −~µ · ~Bµ = gF µB(FzBµ,z + F+Bµ,− + F−Bµ,+), and we have decomposed the

field ~Bµ and spin ~F vectors with respect to a standard spherical basis set labeled by mz the

ẑ-projection of the condensate spin, F. The energetic shift can be written as,

εZ = (gF µB)2
∑

m′

|Bµ,z〈m′|Fz|mi〉 + Bµ,+〈m′|F−|mi〉 + Bµ,−〈m′|F+|mi〉|2
ωµ − ωm′,mi

. (1.17)

Given the initial state |F = 1,mi〉, then only one coupling element to a given state in the

upper ground state manifold,|F ′ = 2,m′〉, among the coupling elements 〈m′|Fz|mi〉 and

〈m′|S±|mi〉, is nonzero. Thus it is convenient to express εZ as,

εZ = (gF µB)2
( |Bµ,z|2|〈F = 1,mi = k|Fz|F ′ = 2,m′ = k〉|2

δF=1,mi=k;F ′=2,m′=k

)

+ (gF µB)2
( |Bµ,+|2|〈F = 1,mi = k|F−|F ′ = 2,m′ = k + 1〉|2

δF=1,mi=k;F ′=2,m′=k+1

)

+ (gF µB)2
( |Bµ,−|2|〈F = 1,mi = k|F+|F ′ = 2,m′ = k − 1〉|2

δF=1,mi=k;F ′=2,m′=k−1

)

, (1.18)

where the above field-dependent detunings are in general given by,

δF=1,mF ;F ′=2,mF ′
≡ ωµ − ωm′

F ′
;mF

(1.19)

= (ωR + δ) − (ωR + gF ′µBmF ′B − gF µBmF B)

= δ − (gF ′µBmF ′B − gF µBmF B)

≡ δ − ωB,mF ,mF ′
,

and g2,1 = ±1/2, µB = 1.4 MHz/G, and ωB,mF ,mF ′
corresponds to the linear Zeeman

splitting between mF ,m′
F due to the static magnetic field Bẑ. The coupling elements can

be calculated using

〈F,mF |Fq|F ′,mF ′〉 = 〈F ||Fq||F ′〉



(−1)F ′−1+mF
√

2F + 1





F ′ 1 F

mF ′ q −mF







(1.20)

where an expanded form of the standard short-hand notation, 〈F ||Fq||F ′〉, is available in

most atomic physics textbooks. At this point we have fully specified the form of the applied

AC Zeeman shift, εZ(Bµ, δ,mi).
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Microwave field induced quadratic shift

We are interested in extracting the quadratic energy shift relevant to our experi-

mental study of the F = 1 manifold, which results from the field-induced AC Zeeman shift.

To do so, we decompose εZ(Bµ, δ,mi) as,

εZ(Bµ, δ,mF ) = a(Bµ, δ) + b(Bµ, δ)mF + c(Bµ, δ)m2
F (1.21)

a(Bµ, δ) = εZ(Bµ, δ, 0)

b(Bµ, δ) = (εZ(Bµ, δ, 1) − εZ(Bµ, δ,−1))/2

c(Bµ, δ) = (εZ(Bµ, δ, 1) + εZ(Bµ, δ,−1))/2 − εZ(Bµ, δ, 0)

where the field-induced linear and quadratic shifts corresponds to b(Bµ, δ) and c(Bµ, δ)

respectively.

Including the effect of the applied static magnetic field, a ground state level |F =

1,mF 〉 is shifted in energy by,

εtot(Bµ, δ,mF , B) = a(Bµ, δ) + (b(Bµ, δ) + gF µBB)mF + (c(Bµ, δ) + qB)m2
F , (1.22)

thus defining an effective linear and quadratic shift. We can re-express this energy shift in

a form which connects directly to the physical quantities of interest in our experiment,

εtot(Bµ, δ,mF , B) = const + ~ωLarmor(Bµ, δ, B)mF + qeff (Bµ, δ, B)m2
F . (1.23)

Introducing a microwave field results in a linear energy shift, which modifies the Larmor

precession frequency very slightly. For typical parameters of our experiment, b(Bµ, δ)/h ≤ 1

Hz whereas gF µBB/h ≈ 250 kHz. In addition, it introduces a quadratic energy shift. For

a F = 1 gas of 87Rb atoms, the effective induced quadratic shift is described by,

qeff ≡ qµ + qB (1.24)

qµ = c(Bµ, δ)

qB/h = 70Hz/G2 B2.

In the experiment, we typically use qµ to tune qeff over the range −2c2n ≤ qeff À 2c2n.

Typically, ωLarmor ≥ 2π × (230 kHz) and qB/h ≥ 8 Hz.
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Choice of parameters for the applied quadratic shift

In the experiment, the microwave waveguide was oriented at 30◦ with respect to

the x̂ axis. The applied AC magnetic field is given by ~B = B cos(30◦)ẑ + B sin(30◦)x̂. Its

spherical components are therefore given by B± = Bx± iBy = B sin(30◦). Ideally we would

choose ~B to be polarized along ẑ so B± = 0, but the available viewport to which we could

attach the microwave waveguide was off-axis.

The value for δ was chosen to be sufficiently far from resonance to avoid pop-

ulating the F ′ = 2,mF ′ levels, to apply a qeff of the desired magnitude, and to avoid

field-dependent resonances. For the experiments discussed in this thesis, we chose δ such

that δ ¿ ωB,mF ,mF ′
; for example, δ = 2π × (35 kHz) and g1µBB/h = 230 kHz. To a good

approximation, the applied field simply shifted the energy of the |F = 1,m = 0〉 state. The

resulting fractional population of the |F ′ = 2, m = 0,±1〉 states was less than one part

in 104 for typical parameters, and was neglected. The coupling to the |F ′ = 2, m = ±1〉
states, suppressed by δ/

√
3ωB,mF ,mF ′

was also assumed to play a negligible role. These

assumptions were tested empirically, the results of which are presented in Section 4.4.2.

Under these approximations and operating conditions, the AC field-induced quadratic

shift simplifies to,

qµ = −~

4

Ω2
R

δ
, (1.25)

where ΩR = gF µB|Bµ|/~. The calibration of qµ is discussed in the upcoming sections. To

give the reader a sense of reasonable parameters, with an available microwave power of

Pµ < 10 Watts, we were able to apply an AC magnetic field with an amplitude |Bµ| < 14.3

mG (ΩR < 2π × (9.9 kHz)). For δµ = 2π × (35 kHz), this corresponded to qµ/h < 700 Hz.

In the reported studies of spin dynamics in Chapter 4, however, we applied qµ/h < 20 Hz.

Microwave source and implementation

The implemented microwave source which was used to apply a modulated magnetic

field to the condensate is illustrated in Figure 1.4. A frequency source (IFR) referenced to

a Rb atomic clock provides an output of 13 dBm at ωIFR = (ωR/2 − ∆); the frequencies

ωR and ∆ are defined by Figure 1.4. The output passes through a TTL-controlled switch

(Minicircuits, rated up to 5 GHz). It is then doubled by a frequency doubler/amplifier

(Marki microwave, DA-0210K) which provides an output of 17 dBm at ωdoubler = (ωR−2∆).

This provides the local oscillator input (L) to a mixer (Minicircuits) and acts as the carrier
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signal. Depending on the required output of the mixer, the type of mixer and attenuation

to its input (L) were adjusted. The modulation input (I) is provided by a function generator

(SRS DS340) which adds sidebands to the carrier at frequencies ωR − 2∆±ωSRS . The SRS

drive frequency and ∆ therefore determine the detuning, δ, of the applied microwave field,

ωµ. The experiment parameters for the spin-mixing amplifier experiment (Ch.4) included

∆ = 2π × (20 MHz), ωIFR = 2π × (3.407341305 GHz), and ωSRS = 2π × (19965202 Hz)

(δ = 2π × (−35 kHz)), or ωSRS = 2π × (20035202 Hz) (δ = 2π × (35 kHz)).

The linewidth of the |F = 1,mz = 0〉 to |F = 2,mz = 0〉 hyperfine transition is

small; thus, by choosing both ∆ À 1 kHz, δ À 1 kHz the carrier and red-detuned sideband

have a negligible effect upon the atoms, and the sideband closest to resonance is used to

address the atoms. Its frequency is given by ωµ = ωR − 2∆ + ωSRS ≡ ωR + δ. The output

of the mixer (R) is sent to a 40 dB amplifer with a maximum total output of 20 Watts.

The output of the amplifier connects to a circulator/isolator (ATM Advanced Technical

Materials P/N ATc4-8, Freq 4-8 GHz) followed by a stub-tuner (Maury Microwave, model

1819D). This is attached to the µ-wave waveguide (ATM Advanced Technical Materials WG

P/N 137-201B-2, Freq 5.85-8.2 GHz) which is taped directly to a viewport of the chamber.

The circulator/isolator protects the amplifier from back-reflections. We chose to

use a circulator which has three ports, an input (1), an output (2), and a re-circulation port

(3) which probes the reflected power, Pref . By measuring this reflected power while adjust-

ing the stub tuner, one can minimize it and in so doing impedance match the waveguide to

the chamber. After adjusting the stub tuner, we placed a 50 ohm terminator on the third

port of the circulator so that it acts as an isolator, sending the reflected power to ground.

We used the regular 2 Watt 50 Ohm terminators from Minicircuits. The reflected power

was typically 10−4 times the input power.

The microwave cables used to connect the output of the amplifier to the isolator,

stub-tuner and waveguide were provided by the company Huber Suhner. Their losses were

lower than the cables provided by Pasternack (by roughly 2 dB). One cable part number

we used was ST18/SMAm/SMAm/36 Order No. 84002061. An essential calibration tool

is a directional coupler (Pasternack PE2210-02). This part has three ports, an input, an

output, and a directional probe which probes the input, Pprobe = Pin − 20 dB. If connected

in reverse, it can be used to probe reflected power.
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Figure 1.4: A schematic describing the implemented microwave source and parts used, as
referenced in the text.

Calibration of the microwaves: field measurements

Prior to implementing the microwave source in the experiment, an applied mi-

crowave field was calibrated using a test vacuum chamber. This enabled us to determine

whether the simple approach of taping the waveguide to a viewport of the chamber would

provide a sufficiently large microwave field at the location of the atoms.

The applied microwave field was calibrated using Marconi antennae. A Marconi

antenna designed to broadcast or sense a field of wavelength λ consists a ground plane,

made with a copper disk of diameter λ (or larger), and a half-dipole, made using a wire of

length λ/4, which is centered on the plane and normal to it. The antenna emits a dipolar

radiation pattern, produced by charge oscillating on the wire, whose mirror image is located

below the ground plane.

A thin copper disk, with thickness four thousandths of an inch, and a diameter

of 8 cm was used for the ground plane (Fig. 1.5). An SMA connector was braised onto

the copper disk from below, and an approximately 1 cm long wire was soldered to the

connector, above the ground plane. Cleaning the ground plane with acid (HNO3), such

that no oxidation remained upon it (turning the copper pink) was important in optimizing

the response of the antenna.

The length of the dipole wire was tuned empirically such that the antenna broad-

cast at the desired frequency. This was accomplished by measuring the reflected power

spectrum. The length of the wire was adjusted so as to minimize the reflected power at the

desired frequency. As illustrated in Fig. 1.6, the reflected power was measured using the

directional coupler (DC), connected in reverse, such that the reflected rather than input

power was probed. A typical response curve of a homebuilt Marconi antenna tuned to
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6.8 GHz marconi antenna

(a) side view (b) view from below

Figure 1.5: Images of the 6.8 GHz marconni antenna designed and used to calibrate applied
microwave fields.

approximately 6.8 GHz is shown in Fig. 1.6. A broad dip in the reflected power spectrum

is centered around the resonance frequency of the antenna. In practise, one continues to

shorten the wire until that resonance matches with the desired frequency.

To calibrate one pickup antenna, a second identical antenna was made which served

as a known quantitative field source, co-aligned with the first antenna. The oscillating

electric field radiated by the source antenna was measured by the pickup antenna as a

function of their separation. Specifically, the power measured on a spectrum analyzer,

using the pickup antenna, is given by Pm = V 2
rms/50Ω = ((1/2)Eµ(λ/4))2/50Ω, where

Vrms refers to the potential across the dipole wire. This is a probe of the magnitude of

the electric field sensed by that antenna, Eµ. The sensed magnetic field is then given by

Bµ = 104Eµ/c G. Once the pickup antenna was calibrated, it could be used to measure an

applied modulated magnetic field from an arbitrary source.

The aforementioned waveguide was centered and taped onto the viewport of a

vacuum chamber similar to the one in the experiment, and impedance matched to its envi-

ronment using the stub tuner. The calibrated pickup antenna was placed at the center of

the chamber. For an input power to the waveguide of one Watt, a 3-6 mG field was mea-

sured at the center of the chamber, depending upon the configuration of the measurement.

The steel chamber served to guide the applied field. In comparison, an antenna placed an

equivalent distance away (approximately 12 cm) from a waveguide which broadcast into
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Figure 1.6: The marconi antenna was tuned by adjusting the length of its dipole wire such
the spectrum of the reflected power, measured using a directional coupler in the configura-
tion shown, was minimized at the desired operating frequency.

free space, detected a field suppressed by approximately 10 dB.

Calibration of the microwave drive field with the atoms

To calibrate the applied quadratic shift at a given detuning, it was necessary to

confirm independently the magnitude of the applied microwave field. To do so, a thermal

gas of optically trapped |F = 1,mz = 0〉 atoms was irradiated by a microwave field resonant

with the |F = 1,mz = 0〉 to |F = 2,mz = 0〉 hyperfine transition. As a result, population

was transferred from the |F = 1, mz = 0〉 state to the |F = 2,mz = 0〉 state. The population

in the |F = 2, mz = 0〉 state after a given irradiation period was determined from an on-

resonance time-of-flight image (using a Stern Gerlach technique described in Sec 2.5) taken

without the use of a repump beam so as to be insensitive to F = 1 atoms. The population of

|F = 2,mz = 0〉 atoms oscillated at a frequency given by the on-resonance Rabi frequency,

ΩR, proportional to the magnitude of the modulated magnetic field, Bµ.

First, the modulation frequency resonant with the transition, ωR, was measured

by irradiating the atoms at low power for a short time period, tµ, and determining the

population of |F = 2,mz = 0〉 atoms as a function of the frequency of the applied microwave
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field. This Rabi pedestal, whose center determines ωR, was measured at low power (ΩR =

2π × (170 Hz)) for tµ = 1.2 ms, at a bias magnetic field of gfµBBz/h = 230 kHz. We

observed its center to be offset from the IFR setting taken from Ref. [46] (ωR/2 = 2π ×
3.417341305452145(45)) by roughly 200 Hz.

The on-resonance Rabi frequency, ΩR, was determined by measuring the popula-

tion in |F = 2,mz = 0〉 as a function of the irradiation period tµ, with the frequency of

the irradiation field tuned to the empirically-determined resonance, ωµ = ωR. For an initial

population of 6.6×106 atoms in |F = 1,mz = 0〉, a few Rabi oscillations at ΩR = 2π× (630

Hz) are shown in Fig. 1.7, measured at the same experiment conditions. As a function of

the input power to the waveguide, Pµ, we calibrated the Rabi frequency, ΩR = 2π × 3.1

kHz/W2 P 2
µ . This corresponds to a modulated magnetic field of magnitude 4.4 mG for 1

Watt of power, which is in remarkable agreement with the rough initial measurement of the

applied field with the Marconi antenna.
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Figure 1.7: Images of the 6.8 GHz marconni antenna designed and used to calibrate applied
microwave fields.

In running the experiment, the measured value of Ω2
R for the same input power

would vary by up to 25 percent over a one week period, presumably due to a slight change in

the position of the waveguide and the relevant impedance matching. In order to determine

precisely the microwave-induced quadratic shift, qµ = Ω2
R/δ, ΩR was routinely calibrated
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as a function of its control setting within one to two days of taking data.

In Figure 1.8, the on-resonance Rabi frequency ΩR is shown as a function of

its control setting – a computer-controlled analog voltage, used as the external amplitude

control for the function generator. As described, the output of the SRS was used as the input

to a mixer. Thus, the amplitude of the resulting sideband, which served as the frequency

source for the relevant microwave field, reflects the characteristic nonlinear response curve of

a mixer. The output power of the microwave amplifier, measured using a spectrum analyzer,

exhibited the same dependence upon the control setting as the squared Rabi frequency Ω2
R,

measured using the atoms.
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Figure 1.8: The on-resonance squared Rabi frequency, Ω2
R, measured as a function of the

control setting for the applied microwave field. The red and green circles correspond to
measurements of Ω2

R performed twelve days apart.

An additional calibration of qµ which makes use of the phase transition of the

spinor condensate, and the empirical tests supporting our choice of operating parameters

ΩR, δ, are presented in the context of that experiment, in Section 4.4.2.



30

Chapter 2

Seeing Spinor Condensates

To investigate the rich array of physics associated with the F = 1 spinor Bose con-

densate, we characterize the spinor order parameter optically, using an in situ phase contrast

imaging technique which relies upon the dielectric properties of the spinor gas. To motivate

our imaging technique, we show that by measuring the dielectric susceptibility tensor of a

F = 1 spinor we may completely characterize its key properties, including its scalar den-

sity, vector magnetization, and tensor quadrupole moment. Our imaging technique enables

the direct observation of features of the spinor order parameter, such as spin textures, with

high spatial resolution. The implementation and characterization of a new 2 µm-resolution

imaging system is presented, in addition to the experimental techniques and data analysis

which enable the characterization of both the longitudinal and transverse magnetization of

a spinor Bose gas.

2.1 Dielectric properties of F = 1 spinor gases

Having laid out the compelling energetic landscape of spinor Bose condensates and

established the experimental controls to facilitate its exploration, our next task is to devise

measurements suitable to its direct characterization. In our experiments, we characterize the

spinor order parameter optically, using an in situ phase contrast imaging technique which

relies upon the dielectric properties of the spinor gas. This enables the direct observation of

features of the spinor order parameter, such as spin textures, with high spatial resolution.

By fully characterizing the dielectric tensor of an F = 1 spinor gas, one may

obtain a complete description of the three-component spinor order parameter, ψi. This
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follows from the fact that both the dielectric susceptibility tensor χab and the one-body

density matrix mab = ψ†
aψb, which characterize an F = 1 spinor gas, correspond to rank

two tensors, each constructed by the product of two angular momentum one objects. A

direct mapping between two second-rank tensors may be obtained by decomposing each in

terms of its irreducible components with angular momentum 0, 1, and 2. For example, by

experimentally characterizing the components of dielectric susceptibility tensor, χab, one

may determine mab using known proportionality constants.

The properties of an F = 1 spinor order parameter, ψa, may be gleaned from

the irreducible tensor components ρ, Sa, Nab of its one-body density matrix with angular

momentum 0, 1, and 2, where

ρ =
∑

j

mab = ψ† · ψ, (2.1)

Sa = −iεabcmbc = −i(ψ† × ψ)b,

Nab =
1

2
(mab + mba) −

ρ

3
δab,

and εabc is the totally antisymmetric unit tensor. Here ρ, Sa, and Nab correspond to the

scalar number density, vector spin density, and second-rank nematicity (or quadrupole mo-

ment) of the spinor. These three properties uniquely define a given F = 1 spinor. We

shall return to them often throughout this discussion and in the analysis of the presented

experimental studies.

2.1.1 Properties of a spin-1 object

To develop an understanding of the properties of F = 1 spinors it is helpful to

begin by considering two families of states, denoted as magnetic and polar. Following our

introduction of these families of states, we will examine their spin and nematic character in

relation to the measurable properties of their characteristic dielectric susceptibility tensors.

A magnetic state is one which may be expressed by a rotation of the ẑ unit vector,
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expressed as

ξMag = eiθUrot(α, β, τ)









1

0

0









(2.2)

= ei(θ−τ)









e−iα cos2 β/2
√

2 cos β/2 sinβ/2

eiα sin2 β/2









;

it is described by Euler rotation angles α, β, and τ , and an overall phase θ [27]. Here we

express ξMag in terms of the standard spherical basis. The spin Sa of a magnetic state may

be interpreted simply as a unit vector,

~S = cos βẑ + sinβ(cos αx̂ + sinαŷ) (2.3)

oriented at an angle β with respect to ẑ and an angle α in the xy plane. The configurations

of magnetic states, ξMag, are labeled by three Euler rotation angles, and obey the symmetry

requirements imposed by the SO(3) symmetry group. Here SO(3) corresponds to the group

of rotations in three-dimensions. In our experiments, we will encounter states of the form

ξMag when the spin-dependent Hamiltonian is tuned such that |〈F 〉| = 1 is energetically

favorable; these states are characterized by a macroscopic magnetization. Reminiscent of

co-aligned spins in a solid state magnet, the family of states ξMag is denoted as magnetic.

A second family of states, denoted as polar, may be determined from the rotation

of an unmagnetized but fully coherent state given by,

ξPol = eiθUrot(α, β, τ)









0

1

0









(2.4)

= eiθ









− 1√
2
e−iα sinβ

cos β

1√
2
eiα sinβ









.

A polar state is unmagnetized since 〈Sa〉=0; therefore, a polar state may not be described

by a vector orientation. Instead, a polar state is characterized by its alignment axis, given

by the angles α, β. The alignment of a given spinor is characterized by Nab, its quadrupole

moment, or nematicity.
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In the expression for ξPol, we note no dependence upon the Euler angle τ ; thus,

the family of polar states is characterized by a different symmetry group than above. Its

symmetry group contains rotations of the alignment axis of the spinor, described by the

angles α, β, and is given by U(1)× S2, where S2 corresponds to the surface of a unit sphere

describing those rotations. Physically, the properties of a polar state which govern its inter-

action with light depend only upon its alignment rather than its orientation. This behavior

is common to nematic liquid crystals, whose optical properties depend only upon the align-

ment of the long axis of each constituent polymer. In contrast, the polymer orientation

along its long axis has no effect upon its dielectric susceptibility [47].

2.1.2 Characterizing F = 1 spinors by measuring their dielectric tensors

As a starting point for devising optimal state-specific measurement schemes, it is

interesting to consider the dielectric properties of magnetic and polar gases. Following the

formalism presented by Ref. [48], the dielectric susceptibility tensor describing a spinor gas

may be expressed in terms of the irreducible tensor components of its one-body density

matrix mab and appropriate proportionality constants; specifically,

χbc = C0〈ρ〉 − iC1εabc〈Sc〉 + C2〈Nbc〉, (2.5)

where the constants Ci are determined from physical parameters describing the measure-

ment and the spinor gas.

In our experiments, we are interested in optically characterizing the susceptibility

dielectric tensor of a spinor gas. In a single measurement, we direct an optical probe along

one axis, denoted as the ŷ axis, and measure the outgoing light. The electric field of the

probe beam, Ein is transverse to the propagation axis; thus the measured outgoing probe,

Eout may only carry information about the transverse components of χab. Thus, while χjk

is described by a 3 × 3 matrix, a single optical measurement is sensitive to a 2 × 2 section

of this matrix, denoted as χ̃ij . For example, we may characterize the response of the spinor

gas dielectric susceptibility to x̂, ẑ-linearly polarized light, propagating along the ŷ axis, by

measuring the outgoing electric field,

Eout,i = Exp[−ik

∫

nij(y)dy] · Ein,j (2.6)

nij =
√

δij + χ̃ij ; (2.7)
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here, nij is the refractive index tensor of the sample, determined from its dielectric suscep-

tibility. In our experiments, the probe frequency is tuned far from the atomic resonance so

that, to a good approximation, the outgoing probe simply acquires a phase shift due to its

interaction with the spinor gas. Assuming the condensate acts as a thin lens,

Eout,i = e−ik
∫

dy
√

δij+χ̃ijEin,j (2.8)

≈ e−ik(2ry)(δij+χ̃ij/2)Ein,j (2.9)

and the probe acquires a position-dependent phase shift, which we may describe by

Eout,i = e−iφijEin,j (2.10)

φij = φ0(δij + χ̃ij/2).

Here, the overall phase acquired by the probe corresponds to φ0 = 2kry where ry is the

condensate Thomas Fermi radius along the ŷ axis. An additional, state-dependent phase

given by φ0χ̃ij/2 depends upon the orientation and alignment of the atomic ensemble.

Along the imaging (ŷ) axis , the condensate radius ry is smaller than the spin healing

length. Consequently, spin excitations along this direction are too energetically costly to

be sustained, and we assume the spinor condensate is effectively two-dimensional with

respect to its spin degree of freedom. By imaging the spinor gas along the ŷ axis, we are

discarding information about its magnetization profile along this direction, assuming it to

be homogeneous.

To characterize the dielectric properties of a spinor gas, one may therefore measure

the phase shift of the light as it traverses the condensate. For this characterization to be

complete, one must probe the sample along multiple axes. A neat aspect of working with

spinor gases (as compared to solid state samples, for example) is that this characterization

may be accomplished, in practise, using a single fixed imaging system. Rather than rotate

the imaging axis by ninety degrees, one may hold the imaging axis fixed and rotate the

spinor wavefunction by ninety degrees. We make use of this principle, for example, in

characterizing both the transverse and longitudinal magnetization of the spinor gas (to be

discussed in Sec 2.3.2).

The dielectric susceptibility tensor of a given F = 1 87Rb spinor condensate de-

scribes its interaction with the probe. Assuming the probe is tuned close to the D1 transi-

tion of 87Rb, and following the formalism presented in Ref. [48], the dielectric susceptibility

tensor of the F = 1 87Rb spinor gases probed in our experiments may be expressed as,
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χ̃ij =

(

σ0
nγ

2

λ

2π

) (

1

δ
χ̃F ′

2
+

−1

800 − δ
χ̃F ′

1

)

(2.11)
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
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1
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1
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ρ
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1 0

0 1



 +
1

24





S11 S12

S21 S22



 +
−1

12





N11 N12

N21 N22





where δ corresponds to the probe detuning below the F = 1 → F ′ = 2 transition measured

in MHz; −800 + δ is then the probe detuning below the F = 1 → F ′ = 1 transition; λ

is the probe wavelength; σ0 = 3λ2/2π is the resonant cross section; and γ is the natural

linewidth of the transition. The coefficients used in the construction of χ̃F ′

2
and χ̃F ′

1
are

determined from the state-dependent interaction strengths of the probe with the atomic

sample, as outlined by Ref. [48]. In general they depend upon the probe polarization. In

the expression for χ̃ij given in Eq 2.11, the 2 × 2 components of mij , denoted as S̃ij and

Ñij are given with respect to a Cartesian basis.

To determine the dielectric susceptibility tensor characterizing the interaction of

a given spinor with linearly polarized light, we must express ψi and mij with respect to the

Cartesian basis ψx, ψy, ψz. Frequently, as in the above definitions of magnetic and polar

states, ψi is expressed in terms of the spherical basis ψ+, ψ0, ψ−. For clarity, we outline the

construction of χ̃ij , making use of the standard basis transformation ψx = (ψ+ − ψi)/
√

2,

ψy = i(ψ+ +ψi)/
√

2, ψz = ψ0. Given ψs in the spherical basis, we may determine ψc in the

Cartesian basis from

ψc = Uψs, (2.12)

U =









1/
√

2 0 −1/
√

2

i/
√

2 0 i/
√

2

0 1 0









,

where we have deliberately chosen the 1,2 elements of U to correspond to the Cartesian

components transverse to the imaging axis. Using the convention of Eq 2.12 the 1,2 compo-

nents of χij interact with the components of E transverse to the probe axis. The irreducible

components of the one-body density matrix mc
ij = ψ†,c

i ψc
j (Eq 2.1) are then used to con-

struct χ̃ij in Eq 2.11. Thus determined, the dielectric susceptibility (Eq 2.11) describes the

outgoing electric field in response to an incoming linearly polarized field .
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In our experiments we make use of a circularly polarized probe. To express χ̃ij in

terms of σ+, σ− polarization basis, we simply apply the transformation,

χ̃circ = Ũ · χ̃pol · Ũ † (2.13)

Ũ =





1/
√

2 −i/
√

2

−1/
√

2 −i/
√

2





which we will adopt throughout the remainder of this discussion.

2.1.3 Dielectric properties of magnetic and polar gases

To develop an intuition for the measurable dielectric properties of a general F =

1 state (Eq. 2.11), we begin by considering the magnetic and polar families of states

ξf (α, β), ξp(α, β) given by Eq. 2.2,2.4. In this context, the angle β is defined with respect

to the probe axis (ŷ) and α describes a rotation in the x, z plane. To proceed, we consider

the contributions to χij which depend upon the spin state of interest. Specifically, S̃ij and

Ñij for the magnetic and polar states are given by

S̃Mag =





cos β 0

0 − cos β



 (2.14)

S̃Pol =
←→
0

ÑMag =





1
24(1 + 3 cos 2β) −1

4 sin2 β(cos 2Φ + i sin 2Φ)

−1
4 sin2 β(cos 2α − i sin 2α) 1

24(1 + 3 cos 2β)





ÑPol = −2NMag,

where we have made use of the σ+, σ− polarization basis.

Measurable properties of the dielectric tensor clearly distinguish between polar

and magnetic states. For example, the dependence of χij upon the orientation β of a

magnetic state is reflected by the contribution of its spin, S̃f . In contrast, the dielectric

properties of a polar state are weakly dependent upon its orientation; since the polar state

is unmagnetized, S̃p = 0, and this dependence is attributed to its quadrupole moment Ñij .

It becomes the task of the experimentalist to craft optical measurements of the

dielectric properties of a spinor gas to extract its magnetic and nematic properties. By

performing a measurement sensitive to χ̃++ and χ̃−−, for example, one may characterize
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the vector spin of a magnetic state. This may be accomplished by probing the phase shift

acquired by a circularly polarized probe, to be discussed. The nematic properties of a

spinor gas may also be characterized with suitable optical measurements. These may best

be performed using linearly polarized light; in this case, the diagonal components of χ are

due solely to Nij . For example, when employing x̂, ẑ-polarized light, measurements of χ̃xx,

χ̃zz are made with twice the signal strength for the polar vs. magnetic states.

2.2 Spin-sensitive phase constrast imaging

In our experiments, we make use of the phase contrast imaging technique [49] to

determine simultaneously the phase shift acquired by light passing through all positions

in the condensate. Specifically, we measure the phase shift acquired by a σ+ polarized

probe, detuned from the D1 atomic resonance, due to its interaction with the atomic spin.

Our imaging settings are selected such that a given measurement provides instantaneous

snapshot of the ŷ-projection of the condensate magnetization profile, Fy(r)[50].

Employing an off-resonance or dispersive measurement technique offers many ad-

vantages. In contrast to absorptive measurements, which must frequently be performed

at low-densities following the expansion of the gas, dispersive measurements may be per-

formed in-situ, with high spatial resolution. Further, by employing an approximately non-

destructive measurement, we may perform repeated measurements of the same sample;

this is in contrast to resonant absorptive measurements which significantly heat the atomic

ensemble.

The capability of performing multiple measurements of the same atomic sample

serves as a gateway to studies of spin dynamics and to the development of novel measurement

tools. First, by performing repeated measurements over appreciable timescales, we may

characterize of the time evolution of the spinor gas. Second, by taking multiple snapshots

of the condensate in rapid succession, we may extend our characterization of the spinor gas

to include more degrees of freedom. For example, as we shall see in Sec. 2.3, by taking a

rapid sequence of images of a Larmor precessing gas, we may characterize the amplitude

and phase of the transverse magnetization F⊥, rather than simply measure its projection

along the probe axis, Fy. While dispersive measurements have been implemented in prior

studies of Bose condensates (Ref.[51], for example), our ability to characterize the vector

magnetization profile of a spinor Bose gas is a novel experimental tool.
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2.2.1 Measurement principle

The phase contrast imaging technique relies upon the interference of the light

scattered by a refractive object, such as a spinor gas, with a known reference, corresponding

to the original light source advanced by a constant phase. In imaging a refractive object

using this technique, the scattered and unscattered light propagate along the same physical

path (Fig. 2.1); thus, this interference method is robust against common-mode vibrations in

the imaging optics. To advance exclusively the phase of the unscattered light by φpd, a thin

dielectric (phase dot) is placed at the location of an intermediate focus, prior to the image.

At this location, the scattered light, which has acquired an additional angular spread due

to its interaction with the refractive medium, is much larger than the phase dot; to a good

approximation, it may be considered as unaffected by the phase dot. The scattered and

unscattered fields, Escatt and Eunscatt are recombined at the image plane according to,

Eout = Eunscatt + Escatt (2.15)

= (ei(φ0+φpd)E0) + (eiφ0(δij+χij/2) · E0 − eiφ0E0),

where φ0 = k2ry is an overall phase acquired by the ingoing probe E0 (defined in Eq. 2.10);

the dielectric susceptibility χij characterizes the state-dependent phase shift imposed by the

atomic sample; and φpd is the phase imposed by the phase dot. Taking φpd = π/2, assuming

the atom-imposed phase shift to be small such that eiφ0χij/2 ' (δij +iφ0χij/2), and applying

σ+ polarized probe represented as (1, 0)†, the outgoing probe may be described by,

Eout/|E0|eiφ0 = i





1

0



 + eiφ0χij/2 ·





1

0



 −





1

0



 (2.16)

' i(δij +
φ0χij

2
) ·





1

0



 (2.17)

The probe-normalized intensity is given by,

|Eout · E†
out|/|E0|2 ' 1 + φ0〈χ11〉 +

φ2
0

4
(〈χ11χ

†
11〉 + 〈χ21χ

†
21〉). (2.18)

Neglecting the contributions to χ11, χ21 from the quadrupole tensor Ñij which are sup-

pressed by numerical prefactors (Eq. 2.11), 〈χ11〉 may be expressed as,

φ0〈χ11〉 '
(

σ0
2ñγ

2

)((

5

18

1

δ
− 1

18

1
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)
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(

− 5
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1

δ
− 1

24

1
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)

〈Fy〉
)

.(2.19)
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where ñ is the condensate column density. Under these approximations, the probe-normalized

intensity may be conveniently expressed as,

|Eout|2/|E0|2 ' 1 + 2ñσ0
γ

2δ
(c0 + c1〈Fy〉 + c2〈F 2

y 〉), (2.20)

where the detuning-dependent constants are then given by,

c0 = δ

(

5

18

1

δ
− 1

18

1

800 − δ

)

(2.21)

c1 = δ

(

− 5

24

1

δ
− 1

24

1

800 − δ

)

.

Our recent phase contrast imaging settings include λ = 795 nm, δ=500 MHz (below the

F = 1 → F ′ = 2 D1 transition), and γ/2 = 3 MHz; in this case, c0 = 0.18 and c1 = −0.28.

The central region of the condensate for the optical trap geometry used in our demonstration

of spinor condensate magnetometry (Ch.3), for example, is described by ñ = 850 atoms/µm2

and ry=2.4 µm. Taking these condensate parameters, the phase contrast signal includes a

density-dependent offset of magnitude
(

σ0
2ñγ
2

)

c0 ' 0.28 and a contribution proportional

to 〈Fy〉 with a maximum magnitude given by
(

σ0
2ñγ
2

)

c1 ' 0.43.

2.2.2 Imaging system

To spatially-resolve spin textures in spinor condensates, such as the dipole-interaction

induced features discussed in Chapter 6, we require an imaging system with a spatial res-

olution on the order of 2 µm. Tests of our imaging system, performed concurrently with

our experimental work in early 2007, revealed that our ability to resolve these features was

limited by spherical abberations. Thus in the Spring of 2007 the imaging system presented

in Ref. [11],[14] was replaced with a new system shown in Fig. 2.1. To determine our spa-

tial resolution and enable an abberation-free characterization of 2 µm sized features in the

spinor gas, we characterized the new system both off-line, using a fabricated phase contrast

test pattern, and in-situ, by imaging small features in the condensate density profile.

The spatial resolution of the imaging system shown in Fig. 2.1 is determined by the

angular spread of the rays captured by the first composite lens, characterized by a 117 mm

effective focal length (fL1) and a 2 inch diameter (DL1). To reduce spherical abberations

in the imaging system, the composite lens is formed by a meniscus lens (fM1 = 125 mm)

followed by an achromatic lens (fA1 = 140 mm). The meniscus lens serves to bend the

incoming light rays radially inwards, directing the rays closer to the center of the achromatic
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Figure 2.1: The phase contrast imaging system is schematically shown, as described in the
text.

lens, and bringing its performance closer to ideal. In particular, the spherical abberations

due to the same achromatic lens are significantly reduced with the introduction of the

meniscus lens. The effective numerical aperture (N.A.) is then improved since the angular

spread of rays captured by the composite lens (θ) is increased, lowering the diffraction-

limited spatial resolution σDL. The ideal performance of our imaging system is described

by,

tan θ = DL1/2fL1 = 0.18 (2.22)

N.A. = sin θ ' 0.18

σDL =
1.22λ

2N.A.
= 2.7µm,

where σDL corresponds to the distance to the first minimum of the Airy pattern correspond-

ing to the image of a point source. An alternative measure of the spatial resolution of an

imaging system corresponds to the FWHM of the Gaussian fit to the aforementioned Airy

pattern; here this is given by 2.2 µm.

Following the first composite lens, the remainder of the imaging system closely
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resembles the system presented in Ref. [11, 14], which we overview briefly. An achromatic

lens (fA2 = 750 mm) is chosen to establish the magnification of the intermediate image (I1)

of the condensate, given by M = fA1/fL1 = 6.4. Prior to the plane of the intermediate

image, the collimated probe (corresponding to light which has not been scattered by the

atoms) is focussed at the location of the phase dot. At the intermediate image plane, a

mask is placed which exposes only the pixels on the camera CCD chip which correspond to

the condensate’s location on the final image. Shown schematically in Fig 2.2(a), the mask

is formed from the space between the edges of two parallel razor blades, aligned to the

ẑ axis of the condensate image, separated by a distance slightly greater than the imaged

x−dimension of the condensate (∼ M1 × 40 µm ∼ 256 µm).

Following the plane of the intermediate image, an additional pair of lenses of focal

lengths fA3 = 140 mm and fA4 = 300 mm is placed to form a second magnification stage

(characterized by M2 = 2.1). The final magnification of the image at the location of the

camera is given by M = M1 × M2 = 13.7 such that 1 pixel on the camera CCD chip

(13 µm in size) corresponds to roughly 1 µm on the condensate. Using the rapid-frame-

transfer capability of the camera, once a 40 × 512 pixel region of the camera CCD chip

is exposed, it may be shifted (at a rate of 1 µs/pixel) into the unexposed region. This

frame transfer capability, dubbed kinetics imaging, enables a series of snapshots of the

condensate to be taken in rapid succession, at a rate of roughly 20 kHz or 50 µs/frame (Fig.

2.2(b)). We take advantage of kinetics imaging in characterizing the Larmor precession of

the condensate magnetization, to be discussed. For details on the data read-out underlying

kinetics imaging, we refer the reader to Ref. [11].

Off-line calibration of the imaging system

Prior to its implementation in the experiment, we calibrated the first stage of our

imaging system off-line by imaging suitable phase and amplitude test patterns fabricated

for this purpose (Fig. 2.3). The meniscus and achromatic lenses M1, A1, A2 were arranged

according to Fig. 2.1 and were first aligned using a He-Ne laser centered upon the optics.

First, the tilt of the second achromatic lens (A2) was adjusted such that the back-reflections

of its surfaces were co-aligned; its displacement with respect to the probe axis was corrected

by overlapping the position of the co-linear back-reflections with respect to the original

beam. Second, the first achromatic lens (A1) was added to the optical path and aligned in
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Figure 2.2: (a) A mask is placed at the intermediate image plane such that only the pixels
on the camera CCD chip which correspond to the condensate’s location on the final image
are exposed. (b) A series of snapshots of the condensate may be taken in rapid succession,
each of which is shifted out of view following its exposure, protected by the mask.

the same manner. Third, the meniscus lens (M1) was aligned to A1 to form a composite

lens (L1), mounted in the same housing. The pair of lenses M1 and A1 were separated by 55

mm, specified by the manufacturer (Melles Griot). To optimize the position of L1 following

this coarse alignment, images of amplitude and phase test-patterns were characterized while

translating L1 along the probe axis. For this characterization, a 795 nm probe was used.

Very briefly, the phase and amplitude test patterns were fabricated from 1”×1”×3

mm fused silica optical flats according to a mask shown in Fig. 2.3(a). The fabrication was

performed by Thomas P. Purdy using lithographic techniques to be outlined in Ref. [52].

The phase test pattern consisted of a series of recessed horizontal and vertical bars as small

as 3 µm in length and periodicity, each characterized by a depth of slightly over 800 nm.

A representative series of horizontal trenches with a 3 µm width and periodicity are shown

in Fig. 2.3(b). Light passing through the recessed regions is advanced in phase by roughly

π relative to the light traversing the glass, with a refractive index given by n ∼ 1.45. Thus,

by placing the phase dot at the intermediate focus, a destructive interference pattern was

observed with spatial features given by the phase test pattern. A separate amplitude test

pattern was fabricated on the same substrate by depositing a thin coating of chromium,

opaque with respect to the probe. Both the phase and amplitude test patterns were imaged

in characterizing the imaging system and gave similar results.

Characterizing the imaged test pattern as a function of the position and alignment
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Figure 2.3: (a) A phase and amplitude test pattern with features as small as 3 µm was
fabricated to calibrate the imaging system offline. (b) The features on the phase test
pattern consisted of trenches fabricated in the glass slide. Their depth was chosen in order
to impart a π relative phase shift between the light traversing these regions and the light
traversing the entire thickness of the glass. Here, features characterized by a width and
periodicity of 3 µm are imaged using an optical microscope. The test patterns and their
images are courtesy of Thomas P. Purdy.

of the lenses enabled the optimization the focus and astigmatic character of the imaging

system, following small adjustments to the initial alignment. To optimize the focus and

minimize the astigmatism, the measured contrast of the repeated horizontal and vertical

features, Ch and Cv, were separately determined for small displacements of the lens L1 along

and transverse to the probe axis. For example, the image of the horizontal bars was fit to a

sinusoidal waveform characterized by minimum and maximum signal strengths Amin, Amax,

yielding a measured contrast Ch = |Amax,h − Amin,h|/(Amin,h + Amax,h). The astigmatic

character of the imaging system corresponded to the deviation of the ratio Ch/Cv from

unity as a function of the translation of L1 and was corrected with fine adjustments to the

tilt of L1 (Fig. 2.4). Following several iterations of measuring Ch, Cv as a function of the

translation of L1 and adjusting its tilt to bring their ratio close to unity, a final position and

alignment for L1 were determined. For these settings, the measured contrast as a function

of the feature size is shown in Fig. 2.5, projecting 50 % contrast for features approximately

2 µm in size. This off-line characterization of the imaging system indicates that the lens L1
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must be aligned to within ±25 µm of its optimal position to avoid an astigmatic focus (2.4).

A 8” viewport identical to the one used in the experiment was inserted along the imaging

path to discern its effect upon the observed resolution and astigmatism; its effect was found

to be negligible in comparison to the effects bounded by the above alignment criteria.

transverse lens translation (mm)

c
o

n
tr

a
st L1

test pattern

translation

Figure 2.4: To characterize the astigmatic character of the imaging system, the contrast
of horizontal and vertical features in the test pattern, Ch and Cv, were determined as a
function of the position of the first critical lens L1. Their ratio, Ch/Cv, corresponds to
unity when the imaging system is optimally aligned, and deviates monotonically away from
unity as the lens is displaced away from its optimal position. This characterization suggests
a ± 25 µm sensitivity to the placement of L1.

In-situ calibration of the imaging system

Following its calibration off-line, the imaging system was implemented in the ex-

periment. The same alignment procedure was carefully applied, using the back-reflections

of a He-Ne laser beam co-linear with the D1 imaging probe (which had previously been

aligned to the center of the condensate). To enable a sensitive characterization of the imag-

ing system in-situ, a small circular feature in the condensate density profile was used. To

apply this feature, as shown schematically by Fig. 2.6, a resonant laser beam was focussed

to a ∼ 15 µm circular spot size at the location of the intermediate image plane (I1). A

thin pellicle beam splitter placed at that location served to reflect the beam, such that it

propagated along the imaging probe path toward the condensate. At the location of the

condensate, the beam was de-magnified by M1 to a final size of 2.3 µm.
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Figure 2.5: For the aligned imaging system, the measured contrast of the test pattern fea-
tures diminishes from unity for features larger than 5 µm in size to roughly 50% (projected)
for features on the order of 2 µm.

By scattering atoms at the location of its focus and puncturing a small hole in the

condensate density profile, the resonant beam was used to create the small feature needed

in confirming, in-situ, the resolution and astigmatism of the imaging system. As shown in

Fig. 2.7(a) a series of images of the condensate, taken at a rate of 200 µs/frame (during

each of which the resonant (D1) probe was applied for 100 µs) reflect the gradual depletion

of atoms from its focus. Following their normalization by the imaging probe, the data

reveal the evolution of the hole punctured in the condensate (Fig. 2.7)(b). Using a two-

dimensional Gaussian fit to the punctured hole following a short exposure, the resolution

and astigmatism of the imaging system were determined. First, the feature contrast and

feature size, measured using the amplitude and average width of a Gaussian fit function,

were determined as a function of the resonant probe intensity. As the resonant probe

intensity was lowered, the condensate hole size (FWHM) diminished asymptotically toward

roughly 2 µm. The feature contrast was roughly 50 % for a ∼ 2 µm feature in the final

alignment. The aspect ratio of the hole, determined from the ratio of the x and z widths,

was measured to be 1.05 ±0.06 within a 50 µm window of the optimal position of L1, thus

placing a bound upon the astigmatic character of the imaging system.
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Figure 2.6: An in-situ calibration of the resolution and astigmatism of the imaging system
was performed by imaging a small hole punctured in the condensate density profile, whose
application by means of a focussed resonant laser beam is schematically shown.

2.3 Larmor precession imaging: extracting the vector mag-

netization

By taking a series of phase contrast images of the condensate in rapid succession,

we may extend our characterization of the condensate magnetization from a single projective

measurement of Fy, to a complete description of the vector magnetization, F. To do so, we

determine the transverse and longitudinal magnetization of the condensate magnetization,

F⊥ and FL, using two consecutive measurements.

2.3.1 Transverse magnetization measurement principle

In our experiments, a bias magnetic field is directed along the long axis of the

condensate, described by B = Bẑ. The condensate magnetization oriented transverse to B

undergoes Larmor precession about the ẑ axis; consequently, its projection along the probe

axis, Fy varies sinusoidally. The measured phase contrast signal at each location in the

condensate, described by Eq 2.20, oscillates with a characteristic amplitude proportional

to the local transverse magnetization density. By simultaneously observing the sinusoidal

variation of the phase contrast signal at each point in the condensate, the relative phase of

each signal may be determined, corresponding to the relative orientation of the condensate
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Figure 2.7: (a) A series of images of the condensate are taken while applying the focussed
resonant probe. (b) The depletion of the condensate density at the location of the focus
of the probe results in a sharp hole in the condensate with a symmetric Gaussian spatial
profile. This image was taken during the alignment of the imaging system; here, a slight
misalignment of the imaging system is reflected in the asymmetric cross section of the hole
punctured in the condensate.

magnetization in the transverse (xy) plane. Specifically, from the analysis of the sequence of

snapshots of the Larmor precessing gas, the transverse magnetization density is determined

(Sec. 2.3.2). It is described by the complex field F⊥(r) = A(r)eiφ(r), where A(r) and φ(r)

describe its amplitude and orientation in the transverse plane, respectively. A representative

sequence of phase contrast images demonstrating the Larmor precession of a homogeneous

transversely magnetized cloud is shown in Fig. 2.2(b).

2.3.2 Longitudinal magnetization measurement principle

To characterize completely the vector magnetization of the condensate, both the

transverse and longitudinal components of F must be determined. To accomplish this, a

second sequence of snapshots is taken following the first, between which the condensate

magnetization is rotated by an angle of π/2 about the ŷ axis using a resonant RF pulse.

Following the rotation, the longitudinal (ẑ) component of F is oriented in the transverse (xy)

plane and precesses about the bias field. It is determined by considering the sinusoidally

varying phase contrast signal in a second sequence of phase contrast images, taken following

the rotation.

The measurement of the transverse and longitudinal components of the vector

magnetization relies upon determining the amplitude and phase of the sinusoidally varying
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phase contrast signal in both sequences of frames. Using the first sequence of frames, the

amplitude and phase describing F⊥(r) are determined to be A(1)(r), φ(1)(r). Next the π/2

pulse is applied to rotate F about ŷ. At the instant of the application of the pulse, due to its

slight delay following the first measurement, we assume the phase of F⊥ to have advanced

by δ1. At this instant, the transverse components of F are given by

Fx(r) = A(1)(r) cos(φ(1)(r) + δ(1)) (2.23)

Fy(r) = A(1)(r) sin(φ(1)(r) + δ(1)).

Following its rotation by π/2 about the ŷ axis, the vector magnetization to be described by,

Frot =









0 0 1

0 1 0

−1 0 0









·









Fx

Fy

Fz









(2.24)

=









Fz

Fy

−Fx









.

The second sequence of frames reflect the Larmor precession of the magnetization transverse

to the bias field following the rotation, given by Frot. From the determination of the

amplitude and phase of precession of Frot, we may therefore determine the components Fz,

Fy of F. The second sequence of frames are analyzed in the analogous fashion to the first,

assigning an amplitude and phase to Frot where Frot(r) = A(2)(r)eiφ(2)(r). We may project

backward to the instant of the pulse, assuming a small delay between the application of the

pulse and the second sequence of measurements, to obtain

Fz(r) = A(2)(r) cos(φ(2)(r) + δ(2)) (2.25)

Fy(r) = A(2)(r) sin(φ(2)(r) + δ(2))

where δ(2) is a small phase shift attributed to the delay. Since the series of measurements

were performed on much shorter timescale (∼ 1 ms) than that associated with spin dynamics

(10-100 ms) in the spinor gas, we assume the two measurements of Fy(r) to be equivalent;

thus,

A(1)(r) sin(φ(1)(r) + δ(1)) = A(2)(r) sin(φ(2)(r) + δ(2)), (2.26)
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enabling the determination of the unknown phase delays δ1, δ2. One solution for the com-

ponents of the vector magnetization (up to an overall phase) is given by,

Fx = A(1)(r) cos(φ(1)(r)) (2.27)

Fy = A(1)(r) cos(φ(1)(r))

Fz = A(2)(r) cos(φ(2)(r) − δ)

where the small phase shift δ may be determined by a least-squares optimization of the

constraint,

A(1)(r) sin(φ(1)(r)) = A(2)(r) sin(φ(2)(r) + δ). (2.28)

Our assumption that δ is constant reflects the fact that the π/2 pulse is approximately

instantaneous with respect to the imaging sequence.

Optimal amplitude and phase determination

The amplitude and phase of the transverse magnetization density are determined

from the pixel-by-pixel analysis of the sinusoidally varying phase contrast signal, measured

over Nf consecutive images. We may assume that a given pixel in the series of Nf frames

corresponds to the same condensate region since the duration of the imaging sequence is

much shorter than the characteristic timescales for the motion of the condensate. For each

1 µm sized region of the condensate, we may therefore obtain a time sequence of Nf signals,

{yn(r)}, sampled at roughly 20 kHz. This sampling rate, corresponding to 50 µs/frame, is

limited by the 1 µs/pixel transfer rate of the camera and the 40-50 µm condensate width

(where M ' 1 pixel/µm). Assuming each phase contrast data series {yn(r)} to be described

by a sinusoidally varying signal, and taking into account the contribution of photon shot-

noise to our detection, we model the data by ỹn(r), where

ỹn(r) = A(r) cos(2πfn + φ(r)) + wn, (2.29)

and n = 0..Nf − 1, the frequency f is assumed to be known, and wn = G(0, σ2
ps) is a white

Gaussian noise source. The added detection noise, characterized by a variance σ2
ps, is in

practise dominated by photon shot-noise for our imaging settings (to be discussed in Sec.

3.2.1). Throughout this treatment, we assume that we have subtracted the constant offset

to each phase contrast data series yn(r), enforcing 〈yn(r)〉 = 0.
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A linear least squares algorithm is applied to each location of the condensate to

estimate the amplitude and relative phase of the sinusoidally varying signal, given by A(r)

and φ(r). Following Eq. 2.29,

ỹn(r) = A(r) (cos(2πfn) cos(φ(r)) − sin(2πfn) sin(φ(r))) + wn (2.30)

which may be expressed as a matrix equation,

ỹ(r) = M · Φ(r) + w; (2.31)

Φ(r) = A(r)





cos(φ(r))

cos(φ(r))



 ,

M =




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













cos(2πf0) − sin(2πf0)

cos(2πf1) − sin(2πf1)
...

...

cos(2πfn) − sin(2πfn)
...

...

cos(2πf(Nf − 1)) − sin(2πf(Nf − 1))



























. (2.32)

Assuming the model ỹ(r) to describe the data y(r), the optimal values for the amplitude

and phase of the sinusoidal signal are determined from,

MT · (y(r) − w) = MT · M · Φ(r) (2.33)

Φ(r) = (MTM)−1 · MT · ỹ(r).

Here we have expressed Φ(r) in terms of known quantities M,y(r), thus determining the

desired quantities

A(r) =
√

cos(φ(r))2 + sin(φ(r))2, (2.34)

φ(r) = arctan(− sin(φ(r))/ cos(φ(r))2).

Under the assumptions that the frequency f is well known, the data series is sufficient in

length to ensure 〈yn〉 = 0 and characterized by a signal to noise ratio s, and the decay of

the signal is negligible, the linear least squares algorithm is characterized by a phase error,

σφ =
1

s

Nf − 1

Nf (2Nf + 1)
, (2.35)

corresponding to the Cramer-Rao bound for phase estimation.
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In analyzing a given data series, f is found prior to determining the aforementioned

amplitude and phase profiles. In determining f , the condensate is divided into several 10

µm sized regions, over which the phase contrast signal is averaged, yielding several data

series ȳn(r) with a higher signal to noise ratio. By taking the Fourier transform of each

data series and creating a histogram of the resulting values for f , the most likely value for

f is determined and used in remainder of the analysis.

In our experiments, the sampling rate (fs ∼ 20 kHz) is typically much smaller

than the Larmor frequency determined by the bias field (fL = gF µBB/h). The observed

signal oscillation frequency, f , in fact corresponds to the difference frequency (or beat note)

between fL and the nearest integer multiple of fs. Typically f ranges from 2-5 kHz in order

to sample optimally the sinusoidally varying signal in 11-15 frames. The aliased Larmor

frequency can be treated as constant since, for typical operating conditions, the bias field

varies by less than 5 µG across the extent of the condensate. In other words, the relative

phase of precession accrued during the ∼ 1 ms imaging sequence is negligible in comparison

to the phase accrued during the preceding evolution period φ(r), which we are interested

in measuring.

Thus far we have neglected the decay of the phase contrast signal over the sequence

of Nf measurements. In practise, the atoms may be scattered by the imaging probe, de-

pleting the condensate throughout the imaging sequence (to be discussed in Sec 2.4). The

condensate depletion is modeled by an exponential decay of the phase contrast signal, which

may be taken into account in the aforementioned amplitude and phase estimation proce-

dures. Specifically, Eq. 2.33 is modified to become,

Φ(r) = (MT · D · D · M)−1 · MT · D · ỹ(r) (2.36)

where Dnm = e−n/τδmn is a diagonal n × n matrix parameterized by a decay constant τ ,

empirically determined to reflect the probe-induced depletion of the condensate. For typical

imaging settings the condensate was depleted by roughly 50 % throughout the imaging

sequence.

The linear least squares phase and amplitude estimation may be extended to take

into account systematic effects such as the spatial profile of the imaging probe, which corre-

lates the noise source with the measured transverse magnetization. Far more effective than

this extension to our data analysis, however, was to reduce the probe intensity until these
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correlations had a negligible effect upon the phase detection noise. This was made possible

by optimizing our imaging settings and by employing a multi-pulse imaging technique, to

be discussed.

2.4 Optimizing the imaging settings

Our dispersive imaging technique employs an off-resonance probe so as to be “non-

destructive” with respect to the atomic state, enabling the study of spin dynamics through

repeated measurements of the same sample. An off-resonance probe, however, may scatter

atoms into a number of final states, at a rate proportional to the probe intensity.

As presented in Ref.[11], calculations based upon linear Raman scattering rates

predicted that a probe fluence of up to 3400 photons/µm2 per frame could be used to per-

form sensitive phase measurements. However, in using a probe fluence of this magnitude to

image the condensate, we observed light-induced loss rates which greatly exceeded the ex-

pected loss rates due to linear scattering. The discrepancy between the observed and above

calculated loss rates was attributed to collective light scattering, denoted as superadiant

scattering, of the probe by the condensate.

2.4.1 Considering collective scattering

In our experiment, superradiant Raman scattering of atoms into the F = 2 hy-

perfine states depletes the population of probed F = 1 atoms. Both the probe-induced

loss rate and the magnitude of the measured precession signal depend upon the probe

detuning. To optimize the probe detuning and fluence with respect to the final phase sen-

sitivity, we empirically determined the amplitude of the precession signal as well as the

probe-induced losses at a number of settings. Following a generalization of the calculation

presented in Ref. [11], we considered several candidate probe frequencies. With respect

to the F = 1 → F ′ = 2 (D1) transition, we employed probe frequencies characterized by

δD1 = −500 and 200 MHz, the latter of which yielded a smaller phase contrast signal.

With respect to the F = 1 → F ′ = 2 (D2) transition, we employed probe frequencies

characterized by δD2 = −400,−700,−110,−200 MHz, whose main disadvantages were high

probe-induced loss rates. In agreement with our estimates, the optimal probe frequency

corresponded to a detuning of δ = −500 MHz with respect to the F = 1 → F ′ = 2 hyper-

fine transition and was employed throughout the discussed experiments. A probe fluence of
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750 photons/µm2, applied using a 4-pulse sequence per image, was used in our demonstra-

tion of the spinor condensate magnetometer. In our characterization of the amplification

of spin fluctuations (Ch. 4) and the evolution of spin textures (Ch. 6) in the spinor gas,

for which our phase detection noise was less critical, we typically used a probe fluence of

roughly 100-120 photons/µm2 by applying a single light pulse per image.

2.4.2 Multi-pulse imaging

In our phase contrast imaging sequence, probe-induced losses were primarily due

to superradiant Raman scattering of atoms into the F = 2 hyperfine states. To reduce the

probe-induced scattering rate, the probe intensity was lowered while maintaining a high

probe fluence. This was accomplished by obtaining each frame in the imaging sequence

by integrating N pulses of light characterized by an intensity I/N in lieu of one pulse

characterized by an intensity I. As mentioned previously, in our characterization of the

spinor condensate magnetometer, four pulses were spaced by the Larmor period of roughly

TL = 10 µs and characterized by a duration of 2.2 µs < TL/4. In addition, to disrupt

the coherent superradiant Raman scattering of condensate atoms into the F = 2 state, we

applied light close to the F = 2 → F ′ = 3 (D2) transition during the imaging sequence

(δD2 = −30 MHz).

2.5 On-resonance absorptive imaging

In addition to our dispersive high-resolution imaging system, we employ resonant

low-magnification (M=2.1) imaging techniques to characterize bulk properties of the spinor

gas. For a detailed characterization of our “time-of-flight” and “Stern-Gerlach” imaging

systems the reader is directed to Ref.[14, 11]. Briefly, using the time-of-flight imaging

technique, the condensate is released from the trap and allowed to expand as it falls. With

independent measurements of the optical trap frequencies, determining the condensate size

following an appreciable expansion provides a direct measurement of the temperature of

the gas. By characterizing its absorption of a resonant probe following its expansion, the

condensate density, or total number of atoms, may be determined.

When the expansion occurs in the presence of a pulsed magnetic field gradient,

the mz = ±1, 0 magnetic sublevels of the F = 1 gas may be separated, since a differential

force is applied between them. The relative populations in the spatially separated sublevels
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are determined from their absorption of a resonant probe. Typically, using these absorptive

techniques we image the gas following a 34 ms time-of-flight.



55

Chapter 3

Spinor Condensates as Spatially

Resolved Magnetometers

We implement 87Rb spinor Bose-Einstein condensates as precision magnetic mi-

croscopes with high spatial-resolution. Following the ground work presented in Ref. [11]

in December 2005, several months of ensuing experimental activity lead to our demonstra-

tion of spinor condensate magnetometry in Juyly 2006 with a sensitivity of 8.3 pT/Hz1/2

over a measurement area of 120 µm2 [12]. This experimental demonstration marks an im-

provement over the low-frequency field sensitivity of modern SQUID magnetometers, and

we outline the experimental route to this achievement. We begin this discussion with the

dominant contributions to our final field detection noise and the strategies employed in its

reduction. We assess the performance of the spinor condensate magnetometer under two

operating conditions: as a sensor of a long-range inhomogeneous background field and as a

sensor of a localized applied magnetic field.

3.1 Spatially resolved magnetometry

3.1.1 Existing magnetometers

Sensitive magnetic field measurements serve as the cornerstone for a range of sci-

entific studies, from tests of fundamental symmetries to the characterization of biological

samples. In atomic systems, for example, precision magnetometers are employed in the

search for the violation of parity and time reversal invariance [53]. Sensitive field measure-
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ments are also important in the characterization of condensed matter [54] and biological

systems [55]. For a number of these applications, magnetometers operating at low frequen-

cies (< 10 Hz) with high spatial resolution are particularly useful.

Spatially resolved magnetometry may be accomplished with an array of magnetic

microscopes suitable to a wide range of operating conditions, extending from room tem-

perature settings to cryogenic or ultra-high vacuum environments. The state of the art in

spatially resolved magnetometry includes devices such as superconducting quantum inter-

ference devices (SQUIDS), scanning Hall probe microscopes, magnetic force microscopes,

and magneto-optical imaging techniques [56].

Among micron-scale magnetic microscopes, SQUID magnetometers currently pro-

vide the most sensitive measurements of magnetic fields. A SQUID magnetometer de-

termines the magnetic field indirectly from its measurement of the magnetic flux. For a

measurement area of 100 µm2, the SQUID’s field sensitivity has been demonstrated to be

as low as 30 pT/Hz1/2 [57]. It is the 1/f flicker noise of these devices that limits their sen-

sitivity at low measurement frequencies [58]. Another drawback in their employment is the

potential for their flux calibration to vary when it is coupled to an unsteady measurement

environment.

Atomic magnetometers have the advantage of providing magnetic field measure-

ments which depend only upon fundamental physical constants. Atomic magnetometry

which makes use of the Larmor precession of spin-polarized atoms has previously been

demonstrated using hot atomic vapors. With a measurement volume of 0.3 cm3, a field

sensitivity as low as 0.15 fT/Hz1/2 has been attained [59]. However, the thermal diffusion

of atoms in the hot atomic vapor limits the spatial resolution of vapor-cell magnetometers

to 1 mm.

3.1.2 Ultracold atoms for magnetometry

In this work we take advantage of ultracold atoms to develop sensitive atomic

magnetometers with high spatial resolution. Ultracold atoms, characterized by negligible

Doppler broadening and long coherence times [60, 50, 61], represent potential sensing media

which may be applied to a range of precision measurements. Their low temperature and

high density may be considered as excellent ingredients toward their potential application

as spatially resolved precision sensors. Despite these attractive properties, however, few
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precision measurements have been made with ultracold gases. Thus far, Bose Einstein

condensates have been employed in measurements of the Casimir-Polder force [62]; the

photon recoil momentum in dispersive media [63]; and h/m and the fine constant structure

α [64]. The application of ultracold gases toward metrology has been limited as a result of

collisional frequency shifts proportional to the density of the atomic sample being probed

[65, 66].

The spinor Bose condensate is an example of an ultracold atomic system which may

be applied toward metrology without additional uncertainties imposed by density-dependent

mean-field shifts. In this Chapter, we discuss how spinor condensates may be employed as

spatially-resolved magnetometers which are free of such mean-field shifts. The potential

role of dipole-dipole interactions in the spinor gas, which depend upon the geometry of the

sample and orientation of the applied magnetic fields, may be suppressed using techniques

analogous to those employed in NMR (Sec. 6.2.2). To operate a spinor condensate as a

magnetometer, one measures the local accrued phase of Larmor precession of the condensate

magnetization. Due to the rotational invariance of inter-particle interactions in a spinor gas,

Larmor precession is unaffected by density-dependent mean field shifts (Eq 1.6) [27, 41];

hence, so is the sensitivity of the spinor condensate magnetometer.

3.1.3 Employing a Larmor precessing spinor condensate as a spatially

resolved magnetometer

To spatially resolve an applied magnetic field in two dimensions, we image the

Larmor precession of a F = 1 Bose Einstein condensate with high spatial resolution. The

condensate is prepared in a uniformly magnetized state, e.g. M(x, z) = Mx̂, oriented

transverse to the applied magnetic field, whose ẑ-projection is given by B(x, z). At a

given location in the condensate, the spins precess according to the magnitude of the local

magnetic field B(x0, z0). The local phase of precession accrued over a given integration

time is given by φL(x0, z0) = ωL(x0, z0)t, where ωL(x0, z0) = gµBB(x0, z0)/~ is the Larmor

frequency. By imaging the Larmor precession of the condensate using our magnetization

sensitive technique (Ch. 2), we construct a spatial map of the relative phase of precession

accrued at different locations in the condensate. From this spatially-resolved image of the

precession phase, we then determine B(x0, z0), the applied magnetic field.

What limits the field sensitivity of a spinor condensate magnetometer? The field
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sensitivity, δB = (~/gF µB)(δφ/t), is set by the minimum uncertainty in the measurement of

the Larmor precession phase, δφ. This phase uncertainty is fundamentally limited by atomic

shot-noise, or projection noise. Specifically, for a coherent spin state, the uncertainty in the

accrued Larmor phase results from the projection noise in measuring Na atoms, yielding

δφ = 1/
√

Na.

In addition to the phase uncertainty, the field uncertainty is limited by the in-

tegration time. Over a measurement area A, we take the number of atoms to be given

by Na = ñA, where ñ is the two-dimensional column density. Assuming a series of field

measurements is made over a total measurement time T , at a duty cycle D, and taking the

integration time per measurement to be τ , the field sensitivity is given by,

δB =
~

gµB

δφ√
τDT

. (3.1)

In our experiment, the phase detection noise, δφ, is limited by photon shot-noise rather than

atom shot-noise. A discussion of the expected phase uncertainty is presented in Section 3.2

for reasonable experiment parameters.

The above expression for the field sensitivity takes into account two implementation-

dependent limitations of a given magnetometer including the duty cycle, D, and the total

integration time T . For a single-shot measurement, the integration time is given by τ , the

coherence time. In our current experiment, the single-shot integration time is limited by

three body collisions which result in the loss of atoms from the trap, and has been measured

to range between 250 ms and 1000 ms, depending on the trap geometry used. The present

duty cycle is limited to D = .003, but may be increased to D = 1 in a future implementation

by taking advantage of previously demonstrated all-optical BEC production techniques [67].

For the spinor condensate magnetometer operating in the atom shot-noise detec-

tion limit, δφ = 1/
√

ñA and the field sensitivity improves as the measurement area as 1/
√

A.

For small measurement areas, this leads to an improvement in sensitivity in comparison with

SQUID magnetometers (Fig. 1, Appendix A). Since a SQUID magnetometer is sensitive to

flux, its minimal detectable δB in the simplest case scales as 1/A. Sophisticated SQUID

magnetometers are characterized by a range of scaling relations in A, from A−3/4, in the

case of a fixed SQUID sensor coupled to a variable pickup loop, and A−5/8 in the case of a

quantum-limited SQUID used in the direct sensing, low noise energy, operating mode [68].
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3.2 Magnetic field sensitivity

In operating the spinor condensate magnetometer, one measures an inhomoge-

neous magnetic field by directly imaging the local accrued phase of precession of the con-

densate transverse magnetization, following a given integration period. Contributions to

the uncertainty in the measured phase of precession are due to fluctuations in condensate

magnetization and fluctuations in the light field used to image the condensate magnetiza-

tion. In this section, we estimate these contributions to the phase detection noise, which

we identify as atom and photon shot-noise respectively.

3.2.1 Determining the phase contrast signal detection noise

To determine the phase detection noise, we begin by considering the fluctuations

in the measured signal. At each location in a given phase contrast image of the condensate,

the measured signal is proportional to the number of photons which reached a corresponding

location on the camera. Fluctuations in the measured signal result from fluctuations in the

number of incoming photons and the number of atoms probed at each location in the image.

In this treatment we assume these fluctuations are described by Poissonian statis-

tics. That is, the number of atoms and photons per pixel are described by Poissonian

distributions characterized by an average number of atoms and photons per pixel given by

λ and ξ respectively.

The measured phase contrast signal per pixel, as presented in Ch. 2, is given by

S = Np(1 + c0〈Na〉 + c1〈My〉), (3.2)

where Np and Na correspond to the number of photons and atoms per pixel, c0 and c1 are

constants determined by the imaging settings and condensate parameters, and My is the

ŷ-projection of the condensate magnetization. As before, ŷ corresponds to the imaging axis.

To determine the expected fluctuations, ∆S, in the measured signal about its av-

erage value 〈S〉, we determine the distribution of possible signal values and their respective

probabilities. This distribution is derived from the Poissonian statistics governing the num-

ber of photons, number of atoms, and ŷ-projection of the magnetization measured at each

pixel.

A given atomic state |Ψ〉, composed of Na atoms distributed among the magnetic
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sublevels |+〉, |−〉, and |0〉 with probabilities determined by amplitudes α, β, γ, is described

by,

|Ψ〉 = (α|+〉 + β|0〉 + γ|−〉)Na (3.3)

=
∑

i,j,k

√

Na!

i!j!k!
δNa,i+j+kα

iβjγk|+〉i|0〉j |−〉k,

such that there are i, j, k atoms in sublevels |+〉, |0〉, |−〉; the number of atoms is given

by Na = i + j + k; and the ŷ-projection of the magnetization is given by My = i − k.

For a given atomic state, the phase contrast signal S(Np, Na, Ψi,j,k,Na
) is measured with

probability P (Np)P (i, j, k, Na), where

S = Np(1 + c0(i + j + k) + c1(i − k)) (3.4)

P (i, j, k, Na) =
Na!

i!j!k!
δNa,i+j+k|α|2i|β|2j |γ|2ke−ξ ξNa

Na!

=
1

i!j!k!
|α|2i|β|2j |γ|2ke−ξξi+j+k

P (Np) = e−λ λNp

Np!
.

The expected fluctuations in the signal, ∆S, about its average value 〈S〉, may therefore be

determined from,

〈S〉 =
∑

i,j,k,Na,Np

P (Np)P (i, j, k, Na)S(Np, Na,Ψi,j,k,Na
) (3.5)

〈S2〉 =
∑

i,j,k,Na,Np

P (Np)P (i, j, k, Na)S
2(Np, Na,Ψi,j,k,Na

)

∆S =
√

〈S2〉 − 〈S〉.

We can identify separate contributions to the signal detection noise ∆S from atomic shot-

noise and photon shot-noise, associated with fluctuations in the atom and photon fields,

respectively.
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Atom shot-noise

We determine the contribution to the signal detection noise from fluctuations in

the atomic field by holding the number of photons per pixel fixed. Taking Np = ξ,

∆2S = ξ2λ(c2
0 + c2

1(|α|2 + |γ|2) + 2c0c1(|α|2 − |γ|2)) (3.6)

≡ ∆2Sa. (3.7)

and we denote ∆Sa as the atomic shot-noise contribution to the signal detection noise. It

is a sum of three terms that we can individually understand: since S/ξ = 1 + c0Na + c1My,

we expect to find ∆2S/ξ2 = c2
0∆

2Na + c2
1∆

2My + 2c0c1(〈NaMy〉 − 〈Na〉〈My〉).
The first term, given by ξ2c2

0λ, reflects fluctuations in the atom number. The

second term, ξ2c2
1λ(|α|2 + |γ|2), reflects projection noise in the magnetization. The third

term reflects correlations between these two related quantities.

Photon shot-noise

Similarly, we can determine the contribution to the signal detection noise from

photon shot-noise, ∆2Sp, by considering a fixed atomic field. This yields,

∆2Sp = ξ(1 + λ(c0 + c1(|α|2 − |γ|2))2). (3.8)

In our experiment, the detection noise floor is dominated by photon shot-noise.

Total signal detection noise

The signal detection noise, ∆2S, is given by,

∆2S = ξ(ξ + 1)λ(c2
0 + c2

1(|α|2 + |γ|2) + 2c0c1(|α|2 + |γ|2)) + ξ(1 + λ(c0 + c1(|α|2 − |γ|2)))2

= ξ(ξ + 1)
∆2Sa

ξ2
+ ∆2Sp.

It is nearly the case that ∆2S = ∆2Sa + ∆2Sp, with the exception that in the former term,

ξ2 is replaced by ξ(ξ + 1). In our experiments, ξ is large (> 100) and ξ(ξ + 1) ∼ ξ2; thus,

to a good approximation, the atomic and photon shot-noise may be added in quadrature

to determine the signal detection noise.
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3.2.2 Determining the magnetic field detection noise

In the determination of the phase of a sinusoidally varying signal, the phase un-

certainty is given by,

∆φ =

√

2

Nm

∆S

AL
, (3.9)

where ∆S reflects the signal detection noise, AL corresponds to amplitude of the signal

oscillation; and Nf reflects the number of signal measurements.

A sequence of Nf phase contrast images of a Larmor precessing condensate may

be considered, pixel-by-pixel, as a series of sinusoidally varying signals. At a given pixel,

the oscillating phase contrast signal is described by,

S/Np = (1 + Λ + AL cos(ωLt + φ)), (3.10)

where, in connection with Eq.3.2 , Λ is a constant offset given by Λ = c0〈Na〉 and AL is

the signal oscillation amplitude, which for a transversely magnetized condensate is given by

AL = c1. A quantitative analysis of the phase noise is presented in the following Section.

In our experiment, a given phase contrast image is normalized by the probe field.

The probe field corresponds to a separate image taken without atoms present, to determine

the number of photons per pixel. In the limit that the signal detection noise is dominated

by photon shot-noise, the phase uncertainty of the normalized image is given by,

∆φ ∼
√

2

Nf

∆Sp

ξAL
(3.11)

=

√

2

Nf

√
ξ(1 + Λ)

ξAL
.

To determine our phase detection noise, we take into account our phase contrast

imaging settings and condensate parameters, presented in Chapter 2. A phase contrast

image is taken using circularly polarized light detuned by δ = 2π × (500 MHz) below the

F = 1 → F ′ = 2 (D1) transition of 87Rb. In our experiment, the normalized phase contrast

signal is approximately given by,

S̃(x, z) = 1 + 2ñ(x, z)σ0(γ/2δ)(c̃0 + c̃1〈My〉), (3.12)
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where σ0 = 3λ2/2π is the resonant cross section and γ is the natural linewidth of the

transition. As presented in Ch. 2, c̃0 and c̃1 are detuning-dependent constants which reflect

the refractive properties of the spinor gas. For the selected imaging settings, c̃0 = .12

and c̃1 = .27, which describe its isotropic polarizability and optical activity, respectively.

We neglect contributions to the phase contrast signal from linear birefringence, which are

proportional to 〈F 2
y 〉.

Phase detection noise

For our imaging settings, the phase detection noise is dominated by photon shot-

noise (Eq. 3.11). Evaluated at a pixel at position r, δφp is given by

δφp(r) =

√

2

eNfNp

√

1 + ñ(r)σ0
γ
2δ c̃0

ñσ0
γ
2δ c̃1

, (3.13)

where in our experiment Np = 750 corresponds to the number of photons per pixel per

frame and Nf = 20 corresponds to the number of frames used. One pixel corresponds to

an area of 1 µm × 1 µm in the condensate. The total probe fluence per pixel is given

by 750/µm2, and is collected using the multi-pulse imaging technique described in Section

2.4.2. The detector efficiency is taken to be e = .33.

In our experiment, Na = 1.4 × 106 and the condensate is described by a Thomas-

Fermi profile with characteristic radii (rx, ry, rz) = (5.6, 2.4, 211) µm. The column density

profile, ñ(x, z), is determined by integrating the condensate density profile, n(x, y, z) along

the imaging (ŷ) axis, where

n(x, y, z) =
15

8π

Na

rxryrz

(

1 − x2

r2
x

− y2

r2
y

− z2

r2
z

)

(3.14)

ñ(x, z) =
5

2π

Na

rxrz

(

1 − x2

r2
x

− z2

r2
z

)3/2

.

For a 1 µm2 measurement area at the condensate center, ñ0 = 937 atoms/µm2 and the

phase detection noise corresponds to δφ = 47 mrad/µm2. In our demonstration of the

spinor condensate magnetometer, we typically make use of a central condensate region

5 × 24 µm2 in size. Over this measurement area, 〈ñ〉 = .9 ñ0 and the phase uncertainty is

given by δφp = 4.8 mrad.
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Thus far, we have ignored the reduction in the atom number throughout the op-

eration of the magnetometer due to atom loss. In our experiment, Larmor precession was

observed following an integration time given by τ = 250 ms. Assuming the atom loss is

described by exponential decay characterized by a rate constant given by 1/τ ms−1, the

latter phase noise estimate is increased to δφp = 7.9 mrad.

The contribution to the phase detection noise due to atomic shot-noise was roughly

δφa = 4.1 mrad for the same conditions. The total phase detection noise is therefore

expected to be on the order of δφ = 8.9 mrad, in good agreement with the measured phase

noise in our experiment (Sec. 3.3.3).

Field detection noise

The estimated phase detection noise translates directly to an expected magnetic

field detection noise per measurement given by,

δB =
~

gF µB

δφ

τ
. (3.15)

Taking δφ = 10 mrad, an integration time τ = 250 ms, and gF µB = 700 kHz/G, the

field uncertainty is given by 9 nG. This corresponds to the single-shot sensitivity of a

spinor condensate magnetometer described by the above parameters (using a 120 µm2

measurement area). Repeated measurements of the applied field would enable the field

uncertainty, δB, to be reduced further (ideally according to 1/
√

T , as described by Eq.

3.1).

3.3 Demonstration Experiment

3.3.1 Magnetic Microscopy Setup

In our demonstration of the spinor condensate magnetometer, we make use of

optically trapped condensates of 87Rb atoms, initially prepared in the mz = −1 state as

described in Section 1.5.1. In this experiment, the optical dipole trap is characterized by

trap frequencies (ωx, ωy, ωz) = 2π × (165, 440, 4.4) s−1, and the condensate is characterized

by Thomas Fermi radii (rx, ry, rz) = (5.6, 2.4, 211) µm. Along the imaging (ŷ) axis , the

condensate radius ry is smaller than the spin healing length. Consequently, spin excitations

along this direction are too energetically costly to be sustained, and we assume the spinor
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condensate is effectively two-dimensional with respect to its spin degree of freedom. By

imaging the spinor gas along the ŷ axis, we are discarding information about its magneti-

zation profile along this direction, assuming it to be homogeneous.

In this demonstration experiment, we operate the spinor condensate as a two-

dimensional sensor of an applied magnetic field. With this application in mind, we consider

the condensate simply as gas of Larmor precessing atoms. In particular, for the trap geome-

try and field orientation chosen for this experiment, we may assume the role of dipole-dipole

interactions to be negligible (as discussed in Section 1.5.1). In general, one may employ

techniques analogous to those used in NMR to suppress the role of dipole-dipole interactions

in the system during its operation as a spatially resolved magnetometer (Sec. 6.2.2).

Prior to the measurement of an applied magnetic field, inhomogeneous features

in the background field were deliberately canceled with the use of electromagnets designed

for this purpose. Our procedure for characterizing and reducing the ambient field inhomo-

geneities is discussed in Section 1.5.2. In the magnetometry experiment, the background

field was measured to be homogeneous over the spatial extent of the condensate to a level of

∆B < 6 µG. The background field included the homogeneous bias field, B = Bbiasẑ, neces-

sary to induce Larmor precession. For this experiment, Bbias = 165(7) mG, corresponding

to a Larmor precession frequency of ωL = 2π× (115 kHz).

In the operation of the spinor condensate magnetometer, the initial condition cor-

responds to a uniformly transversely magnetized condensate. In our experiment, the trans-

versely magnetized state was prepared by rotating the condensate magnetization, initially

longitudinally magnetized along −ẑ, to be transverse to the magnetic field by applying a

π/2 pulse. The π/2 pulse was applied using an RF generator (SRS DS340), whose output

was characterized by a sinusoidal waveform with drive frequency fRF = 117 kHz and Nosc

full cycles. The number of cycles set the pulse bandwidth and was chosen to accomodate

shot-to-shot variations in the bias magnetic field, ∆Bz. Typically ∆Bz = ±gF µB(10 kHz),

and Nosc = 10. The pulse bandwidth, then given by ∆fRF = fRF /Nosc ≈ 12 kHz, was suffi-

ciently large to accomodate shot-to-shot variations in the field. The RF pulse was broadcast

using one of the gradient coils of the magnetic trap, conveniently oriented along the ŷ axis

(as described by Ref. [11]).

The reproducibility of the π/2 pulse in the preparation of a transversely magnetized

state was assessed using both in-situ and time-of-flight imaging techniques. Following a

variable evolution period, we verified that the measured constrast and offset of the oscillating
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phase contrast signal correspond to the expected signal strengths for a Larmor precessing

condensate. In addition, we applied the Stern-Gerlach technique of spatially separating

the magnetic Zeeman levels mz to determine and verify their relative populations (Sec.

2.5). For a transversely magnetized state, the ratio of populations of mz = (−1, 0, 1) atoms

corresponds to 1 : 2 : 1.

3.3.2 Constructing a Magnetic Field Map

We construct two-dimensional maps of the magnetic field from the described pixel-

by-pixel determination of the Larmor precession phase φ(x0, z0) at each point in the conden-

sate. As presented in Section 2.3.2, our method of determining the Larmor phase takes into

account the decay of condensate number caused by off-resonant scattering of the imaging

probe.

The magnetometry experiment was performed prior to the replacement of our

imaging system discussed in Chapter 2. Consequently, the measured two-dimensional phase

map suffered from imaging aberrations, particularly in the narrow (x̂) dimension of the

condensate. To obtain robust field measurements, the corresponding measured field pro-

file B(x, z) was integrated over this (x̂) direction. In determining the sensitivity of the

magnetometer, we characterized repeated measurements of the reduced field profile, B̃(z).

The one-dimensional field profile, B̃(z), was determined by making use of the

form of the aberration incurred by the imaging system. For each z coordinate in the

condensate, the aberration profile Iz(x) was determined from the average of several frames.

For a uniformly precessing condensate, the average phase contrast signal (taken over several

frames) is proportional to the convolution of the condensate density profile with Iz(x), thus

enabling its determination. By making use of the aberration profile, Iz(x), the peak phase

contrast signal per frame was determined at each coordinate z, S̃(z). By applying the

same analysis procedures to the reduced phase contrast images S̃(z), one-dimensional phase

profiles φ̃(z), and their related field profiles, B̃(z), were obtained.

A representative sequence of phase contrast images of a Larmor precessing conden-

sate and its corresponding phase profile φ̃(z), are shown in Fig. 3.1. The sequence of phase

contrast images of a Larmor precessing condensate, taken following a 50-ms evolution period

in a curvature-dominated field environment, delineates its approximately quadratic spatial

profile. This profile is also reflected in the corresponding one-dimensional Larmor phase
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φ̃(z). For clarity, the form of the inhomogeneous field profile B̃(z) is shown in juxtaposition

with the phase contrast data.
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Figure 3.1: A sequence of phase contrast images of a Larmor precessing condensate (whose
density profile is indicated schematically (a)) is shown following a 50-ms evolution period(b).
In this example, the magnetic field environment is dominated by a large field curvature
given by (gF µB/h)d2Bz/dz2 = 80 kHz/cm2. The relative phase of precession across the
condensate varies quadratically with position, z, by roughly 20 rad across its spatial extent
(c). For clarity, the magnetic field profile is indicated upon the raw data in (b).

3.3.3 Characterizing the magnetic field environment

In the first testing condition of the spinor condensate magnetometer, it was used

to characterize the background magnetic field present in the apparatus. Prior this char-

acterization, the dominant contributions to the field inhomogeneities were measured and

canceled, as described in Section 1.5.2. Specifically, contributions to field inhomogeneities

by stray field gradients and curvatures corresponding to dBz

dz , dBx

dz and d2Bz

dz2 were measured

and canceled. In this experiment, the field inhomogeneities were reduced to magnitudes:

|dBz

dz |, |dBx

dz | < 0.1 − 0.3 mG/cm and |d2Bz

dz2 | < 10 − 20 mG/cm2. The total magnetic field

inhomogeneity was reduced to roughly ∆B < 6 µG over the spatial extent of the condensate.

In the operation of the magnetometer, following the cancelation of these inho-

mogeneities, the remaining field background B̃(z) was fit to a third-order polynomial

Bp(z) = c0 + c1z + c2z
2 + c3z

3, which characterized its long-range features. Field vari-

ations from fourth order terms and higher terms were negligible (estimated to be smaller

than 1 fT in magnitude). From shot to shot, the background field varied. The residuals
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from the third order polynomial fit, R(z) = B̃(z) − Bp(z), were used to characterize the

noise floor of the magnetometer. Specifically, the spatial root Allen variance of R(z) over

the active measurement region corresponded to the quoted field detection noise, δB.

Demonstrated magnetometer sensitivity

The field detection noise determined during the first testing condition of the spinor

condensate magnetometer – as a sensor of the nearly homogeneous field background – is

in good agreement with the shot-noise estimate presented in Section 3.2.2. For a 5.3 × 24

µm2 measurement area, the single-shot rms phase sensitivity was determined to be 10

mrad, corresponding to a single-shot field sensitivity of 0.9 pT. The x-dimension of the

measurement area corresponds to the 5.3 µm length over which the aberrated signal was

effectively averaged in the x̂ direction.

Repeated measurements of the magnetic field background with a duty cycle of

D = 3× 10−3 yielded a corresponding field sensitivity of 8.3 pT/Hz1/2. This already marks

an improvement over the sensitivity of existing SQUID magnetometers at low measurement

frequencies (< 10 Hz). The duty cycle of our experiment could be improved up to D = 1 by

taking advantage of demonstrated all-optical BEC production techniques [69, 57], in which

case our single-shot field sensitivity would translate to a field sensitivity of 0.5 pT/Hz1/2.

The magnetic field detection noise for some regions of the condensate, typically

larger than 20 µm2, was found to exceed the above average shot-noise estimate by roughly

10 to 20 percent (Fig. 3 Appendix A). The corresponding increase in phase noise detected

in these regions was correlated with the local intensity profile of the probe beam. As we saw

in Section 1.5.3, although in another context, an applied AC Stark shift may also modify

the precession frequency of an atomic spin by a small amount. In this context, the circularly

polarized imaging probe optically induces an AC Stark shift; this results in a probe-induced

shift of the Larmor precession frequency on the order of 1 mHz. For comparison, a 6-

mHz shift in the Larmor frequency would lead to an additional Larmor phase of 10 mrad

to be accrued over 250 ms. We observe the Larmor phase to be slightly altered by the

application of the probe; this is reflected by a position-dependent increase in the phase

detection noise, correlated to the probe intensity profile. In a future implementation, by

using a linearly polarized probe and by spatially filtering the probe intensity profile so as to

make it homogeneous, this probe-induced frequency shift may be reduced. Due to a residual
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effect of alignment-to-orientation conversion it may not be eliminated completely [70].

Strategies employed for reducing the field detection noise

In our experiment, the magnetic field detection noise is limited by the photon

shot-noise in the optical characterization of the Larmor phase. To minimize the photon

shot-noise, one may naively suggest to increase the probe fluence indefinitely. Increasing

the probe fluence, however, also results in increasing the atomic shot-noise since atoms

will be increasingly scattered by the probe into other states. In our experiment, the probe

fluence and frequency were chosen to simultaneously minimize these losses and optimize the

phase detection noise. Our empirical determination of these optimal settings is presented

in Section 2.4.1.

Two additional strategies were employed in this experiment to minimize probe-

induced losses, allowing the probe fluence to be raised to 750 photons/µm2 per frame. As

discussed in Section 2.4.1, probe-induced losses were primarily due to superradiant Raman

scattering of atoms into the F = 2 hyperfine states. First, to reduce the probe-induced

scattering rate, the probe intensity was lowered while maintaining a high probe fluence.

This was accomplished by obtaining each frame in the imaging sequence by integrating four

pulses of light characterized by an intensity I/4 in lieu of one pulse characterized by an

intensity I. The four pulses were spaced by the Larmor period of roughly TL = 10 µs and

characterized by a duration of 2.2 µs < TL/4. Second, to disrupt the coherent superradiant

Raman scattering of condensate atoms into the F = 2 state, we applied light close to the

F = 2 → F ′ = 3 (D2) transition during the imaging sequence (δD2 = −30 MHz).

More pertinent to the measurement of a localized field than to the measurement

of the inhomogeneous background, an additional strategy was employed during the field

measurement to monitor the condensate motion. As a result of small vibrations in the envi-

ronment of the experiment, we observed small center-of-mass oscillations of the condensate

along the z axis, characterized by the trap frequency ωz = 4.4 Hz. These oscillations served

to blur spatial features of the measured magnetic field over a lengthscale comparable to the

displacement of the condensate during the integration period. We were unable to completely

remove the observed condensate oscillations. However, by monitoring these oscillations we

were able to discard measurements for which the condensate was displaced by an amount

comparable to the spatial-extent of the applied field. Prior to the Larmor precession imag-
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ing sequence, we took four additional phase contrast images, spaced by a quarter period

of the axial trap oscillation, (2π/4ωz). A measurement was discarded when the maximum

displacement of the condensate center of mass with respect to its average position over the

four frames was comparable to the spatial-extent of the applied field.

3.3.4 Characterizing a localized magnetic field

Demonstrating the sensitivity of the condensate magnetometer required the ap-

plication of a known, localized magnetic field, and its quantitative characterization. We

simulated applying a localized magnetic field optically by taking advantage of the spin-

dependence of the AC Stark shift. Following Refs [11, 71], an AC Stark shift induced by an

applied laser beam was manipulated to emulate a linear Zeeman shift.

In our experiment, the optically-induced AC Stark shift was applied using a

circularly-polarized (σ̂) laser beam characterized by a wavelength λ = 790 nm. Neglecting

the hyperfine structure, the resulting AC Stark shift imparted upon the |J = 1/2,mJ =

±1/2〉 state, given by ∆EJ=1/2,mJ=±1/2, may be interpreted as a linear Zeeman shift due

to an effective magnetic field of magnitude [11],

Bsim =
1

gJµB

∆EJ=1/2,mJ=1/2 − ∆EJ=1/2,mJ=−1/2

2
(3.16)

=
~γ2

8µBgJ

I

Isat

1

δ
,

where I is the beam intensity; Isat = 1.67 mW/cm2; the detuning, δ = −2π × 4.8 THz, is

given with respect to the F = 1 → F ′ = 2 (D1) transition; and γ = 6 MHz corresponds to

its natural linewidth.

The applied laser beam was aligned at an angle of 60 degrees with respect to the

bias field (ẑ) and focussed at the condensate center, in the x, z plane. At the location of its

focus, the beam intensity profile is described by I(r) = I0G(r) where G(r) is a normalized

two-dimensional Gaussian distribution with characteristic 1/e2 radii given by x0, y0. The

focus of the laser beam (x0, y0) was adjusted using two pairs of cylindrical lenses (Section

1.5.1), enabling the characterization of the applied field as a function of its spatial extent.

The application of the laser beam resulted in an position-dependent precession phase to be

accrued following a given integration period t, given by

δφ(r) =
(gF µB

~

)

(

Bsim(r)

t

)

cos(60◦). (3.17)
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where Bsim is the magnitude of the applied field, whose calibration is presented in Ref.

[11]. The orientation of the applied laser beam with respect to the condensate ẑ axis is

shown schematically in Fig. 3.2(a). The sequence of phase contrast images of a Larmor

precessing condensate, taken following a 150-ms evolution period in the presence of an

optically induced field Bsim(r), delineates its Gaussian spatial profile. This profile is also

reflected in the corresponding one-dimensional Larmor phase φ̃(z).
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Figure 3.2: A schematic representation of the applied, optically-induced field (a). In the
same configuration, a sequence phase contrast images of a Larmor precessing condensate,
following a 150 ms integration period, portray the spatial-variation of the accrued phase
of precession due to the applied field. For clarity, the Gaussian field profile is indicated
upon the raw data. The reduced phase profile φ̃(z) provides a quantitative measure of the
accrued Larmor phase from which the magnitude of the applied field may be determined.

Demonstrated measurement of an applied field

In the characterization of a spatially-localized applied magnetic field, both the

background field and the localized field were measured for each run of the experiment.

The background field was determined using the aforementioned third-order polynomial fit,

Bp(z), applied to the regions of the condensate far from the localized field (typically using

a 70-100 µm regions on each side of the condensate). The profile of the localized field was

then determined from the residuals of this polynomial fit, R(z), when applied to the region

of the localized field (typically using a 30-50 µm central region of the condensate).

The strength of the applied field was determined from the peak value of a Gaussian

fit to R(z) and measured for several powers, P of the applied laser beam. This enabled a
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calibration of the applied field with the laser beam power, presented in Ref. [11]. Shown

in Fig.3 of Appendix A are measurements of localized magnetic fields ranging from 20 to

150 pT in magnitude following a 250-ms integration period, simulated by a laser beam

whose focus is characterized by radii x0 = 5.3 µm, z0 = 24 µm. The field detection noise

is reflected by the error bars of the field measurements presented in this Figure. Using a

120-µm2 measurement area under the Gaussian field profile, the single-shot field detection

noise corresponded to roughly 0.9 pT. We measured a similar field sensitivity for applied

fields up to Bsim = 60 pT. The systematic errors associated with the measurements were

therefore negligible in comparison with their variance. For Bsim > 60 pT, the field sensitivity

appears to deteriorate slightly with the beam power, pointing to systematic effects possibly

associated with atomic motion and the spatially-varying field strength.

3.3.5 Limitations to measuring localized fields

Limitations to the field sensitivity of the spinor condensate magnetometer were

first outlined in Ref. [11]. In addition to preliminary estimates for the field detection noise,

potentially limiting systematic effects due to atomic motion, the self-field of the conden-

sate, the role of dipole interactions, and the applied quadratic shift were presented. The

reader is referred to Ref. [11] for the supporting calculations. The discussed limitation to

field uncertainty imposed by inhomogeneities in the background field could be overcome by

implementing a spin-echo sequence. However, by developing better control over the field in-

homogeneities in our experiment, their contribution to the field uncertainty was suppressed.

The field detection noise was dominated by photon shot-noise, and, offering negligible ben-

efit, the proposed spin-echo sequence in Ref. [11] was no longer pursued. In this Section,

we will focus upon the experimental tests of the limitations of the magnetometer which

followed these initial projections.

In our characterization of the spinor condensate magnetometer, we have experi-

mentally investigated the limitation imposed by atomic motion upon its field sensitivity.

Thus far, we have considered the spinor Bose condensate as a stationary sensor of applied

magnetic fields. In reality, the spinor gas consists of atoms which are free to move. Taking

into account both the quantum and classical effects of atomic motion, the phase sensitivity

of our optical detection scheme is systematically altered.

From the perspective of quantum mechanics, a spinor condensate which has ac-
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quired a position-dependent Larmor phase – which we may consider as a position-dependent

rotation in its transverse magnetization, M – is penalized by the kinetic energy associated

with this rotation. For example, by imposing a homogeneous magnetic field Bẑ of a char-

acteristic length σ for a given integration time t, we have advanced the Larmor phase by

δφ = ~gF µBBt over a region of length σ. An instantaneous snapshot of the magnetization

profile would reveal a local “twist” in M by an angle of δφ rad about the ẑ axis. This

twist has a kinetic energy cost ∼ ~2/mσ2, assuming δφ & 1; and as a result, it will “un-

wind”. This effect may be described as quantum diffusive motion of the atomic fluid and

corresponds to the quantum limit of thermal diffusion observed in NMR experiments [72].

Quantum diffusive motion following the application of a localized magnetic field on

a lengthscale σ effectively limits the spatial resolution of the magnetometer. For integration

times larger than the time scale of the diffusive motion (t > mσ2/~), the diffusion of atoms

throughout the integration period averages the accrued Larmor phase over a region > σ.

The corresponding reduction in field sensitivity may be considered as a consequence of the

lowered integration time for a field measurement performed at a given point in space. In

our experiment, the 250 ms integration time exceeds the diffusion timescale for features in

the applied field larger than 10 µm in size.

Figure 3.3: By imposing an inhomogeneous magnetic field characterized by a Gaussian
spatial profile for a given integration time, we have locally modified the Larmor precession
phase. An instantaneous snapshot of the magnetization profile reveals a local “twist” in M
by an angle about the ẑ axis proportional to the magnitude of the applied field.
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Experimentally, we characterize quantum diffusion in the spinor condensate mag-

netometer and determine the limitation it imposes upon its field sensitivity to applied

localized fields. To do so, we deliberately apply a field localized to σ < 10 µm and study its

evolution (Fig. 3.3). For this study, we make use of the optically-induced field imposed by

a laser beam characterized by a 5.4-µm beam waist. The field-inducing beam is applied for

5 ms ¿ mσ2/~. Following this “field measurement”, the condensate is allowed to evolve for

a given time t, after which its magnetization profile is probed. The observed time evolution

of the Gaussian phase profile is shown in Fig. 4 of Appendix A. At t = 0 its characteristic

lengthscale is 5 µm, in correspondence with the applied laser beam, and as time progresses,

its width increases and its peak value is reduced (Fig. 4 (b),(c) Appendix A). The observed

time evolution is well described by the theory for a non-interacting spinor gas in a localized

field (depicted on Fig. 4 (b)(c)).

The limitation to the field sensitivity of the spinor condensate magnetometer im-

posed by atomic motion may be circumvented by employing an atomic ensemble whose

constituent atoms are fixed in position. For example, by making use of an array of 1

µm-sized optically-trapped condensates, one would recover a spatial resolution limited by

the periodicity of the optical lattice. The lattice implementation of the spinor condensate

magnetometer may be limited in its sensitivity by spatial inhomogeneities of the trapping

potential.

In conclusion, we have demonstrated near to atom-shot-noise limited performance

of a spatially resolved spinor-condensate-based magnetometer. With a few technical im-

provements, atom-shot-noise-limited magnetometry will be in reach. A future outlook for

this work is the prospect of spatially resolved studies of spin-squeezed states. An alternative

approach to spatially resolved spin squeezing, making use of atomic interactions inherent

to a 87Rb spinor Bose condensate, is presented in Chapter 5.
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Chapter 4

Amplification of Spin Fluctuations

in a Spinor Bose Einstein

Condensate

We implement 87Rb spinor Bose-Einstein condensates as nearly quantum-limited

amplifiers of spin fluctuations with high spatial resolution. In so doing, we re-interpret the

observation of spontaneous ferromagnetism in the quantum quench of a spinor condensate

(Ref. [1]) as the operation of the spinor condensate as a tunable amplifier of spin fluctua-

tions. With this perspective, the spectrum of excitations in a spinor condensate defines the

spectrum of a mode-by-mode parametric amplifier. We present a formalism to describe the

spin-or condensate amplifier, enabling a quantitative comparison of the observed magneti-

zation dynamics to a quantum amplification theory. In our experimental characterization of

this spin amplifier, we demonstrate nearly quantum-limited performance at a gain as high

as 30 dB [2]. In particular, we are motivated to understand the types of spin fluctuations

that are being amplified in this F = 1 spinor gas and to explore its potential application as

a quantum measurement device.
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4.1 Quantum dynamics and the quench of a spinor conden-

sate

The spinor Bose Einstein condensate offers the experimentalist the opportunity to

grapple with fundamental questions about quantum dynamics in the most tangible of ways:

to image directly the quantum dynamics of a macroscopic quantum system. The unique

opportunity to probe out of equilibrium dynamics in the spinor condensate is afforded by

the long timescales and long-range spatial features which characterize the spin dynamics

of interest. Here we focus on the dynamics which accompany a quantum phase transition

between two phases of the spinor condensate, which we characterize with high spatial and

temporal resolution.

In studying the dynamics associated with a given phase transition, one can gain

access to a rich array of physics realized in a range of physical systems. The physics of

phase transitions between disordered and ordered phases – for example, how equilibrium

phases, or out of equilibrium dynamics are affected by interactions, quantum and thermal

fluctuations and the proximity to the transition – is a subject of general interest and one

which is made accessible with studies of spinor condensates.

In the quantum phase transition of a spinor condensate that we consider here, the

energetically-favorable state of the system is rapidly tuned from an unmagnetized phase

to a ferromagnetic phase by quenching the quadratic Zeeman shift, q, induced by the ap-

plied magnetic field. Initially prepared in the unmagnetized phase, the system is forced

to find its ferromagnetic ground state following the quench and does so locally, due to the

conservation of magnetization. The phenomenology of the resulting symmetry-broken do-

main structure has been characterized in prior work by directly imaging the formation of

transversely magnetized domains, following the quench [1]. In more recent work, by tuning

the spectrum of instabilities associated with the transition and comparing our observations

to a complete quantitative analysis of the system, we investigate whether we are indeed

observing dynamics which are fully described by a quantum theory [2].

We can gain a great deal of insight in describing the dynamics surrounding the

phase transition by interpreting the observed macroscopic magnetization pattern as an am-

plified version of the initial seeding fluctuations. We accomplish this goal in the next sections

by showing that the spin-dependent Hamiltonian for the system may be rigorously mapped

onto that of a parametric amplifier. Here we begin by introducing the spin-dependent



77

interaction and the resulting spectrum of instabilities which lead to the growth of any

perturbations about the initial state.

In addition to describing the amplification process, we are motivated by the ques-

tion of what is amplified when the spinor condensate is quenched into the ferromagnetic

parameter regime. For example, can we provide a physical interpretation for the spin fluc-

tuations which are amplified and further, can we quantitatively determine whether they

are quantum-limited in magnitude? To what extent are we peering directly at quantum

fluctuations which have been amplified, in a noiseless fashion, to a macroscopic level?

4.1.1 Instabilities accompanying a quantum phase transition

Descriptions of the dynamics of initially paramagnetic spinor condensates [42, 73,

74, 75, 33, 76] have focused upon the competing spin-dependent energy scales, the quadratic

Zeeman energy and the spin-dependent contact interaction. The latter has the mean-field

energy given by c2n〈F〉2, which favors a ferromagnetic state when c2 < 0. The quadratic

Zeeman energy q〈F 2
z 〉, on the other hand, favors a paramagnetic state and dominates when

q is large. The competing terms give rise to a phase transition at a critical value of q = q0

between the paramagnetic and ferromagnetic regimes, where q0 = 2|c2|n.

To develop a basic understanding of the ensuing dynamics when q is rapidly lowered

from q = ∞ to q = qf < q0, we begin by considering how small perturbations about the

initial mz = 0 coherent state evolve. In a homogeneous system, it is natural to work in a

momentum (k) basis. Thus we are interested in determining the response of the system to

a small modulation of the m-component of the spinor wavefunction, φm,k.

In particular, we are interested in determining whether a given perturbation to

the condensate will be stable or unstable, i.e., whether it will evolve by simply accruing a

phase over time, or by becoming exponentially amplified or de-amplified. This distinction

is dictated by the properties of the spectrum of excitations for the condensate, which we

now determine.

Motivated to treat the regime in which fluctuations about the initial state are

small, let’s take the condensate wavefunction to be Ψk = Ψ0,k + φk, where Ψ0,k describes

the initial coherent state, and φk corresponds to a perturbation about that state. In this

regime, where a mean-field treatment is applicable, we can make use of the Gross-Pitaevski

approximation, as in much of the theoretical work on spinor condensate dynamics [42, 73, 74,
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75, ?, 33, 76, 77, 32, 78] and assign a vector order parameter for the condensate, Ψk,m =
√

n

ψk,m. In our case, ψk,± = φk,± and ψk,0 = φk,0 + φk,0. We determine the spin-dependent

energy density, keeping terms up to first order in φk,m, using Equations 1.1 and 1.13:

Espin,k/n = 〈Ψk|Hkin + HZ + Hint,spin|Ψk〉

= (εk + c̃2(k)n + q)(|φk,+|2 + |φk,−|2)

+ c̃2(k)n(φ∗
k,+φ∗

−k,− + φk,+φ−k,−), (4.1)

where εk is the kinetic energy, εk = k2/2m taking ~ = 1, c̃2(k) describes the effective spin-

dependent contact interactions (defined in Sec 1.3), and q is the total field-induced quadratic

Zeeman shift. The linearized spin-dependent Hamiltonian Hspin,k, in an analogous form to

the linearized spin-dependent energy density (Eq. 4.1), is given by

Hspin,k =
∑

m=±
φ†

k,m(εk + c̃2(k)n + q)φk,m + c̃2(k)n(φ†
k,+φ†

−k,− + φk,+φ−k,−). (4.2)

The evolution of the spin fluctuations is described by their equations of motion,

∂tΨ̂k = (i(εk + q + c̃2(k)n)σz + c̃2(k)nσy)Ψ̂k (4.3)

where σi are the standard spin 1/2 matrices, and we take

Ψ̂k =





φk,+

φ†
−k,−



 . (4.4)

The salient features of the resulting spin dynamics are brought into view with the de-

composition of Ψ̂k(t) into its normal modes and frequencies ωk (which are derived for the

position-space modes in Ref. [45]),

Ψ̂k =
∑

ν=±
ĉνe

iνωktΦ(k, ν) (4.5)

ωk =
√

(εk + q + c̃2n)(εk + q)

Φ(k, ν) =





u+,k,ν

u−,k,ν





u+,k,ν = νω−1
k

√
εk + q

u−,k,ν = 1/
√

εk + q.
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These normal modes correspond to two polarizations of spin excitation modes, denoted

as magnons or spin waves. They are characterized by sinusoidally modulated densities of

m = ±1 atoms at spatial modulation frequencies, k. Whether each of these modes evolves

in a stable or unstable manner depends upon whether ωk is real or imaginary. If ωk is

real, the pair of normal modes characterized by k evolve as stationary modes, by simply

accumulating a phase factor proportional to eiωkt. If ωk is imaginary, one normal mode is

amplified and the other is de-amplified by roughly e|ωk|t, and we refer to these modes as

unstable.

Above and below the transition, the properties of the spin excitations are made

evident by considering the squared spin excitation spectrum (Fig. 4.1),

Es(k)2 = ω2
k (4.6)

= (εk + q + c̃2)(εk + q)

as a function of q, the endpoint of the quench, as presented in Ref. [42]. For q > 2|c̃2|n,

ω2
k > 0 and ωk is real. The paramagnetic condensate is stable, and there exists a gap

to all spin excitations (Fig. 4.1a). For q ≤ 2|c̃2|n, the gap closes (Fig. 4.1b) for a set

of modes characterized by E2
s,k < 0, and these modes become unstable. The unstable

regime is divided into two qualitatively different regions. For |c̃2|n ≤ q ≤ 2|c̃2|n, the

spectrum of instabilities is broad and “white” with respect to the spatial-frequency k of the

instability (Fig. 4.1c). Modes characterized by small k are amplified with the largest gain.

In this regime, initial quantum fluctuations atop the paramagnetic state are amplified into

a macroscopic pattern of domains characterized by long-range spatial correlations. For 0 ≤
q ≤ |c̃2|n the spectrum of instabilities is k−dependent, or colored. Modes characterized by

non-zero k, |kopt| =
√

(2m/~)(|c̃2|n − q), are amplified with maximal gain. In this regime,

initial magnetization fluctuations are amplified into a pattern of domains characterized by

short-range spatial features, whose characteristic lengthscale decreases as q is lowered (Fig.

4.1d). As we will discuss in the following sections, the spin-dependent Hamiltonian (Eq.

4.2) takes two qualitatively different forms depending upon the value of q relative to the

transition, q0. For q > q0 it takes the form of a stable harmonic oscillator with respect to all

modes k, and condensate excitations evolve by accruing a k−dependent phase. For q < q0,

there exist both stable and unstable modes. For the stable modes, the Hamiltonian again

takes the form of a stable harmonic oscillator. For the unstable modes, it takes the form

of an unstable harmonic oscillator, and a class of excitations are exponentially amplified or
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Figure 4.1: The spectrum of spin excitations Es(k)2, here normalized by c2n, has a gap for
q > 2|c2|n, in other words Es(k)2 > 0 and all perturbations about the initial paramagnetic
state are stable (a). The gap closes at q = 2|c2|n as q is lowered (b), and a set of excitation
modes become unstable. The unstable modes, for which Es(k)2 < 0, are characterized by
small k in the case of |c2|n < q < 2|c2|n (c). As q is lowered further toward q = 0, the most
unstable modes are characterized by finite k (d).

de-amplified according to a k−dependent gain profile.

In the latter case, the spectrum of excitations in the spinor condensate defines the

spectrum of a mode-by-mode amplification process, in which fluctuations atop the initial

paramagnetic condensate grow to form a macroscopic magnetization pattern. This defini-

tion motivates re-interpreting the observation of spontaneous ferromagnetism in a spinor

condensate as the operation of the spinor condensate as a tunable amplifier of spin fluc-

tuations. With the latter approach – which offers a clear formalism and connections to

quantum optics – we seek to understand the types of spin fluctuations that are being ampli-

fied, to compare the observed dynamics to a quantum amplification theory at a quantitative

level, and to explore the potential use of the system as a quantum measurement device with

applications toward metrology.
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4.2 The spinor condensate as a degenerate parametric am-

plifier

4.2.1 Low-noise amplifiers

Recently there has been a great deal of interest in observing “macroscopic quantum

systems.” At the heart of this bold endeavor is the very device that takes the “quantum

world” to the “macroscopic world”: the amplifier.

The development of low-noise amplifiers has enabled the observation of nonclassical

phenomena in a range of physical systems. In solid state systems, for example, one can

use low-noise Josephson-parametric amplifiers to probe nonclassical electromagnetic fields

[79]. In opto-mechanical systems, one can continuously monitor the quantum zero-point

fluctuations of a mechanical resonator. In these systems, developing the quantum-limited

amplifiers and detectors necessary to do so is the focus of current work [80, 81]. Quantum-

limited detection is also a subject of current research in the context of achieving single-spin

resolution in NMR [82], or in detecting gravitational waves [83].

Quantum limited amplification can also be turned on its head, and used as a

means for generating sub-shot-noise, or squeezed, quantum states. In solid state systems,

for example, low-noise phase-sensitive amplification has lead to the preparation of squeezed

states, such as squeezed microwave sources.

In this work, we study the use of dynamical instabilities in a quenched spinor

condensate as a mode-by-mode parametric amplifier of magnetization fluctuations. As we

will see in Ch. 5, quantum-limited amplification in spinor condensates could also be used to

prepare of spin squeezed states, with applications toward spatially-resolved magnetometry.

4.2.2 Mapping the spin mixing interaction to a parametric amplifier

To describe the aforementioned spin-dependent Hamiltonian (Eq. 4.2) as a para-

metric amplifier of spin fluctuations, we will make use of a change of basis. This change of

basis is motivated by first considering the spin mixing interaction in the spinor condensate.

A standard description of spin-mixing in a spinor condensate begins by introducing the mi-

croscopic collision process in which two mz = 0 particles are converted into a mz = +1 and

mz = −1 particle, and the converse process [43]. In a homogeneous condensate (ignoring

kinetic energy), this process is described by the interaction term, expressed in second-
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quantized notation as,

Hsm,k = c̃2(k)n(φ0,kφ0,kφ
†
+,kφ

†
−,k + φ†

0,kφ
†
0,kφ+,kφ−,k), (4.7)

where φ0,k(φ
†
0,k), φ+,k(φ

†
+,k), φ−,k(φ

†
−,k) are the destruction (creation) operators for conden-

sate atoms in the mz = 0, 1,−1 states respectively, with momentum k. As before, we have

assumed the initial population of the initial coherent state φ0 is large and have made the

approximation φ0 = φ†
0 =

√
n. The population generated by spin-mixing collions in φ+, φ−

is taken to be small in comparison.

The spin-mixing interaction, when expressed in a different basis, takes the form of

two degenerate parametric amplifiers. This basis corresponds to the zero-eigenvalue modes

of Fx, Fy, Fz, whose annihilation operators are defined as,

φx,k = i
√

i
(φ+,k − φ−,k)√

2
(4.8)

φy,k =
√

i
(φ+,k + φ−,k)√

2
φz,k = φ0,k.

We will make use of this complete and orthogonal “polar basis set” in the remainder of this

discussion. Re-expressed in this polar basis, the spin mixing interaction takes a form of two

mode-by-mode degenerate parametric amplifiers, given by,

Hsm,k = − i

2
c̃2(k)n((φ2

x,k − φ†2
x,k) + (φ2

y,k − φ†2
y,k)). (4.9)

A standard treatment of a degenerate parametric amplifier is provided in Ref.[84], Ch. 5.1.1.

Its characteristic Hamiltonian is given by,

Hparam = − i

2
ω((φ2 − φ†,2). (4.10)

and the quadratures of φ, corresponding to its real and imaginary parts, are given by,

X1 = (φ + φ†)/2 (4.11)

X2 = (φ − φ†)/2i.

The parametric amplifier serves to amplify one quadrature and attenuate the other by a

gain given by ω:

X1(t) = eωtX1(0) (4.12)

X2(t) = e−ωtX2(0).
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Under the operation of a parametric amplifier, time evolution of the modes is given by

φ(t) = φ(0) cosh(ωt) + φ†(0) sinh(ωt).

The spin mixing interaction, which takes the form of two generate parametric am-

plifiers, serves to generate pairs of particles in the initially unpopulated φx, φy modes, made

clear by the exclusive presence of quadratic terms in φx, φy in the interaction. In analogy

to quantum optics, the population of the φx, φy modes is initially zero and grows approxi-

mately exponentially by processes of spontaneous and stimulated emission, as discussed in

Section 4.7.

4.2.3 The spin-dependent Hamiltonian as a mode-by-mode parametric

amplifier

To identify the spinor condensate as a parametric amplifier of spin fluctuations,

we re-introduce the spin-dependent Hamiltonian (Eq. 4.2) for the homogeneous spinor

condensate:

Hs =
∑

k

(εk + q + c̃2(k)n(φ†
x,kφx,−k + φ†

y,kφy,−k)−
ic̃2(k)n

2
((φ2

x,−k − φ†2
x,k) + (φ2

y,−k − φ†2
y,k)),

(4.13)

expressed in the aforementioned polar basis. Since we can treat each k mode independently

and φx, φy enter Hs independently, it is sufficient to study the single-mode Hamiltonian of

the form,

Hk = (εk + q + c̃2(k)n)(φ†
kφ−k) −

ic̃2(k)n

2
(φ2

−k − φ†2
k ). (4.14)

We show that this Hamiltonian can take the form of a stable or unstable harmonic oscil-

lator by using a basis of modes ak, a
+
k related to original modes φk, φ

†
k by a Bogoliubov

transformation,

φ†
k = a†k cosh(γk) + ia sinh(γk) (4.15)

φk = ak cosh(γk) − ia†k sinh(γk).

We find that Hk takes the form of an unstable harmonic oscillator (or parametric amplifier)

when we choose γk = γk,amp such that,
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tanh(2γk,amp) ≡ (εk + q + c̃2(k)n)/c̃2(k)n (4.16)

Hk = − iωk

2
(a2

k − a†2k ) (4.17)

ω2
k = −(εk + q + c̃2(k))(εk + q), (4.18)

where ωk corresponds to the dispersion relation for the spinor condensate. The time evo-

lution of the modes is given by ak(t) = ak(0) cosh(ωkt) + a†k(0) sinh(ωkt). Thus the spin-

dependent Hamiltonian, when appropriately tuned, can be described by a sum of indepen-

dent degenerate parametric amplifiers,

Hs =
∑

k

(

− iωk

2
((a2

−k − a†2k ) + (b2
−k − b†2k ))

)

(4.19)

where bk, b
†
k are formed from φk,y, φ

†
k,y in the analogous way. We can interpret ak, bk as

two polarizations of spin excitation modes. Here tanh(2γk) = |c̃2(k)|n may be interpreted

as the excess population of m = ±1 atoms in the modulation of the spinor wavefunction

corresponding to a spin excitation modes (or spin waves).

Additionally, we can tune q above the transition (q > q0) such that the spinor

condensate Hamiltonian takes the form of a stable harmonic oscillator. In this case, we

choose γk = γk,rot such that,

tanh(2γk,rot) ≡ c̃2(k)n/(εk + q + c̃2(k)n) (4.20)

Hk = ωk(a
†
kak + b†kbk)

ω2
k = (εk + q + c̃2(k))(εk + q).

In this regime, q À q0 ≡ c̃2n, and there exists a gap to any spin excitations. The

stationary eigenmodes of H accrue a k−dependent phase given by ωkt, and evolve as

ak(t) = ak(0) cos(ωkt) + a†k(0) sin(ωkt).

4.3 Spin fluctuation modes in a paramagnetic F = 1 spinor

condensate

Thus far, we have shown that the system Hamiltonian takes the form of a sum of

degenerate parametric amplifiers when expressed in terms of the complex modes ak, a
†
k and
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bk, b
†
k, which are not Hermitian operators and do not correspond to observable quantities.

In contrast, the fluctuations in the transverse magnetization of the spinor, given by Fx,k

and Fy,k (components of the spin vector), and fluctuations in the alignment of the spinor,

created by N †
xz,k and N †

yz,k (components of the spin quadropole tensor) are observable [48].

The properties of F = 1 spinors and their fluctuation operators are discussed in Section

2.1.1.

The operators which describe fluctuations atop the paramagnetic state, φz,k (to be

defined with respect to a general coherent state in Section 5.6), may be expressed in their

second-quantized form as:

Fx,k = (−i
√

i/
√

2)(φ†
z,kφy,k + iφ†

y,kφz,k) (4.21)

Fy,k = (−i
√

i/
√

2)(φ†
z,kφx,k + iφ†

x,kφz,k) (4.22)

Nxz,k = (−
√

i/
√

2)(φ†
z,kφx,k − iφ†

x,kφz,k) (4.23)

Nyz,k = (−i
√

i)/
√

2(φ†
z,kφy,k − iφ†

y,kφz,k). (4.24)

We are interested in the fluctuations atop a coherent state populated by a large number

of atoms. We therefore consider a classical coherent state, φ†
z,k = φz,k =

√
n, and consider

fluctuation operators in the linear regime, which are given by,

Fx,k = (−i
√

i
√

n/
√

2)(φy,k + iφ†
y,k) (4.25)

Fy,k = (−i
√

i
√

n/
√

2)(φx,k + iφ†
x,k) (4.26)

Nxz,k = (−
√

i
√

n/
√

2)(φx,k − iφ†
x,k) (4.27)

Nyz,k = (−i
√

i
√

n)/
√

2(φy,k − iφ†
y,k). (4.28)

Using the commutation relations [φi,k, φ
†
j,k′ ] = δijδkk′ , we find that the above fluctuation

operators obey canonical commutation relations,

[Fx,k, Nyz,k′ ] = −inδk,k′ (4.29)

[Fy,k, Nxz,k′ ] = inδk,k′ (4.30)

where we again take ~ = 1. The two polarizations of fluctuations are separable; thus we

can focus on one polarization, such as φy,k. We therefore focus on the fluctuation operators

Fx,k and Nyz,k. Under the parametric amplifier these fluctuations evolve as,
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



Fx,k

Nyz,k





t

=





cosh(t/τk) −e−2γamp,k sinh(t/τk)

−e2γamp,k sinh(t/τk) cosh(t/τk)



 (4.31)





Fx,k

Nyz,k





t=0

= Mamp(t)





Fx,k

Nyz,k





t=0

where γamp,k and τk = 1/ωamp,k are given by Eq. 4.17-4.18 and depend upon q = qamp ¿ qc.

In the (Fx, Nyz) plane, spin fluctuations will grow along the “amplification axis” given by

vamp = (−e−2γamp,k , 1) and shrink along the “squeezing axis” vsq = (e−2γamp,k , 1) (Fig. 4.2).

This is made clear by the decomposition,

Mamp(t) = etamp/τlvampṽ
†
amp + etamp/τlvsqṽ

†
sq (4.32)

where ṽ†
amp and ṽ†

sq form the dual basis to vamp and vsq respectively. In practise, the

spectral gain profile |ωk| is maximum for a wavevector k satisfying εk + q + c̃2(k)n = 0 and

hence γamp,k = 0. Thus the “amplification/squeezing axes” of the maximum-gain mode k

are oriented at ±π/4 with respect to the Fx, Nyz axes.

amp

(a) quantum noise

        (t=0, q      )

(b) run amplifier

f

η

amp
(t     , q        )

amp

amp
v

sq
v

Figure 4.2: Quantum fluctuations initially symmetric in Fx, Nyz are amplified and de-
amplified along k−dependent axes given by vamp, vsq in the Fx, Nyz plane.

Briefly, we outline the calculation of the time evolution of Fx, Nyz, which we de-

termine from the time evolution of φk,





φk(t)

φ†
k(t)



 = Mamp,k





φk(0)

φ†
k(0)



 . (4.33)
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We make use of the following relations, where X1,k, X2,k correspond to the real and imagi-

nary parts of the unstable (Bogoliubov) modes ak given by Eq.4.15, and ωk corresponds to

the aforementioned spin excitation spectrum:





X1,k(t)

X2,k(t)



 =





eωkt 0

0 e−ωkt









X1,k(0)

X2,k(0)



 ≡ A3





X1,k(0)

X2,k(0)



 (4.34)





X1,k

X2,k



 =





1/2 1/2

1/2i −1/2i









ak

a†k



 ≡ A2





ak

a†k



 (4.35)





φk

φ†
k



 =





cosh(γk) −i sinh(γk)

i sinh(γk) cosh(γk)









ak

a†k



 ≡ A1





ak

a†k



 . (4.36)

We construct Mamp from





φk(t)

φ†
k(t)



 = A1A
−1
2 A3A2A

−1
1





φk(0)

φ†
k(0)



 ≡ Mamp





φk(0)

φ†
k(0)



 . (4.37)

Finally, we determine Fx(t), Nyz(t) from φk(t), φ
†
k(t) using Eq. 4.27,4.28, for example. In

principle, by determining φk(t), φ
†
k(t), we have in fact specified all aspects of the evolution

of the system under the stated approximations.

4.4 Experimental characterization of the spin-mixing ampli-

fier

In a manner similar to prior experimental studies of low-noise amplifiers in other

physical systems [79, 85, for example], we have pursued characterizing the “spin-mixing am-

plifier”, an amplifier of spin fluctuations. To do so, we have effectively seeded the amplifier

with broadband noise, and characterized the spectrum of its output.

Our first goal in this characterization was to measure the spectrum of the spin-

mixing amplifier and determine whether it is in agreement with a quantum amplification

theory. To activate the amplifier, we rapidly quenched the field-induced quadratic Zeeman

shift to a range of final values (Section 4.4.1). The quadratic Zeeman shift was induced by
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a combination of magnetic and microwave fields, which were carefully calibrated (Section

4.4.2). Following the quench, we characterized the evolution of the transverse magnetization

(Sections 4.4.3). By varying the induced quadratic Zeeman shift, we demonstrated that the

characteristic lengthscale of the observed magnetization pattern and underlying spectrum

of instabilities is tunable. In particular, we examined its spatial correlations as a function

of the final quadratic Zeeman shift (Sections 4.4.4). We found the experimentally probed

spectrum to compare well with a theoretical model that accounts for the inhomogeneous

condensate density and for magnetic dipole interactions, with some discrepancies [45].

To enable a quantitative comparison between the observed structure formation and

a quantum amplification theory, we measured precisely the temporal evolution of transverse

magnetization acquired by the condensate following the quench. The observed transverse

magnetization, interpreted as amplified spin fluctuations, was measured at various stages

of amplification, up to a gain of 30 dB in the magnetization variance.

Further, we investigated possible contributions from spin fluctuations other than

quantum fluctuations, such as thermal or technical noise, in the experiment (Section 4.5).

To extend our understanding of the system, we have suggested future tests of the spin-

mixing amplifier, in particular, to empirically determine the role of dipolar interactions and

to reduce our uncertainty in the gain of the amplifier (Section 4.6).

4.4.1 Initiating the amplifier: the quench into the ferromagnetic regime

The paramagnetic optically-trapped condensates which serve as the initial condi-

tion in this study are prepared in a similar manner to previous work [1]. As described in

Section 1.5.1, condensates of N0 = 2.0 × 106 87Rb atoms are prepared, with peak densi-

ties of n = 2.6(1) × 1014 cm−3 and kinetic temperatures of ' 50 nK. They are trapped

in a linearly polarized optical dipole trap characterized by trap frequencies (ωx, ωy, ωz) =

2π × (39, 440, 4.2) s−1 . Taking the theoretical value for ∆a = −1.4(3) aB [44], with aB

being the Bohr radius, we note that the spin healing length ξs = (8πn|∆a|)−1/2 = 2.5µm

is larger than the condensate radius ry = 1.6µm along the imaging axis (ŷ). As in our

previous work, we consider the condensate to be effectively two-dimensional with respect

to spin dynamics in this study. For the condensates used in this experiment, the transition

between the polar and ferromagnetic regime occurs at q0 = 2|c2|〈n〉 = h × 15 Hz given the

maximum ŷ-averaged condensate density 〈n〉.
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The condensate is prepared in the |mz = 0〉 state using rf pulses at a large magnetic

field, as described in [11]. Following the preparation of the |mz = 0〉 state, a 6 G/cm

magnetic field gradient is applied to expel residual atoms in the |mz = ±1〉 states from

the trap[1]. This preparation takes place in a static 4 G field and with no microwave

irradiation. The paramagnetic condensate is stable under this condition, since the field-

induced quadratic shift is well above the transition, q À q0.

The amplifier is “switched on” when the quadratic shift is rapidly quenched below

the transition, into the ferromagnetic regime. The magnitude of the induced quadratic

Zeeman shift is controlled using two fields: an applied bias magnetic field directed along

the ẑ axis, provided by Helmholtz coils (Section 1.5.2); and a modulated magnetic field,

provided by a linearly ẑ-polarized microwave field (Section 1.6). The bias magnetic field of

magnitude B, induces a quadratic shift of qB/h = (70Hz/G2)B2. The linearly polarized

microwave field induces a quadratic shift [87]. Its magnitude is characterized by a Rabi

frequency Ω (Section 1.5.3) and its detuning is given by δ/2π = ±35 kHz, measured from

the |F = 1,mz = 0〉 to |F = 2,mz = 0〉 hyperfine transition. The applied microwave field

induces a quadratic (AC) Zeeman shift of qµ = −~Ω2
R/4δ, which is carefully calibrated for

this experiment (Section 4.4.2).

Prior to switching on the amplifier, the purified paramagnetic state is prepared

in a field environment described by a static 4 G bias magnetic field and no microwave

irradiation. The microwave field strength is then increased over 20 ms to a constant value,

corresponding to a Rabi frequency in the range of 2π × (0–1.5)ms−1, to set qµ. To switch

on the amplifier, we rapidly ramp the magnetic field (over 5 ms) to a value of B = 230 mG

(giving qB/h = 7.6 Hz). For separate repetitions of the experiment (for different values of

qµ), the quadratic Zeeman shift at the end of the ramp was thus brought to final values

qf/h between -2 and 16 Hz.

4.4.2 Calibration of the field-induced quadratic Zeeman shift

Due to the observed variation in the strength of the applied microwave field and

bias magnetic field in the apparatus over the course of several days, they were calibrated

prior to each experiment (Sections 1.5.2,1.6). The bias field was directly measured as part of

the procedure to cancel inhomogeneities in the magnetic field environment (Section 1.5.2).

In the quench experiment considered here, gF µBB = 230 kHz ±10 kHz and qB/h = 7.6 Hz.
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The contribution to the field-induced quadratic Zeeman shift from the modulated

magnetic field, qµ = −~Ω2
R/4δ, was indirectly determined from a measurement of its char-

acteristic Rabi frequency, ΩR, and detuning, δ (Section 1.6). In addition, as a consistency

check for our calibration of qµ, we studied the spin-mixing amplifier as a function of qµ

at a few fixed values of qB (i.e., at a few bias fields). We verified that amplifier behavior

depended upon qµ through qf = qµ + qB, as expected.

First, the on-resonance Rabi frequency ΩR ≡ ΩR(V ) was measured as a function

of its control setting, V (Fig. 1.8, Sec. 1.6). The resulting quadratic Zeeman shift, qf (V ) =

qB + qµ(V ), was determined for |δ = 30| MHz, and for two bias fields (B = 190 kHz and

235 kHz, such that qB = 5.2 Hz and 7.9 Hz). In Fig. 4.3, we take the control setting

to be V ≡ V δ/|δ|, to reflect the fact that applying qµ may either increase or decrease qf ,

depending upon the sign of δ.
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Figure 4.3: The total field-induced quadratic shift due to modulated and static magnetic
fields, qf (V ), as a function of the control setting for the applied microwave field, V . Here,
qµ(V ) = −Ω2

R(V )/4δ and qB = 70 Hz/G2B2. The circles (squares) correspond to measure-
ments performed at magnetic bias fields Bz = 190(235) kHz, and microwave field detuning
|δ| = 35 kHz. The magnitude of the control setting reflects Ω2 and the sign of the control
setting reflects the sign of the microwave field detuning δ.

Next, the spin mixing amplifier was characterized as a function of ΩR(V ) at the

two bias magnetic fields, holding |δ| constant. In Fig.4.4, the population of m = ±1

atoms generated by spin-mixing collisions, measured 110 ms after the quench, is shown as

a function of qf . As expected, spin mixing was suppressed as qf was increased above the
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transition at q0/h ≈ 16 Hz. Surprisingly, spin mixing was also reduced as q was lowered

below roughly -2 Hz, and completely suppressed for qf/h less than roughly -7 Hz.

At the two bias magnetic fields, the measured population of m = ±1 was found to

exhibit the same dependence upon qf/h, supporting the calibration of qµ. In addition, the

transverse magnetization profile of the condensate was directly imaged as a function of qµ at

the two magnetic fields. The qualitative variation of the condensate magnetization profile

as a function of qf , measured at the two bias fields, was found to be in good agreement.
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Figure 4.4: The fractional population in mz = ±1, measured 110 ms after the quench, as
a function of the final quadratic shift, qf , at the end point of the quench. The squares
(circles) correspond to measurements at magnetic bias fields gF µBBz = 190(235) kHz.

4.4.3 Characterizing the amplifier: the quench to a variable endpoint

Following the quench, the condensate is forced to find a ferromagnetic ground

state, and does so locally, due to the conservation of the z−projection of its magnetization.

We observe the condensate to spontaneously develop macroscopic transverse magnetization,

saturating within about 110 ms to a pattern of spin domains, textures, vortices and domain

walls [1]. As discussed, we interpret the observed symmetry broken domain structure as an

amplified version of the initial seeding fluctuations.

To measure the transverse magnetization of the condensate, we made use of a

sequence of non-destructive phase contrast images, as described in Chapter 2. After a

specified evolution time, a 2-ms-long sequence of phase-contrast images was taken using 800-
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ns-long pulses of circularly polarized light propagating along the ŷ direction. The transverse

magnetization acquired by the condensate was detected by means of its Larmor precession

about the uniform bias field, Bz. The amplitude and phase of this Larmor precession signal

was extracted from the sequence of images and used to construct a spatially-resolved profile

of the transverse magnetization density, M̃x,y = ñFx,y, where ñ is the column number

density [50, 12].

Representative images of the condensate transverse magnetization profile, M̃x,y,

for evolution times of 47, 87, and 127 ms following the quench, are shown in Fig. 4.5. For

short evolution times (t < 47 ms), the measured transverse magnetization variance was

smaller than, or on the order of, the photon-shot-noise-limited noise floor. In this case, the

observed transverse magnetization profile was homogeneous and lacking in spatial features,

indistinguishable from the initial mz = 0 state. Following a longer evolution period, after

the initial spin fluctuations had been amplified well above the noise floor, the observed

transverse magnetization profile was characterized by a spatially inhomogeneous pattern of

domains.

The formation of transversely magnetized domains was first observed at the center

of the condensate, where the condensate density and hence the gain of the amplifier was

greatest. At intermediate times following the quench (t < 97 ms), when the amplification

of spin fluctuations had not yet saturated, significant shot to shot fluctuations in the ob-

served condensate transverse magnetization profiles was observed. This may be attributed

to the stochastic variation of the magnitude and spectrum of the initial spin fluctuations, as

expected from a quantum mechanical description. This variation in the amplified magneti-

zation pattern is evident in the condensate transverse magnetization profiles shown in Fig.

4.5, imaged at t = 87 ms following the quench. At this evolution time, magnetization fluc-

tuations which were initially quantum-limited in magnitude would have been amplified by

a gain of up to 30 dB. The spin-mixing amplifier can not run forever; eventually it runs out

of gain. As the population of mz = 0 atoms is depleted, the occupation of unstable modes

increases and eventually saturates. This is reflected in the saturation of the transverse

magnetization profile of the condensate at long evolution times. Representative images of

M̃x,y, such as those taken at t = 127 ms in Fig. 4.5, exemplify its eventual saturation:

the condensate is characterized by significant transverse magnetization across its spatial

extent. Shot-to-shot fluctuations of the transverse magnetization profiles were reduced for

long evolution times, past the saturation of the amplifier (t > 110 ms). In addition to the



93

40 um

t =  47 ms                                    t= 87 ms                                   t= 127 ms

370 um

Figure 4.5: Representative images of the condensate transverse magnetization density, M̃x,y,
for the quench of a paramagnetic condensate to qf = 2 Hz. At evolution times t = 47, 87, 127
ms, four examples of M̃x,y are shown in order to delineate the stochastic variation in the
observed amplified spin fluctuations.

transverse magnetization, the longitudinal magnetization of the condensate was measured,

but, consistent with prior observations, it remained small (< 15%) throughout the evolution

period (up to 300 ms).

By characterizing the transverse magnetization profile of the condensate following

the quench to a variable final quadratic shift, qf , we effectively probe the spectrum of

instabilities of the spinor condensate, as presented in Section 4.1.1. Representative images

of the saturated transverse magnetization profiles of spinor condensates, for a range of

final quadratic Zeeman shifts, are shown in Figure 4.6. They confirm the aforementioned

distinction between deep and shallow quenches. For the deep quench, characterized by

0 < qf < 8 Hz, the transverse magnetization profile is characterized by short-range features,

specifically, by transversely magnetized domains on the order of 10 to 30 µm in size. As

qf is raised from 0 to 8 Hz, we observe the characteristic domain size to increase. Images

of a central region of the condensate transverse magnetization profile, taken during the

linear operation regime of the amplifier (Fig. 1, Appendix B), for t = 87 ms), confirm

that the spatially averaged magnetization strength is roughly constant over 0 ≤ q ≤ 8

Hz, reflecting the uniform gain of the amplifier. For the shallow quench, characterized by
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8 < qf < 16 Hz, the transverse magnetization profile is characterized by long-range features

and is diminished in amplitude. Also evident in Fig. 1 of Appendix B, this trend reflects a

diminishing gain as qf is increased up to the transition point.

For 0 < qf < ∞, the experimental characterization of the condensate transverse

magnetization profile is in good agreement with theoretical predictions. However, the results

of the observed quench to negative values of qf came as a surprise. For quenches to qf/h ≤
−7 Hz, the growth of magnetization was found to be greatly suppressed (G(0)|t=160ms ≤
10−2). It is possible that the domain formation observed at 0 < q < q0 is frustrated by

incoherent magnons for the case of q < 0, which is a current subject of investigation.

Our characterization of the variation of the condensate magnetization profile with

qf , which reflects the tunability of the spectral gain profile of the spin-mixing amplifier, can

be made more quantitative by studying the position-space correlations of the condensate

magnetization.

4.4.4 Spatial magnetization correlations

A good probe of the amplifier’s spectrum is provided by the condensate magneti-

zation correlation function,

G(δr) =

∑

r M̃(r + δr) · M̃(r)

(gF µB)2
∑

r ñ(r + δr)ñ(r)
, (4.38)

where ñ is the ŷ-integrated column density. Snapshots of the amplitude, phase, and spatial

correlations of the transverse magnetization of a central region of the condensate are shown

for a range of values of qf (Fig. 4.6). A quantitative measure of the amplifier’s spatial

spectrum, and its tunability with qf , is provided by the characteristic size of the spin do-

mains, which we may extract from the correlation function. This characteristic domain

size is taken as the distance from the origin at which the correlation function acquires its

first minimum, measured in the direction of strongest correlations. On average, this direc-

tion corresponded to ẑ, but varied from shot-to-shot. Recent theoretical work which takes

into account the asymmetric trap potential supports the observation that magnetization

correlations are stronger along the long axis of the trapping potential, consistent with the

experimental findings [45, 86].

The characteristic domain size was found to increase as qf was raised (Fig. 2,

Appendix B), in agreement with a quantum amplification theory. It was, however, measured
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to be consistently larger than the predicted value according to this theory. One possible

explanation for this discrepancy could be the presence of thermally generated populations of

unstable modes at low spatial frequencies. Alternatively, these modes could be populated

by spurious RF sources in the experiment apparatus, at a level below the sensitivity of

experimental diagnostic techniques (Sec. 4.5).

Interestingly, once the pattern of domains formed at a given qf , its characteristic

size was observed to be relatively constant as a function of time. The temporal evolution of

the average magnetization correlation function, determined from 8 repetitions of the experi-

ment at qf = 2 Hz, is shown in Figure 4.8. Here, the average magnetization correlations are

clearly strongest along the ẑ axis, corresponding to the long axis of the trapping potential.

In contrast, the magnetization profile is, on average, featureless in the x̂ direction. At long

evolution times (t > 150 ms), the experimental findings are consistent with a slight increase

in characteristic domain size, which may be related to coarsening behavior discussed in Ref.

[42].

One may directly probe the spectral gain profile of the amplifier by making use of

the spatial Fourier transform of the condensate transverse magnetization, given by M̃(k),

where k̃ = (kx, kz). In particular, the rate of growth of transverse magnetization may be

taken as,

R(k) = ln(P (k, t2)/P (k, t1))/(t2 − t1) (4.39)

where P (k, t) = |M̃(k, t)|2; |k| =
√

~k · ~k; and t1 and t2 correspond to two evolution times

chosen during the linear regime of operation of the amplifier. For the same experimental

data as above, and by making use of a central region of the condensate (8 µm×32 µm),

R(k) is shown in Figure 4.9. To establish a qualitative comparison with the theory of a

homogeneous condensate, the predicted R(k) is also shown for this case (taking the average

value of ñ from the experiment and the theory value for ∆a). In this comparison, the

observed rate of structure formation is larger than expected at low spatial frequencies.

On account of its limited momentum resolution, the spatial Fourier transform

of the condensate magnetization was only used for qualitative rather than quantitative

comparisons with theory. The limited momentum resolution (due to the small x-dimension

of the condensate) and the observed sensitivity to parameters of this analysis (such as the

region size and location in the condensate) made this technique unreliable at a quantitative

level. In a future implementation of the experiments in a large, isotropic condensate, this
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tool may be more robust and better suited to quantitative studies.

Having characterized the spin-mixing amplifier, let us consider the source of its

input signal. For this, as presented in Section 4.2.3, we have developed a quantum field

description of the spin-mixing instability. To test the validity of this description, we compare

the measured magnetization variance, G(0), over the central region of the condensate after

different intervals of amplification, to that predicted by the quantum amplification theory.

In this section, we outline the calculation of G(0) shown in Fig. 3 of Appendix B and

summarize the result of its comparison to the quantum amplification theory.

In terms of the condensate magnetization, M̃(r), G(0) is given by,

G(0) =

∑

r M̃(r + δr) · M̃(r)

(gF µB)2
∑

r ñ(r)ñ(r)
(4.40)

=
〈|M̃(r)|2〉

(gF µB)2〈ñ(r)2〉 ,

where the expectation value of M̃ and ñ is taken over the central 16 × 124 µm region of

the condensate. Here we consider the determination of G(0) from the experimental data.

In so doing, we take a step back to the quantity that is measured in the experiment and

used to determine G(0): the amplitude of the Larmor precession signal at each position

in the condensate, ALP (r) (Sec. 2.3.1). This quantity is proportional to both ñ(r) and

|M̃(r)|. Were the measurement of 〈ALP (r)2〉 noise- free, then we could simply determine

G(0) from normalizing the measured 〈ALP (r)2〉 by the same quantity determined for a fully

transversely magnetized cloud, 〈Amax,LP (r)2〉. However, an accurate analysis of G(0) must

take into account contributions from photon shot-noise and other noise sources.

In practise, G(0) is determined from,

G(δ0) =
(〈ALP (r)2〉 − 〈δAps(r)

2〉)
(〈Amax,LP (r)2〉 − 〈δAps(r)2〉)

, (4.41)

where ALP (r) is the measured precession signal at the position r in the condensate; Amax,LP (r)

is the calculated precession signal for a transversely magnetized condensate for the same

parameters (verified empirically); and 〈δAps(r)
2〉 is the contribution to the measured mag-

netization variance due to photon shot-noise (determined from a numerical simulation and

verified empirically).
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Contribution to G(0) from photon shot-noise: a numerical simulation

In determining G(0), we must take into account the contribution to 〈ALP (r)2〉
from photon shot-noise, which we determine by means of a numerical simulation that takes

into account our analysis procedures. We verify that the photon shot-noise contribution,

〈δAps(r)
2〉, determined from this simulation, agrees with the measured amplitude variance

of experimental data dominated by photon shot-noise (as is the case for t < 47 ms). We

also verify that 〈δAps(r)
2〉 scales only weakly with the absolute precession amplitude and

may be treated to be constant to a good approximation.

Here we outline a numerical simulation, in which we generate and then analyze

artificial phase contrast images characterized by the condensate parameters and the imaging

conditions of the experiment. Each of the generated sequences of phase contrast images is

analogous to one iteration of the experiment. A sequence of phase contrast images is

described by,

S(r, j) = (1 + n(r)(C + Af cos[φj ])Np,atom(r)/Np,bright(r) (4.42)

where r is the position in the condensate; j is the frame number; n(r) is the normalized

Thomas Fermi profile describing the condensate density; C and A are the constant and

amplitude contributions to the sinusoidally varying phase contrast signal for a transversely

magnetized precessing condensate (Sec. 2.1); f is the normalized condensate magnetiza-

tion; φj is the phase of precession per frame (which reflects the precession frequency); and

Np,atom(r) and Np,bright(r) correspond to the number of photons per pixel in images of the

condensate taken with and without the atoms, respectively.

Both Np,atom(r) and Np,bright(r) are Poissonian random variables. For each it-

eration of the simulation, they are determined from a Poissonian probability distribution

characterized by 〈Np(r)〉, the average number of photons per pixel at r in the experimen-

tal data. We are for the moment ignoring any spatial variation the fractional condensate

magnetization f .

For each iteration of the simulation, we generate a new artificial sequence of phase

contrast images S(r, j). We then determine its amplitude variance, 〈ALP (r)2〉, by applying

the identical analysis procedures as in our treatment of the experimental data. As shown

in Fig.4.10, the average value for 〈ALP (r)2〉 (taken over 10 iterations, choosing random

precession frequencies) increases as a function of the peak precession amplitude, ALP,max =
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fA, as one would expect. Since the simulated value for the described amplitude variance

(red circles) agrees with its theoretical value (blue triangles), the numerical procedures are

not adding noise to the data analysis.

To determine the contribution to 〈ALP (r)2〉 from photon shot-noise, we compare

the value of 〈ALP (r)2〉 calculated in two ways. First, we take into account fluctuations

in the photon field by choosing values for Np,atom, Np,bright from the described Poissonian

distributions (red circles). Second, we ignore fluctuations in the photon field and simply

take its average value, i.e., Np,atom(r) = Np,atom(r) = 〈Np(r)〉 (green circles). The former

result for the amplitude variance, which takes into account fluctuations in the photon field,

is consistently higher than the latter result, which does not. Their difference corresponds

to the contribution to the amplitude variance from photon shot-noise, 〈δAps(r)
2〉 (green

squares). It is approximately constant with respect to the precession amplitude. As shown

in Fig. 4.11, it increases slightly with ALP . Simulations which included an inhomogeneous

magnetization, f(r), (characteristic of the experimental data), for the same average value

for the precession amplitude, yielded similar results for 〈δAps(r)
2〉 which were within the

error bars of the aforementioned simulation.

In evaluating G(0) for the experimental data, we make use of Eq. 4.41 and the

above result for 〈δAps(r)
2〉, which in practise adds a small positive offset to the measured

amplitude variance. The normalization factor for G(0), corresponding to the amplitude

variance of a fully transversely magnetized cloud, is determined empirically as well as the-

oretically. For the same initial conditions as the quench experiment, we prepared a trans-

versely magnetized condensate and observed its Larmor precession after a given evolution

time. Due to the loss of atoms from the trap, the measured amplitude variance decreased

over time. The empirically determined amplitude variance as a function of evolution time

is shown in Fig. 4.12 for a few repetitions of the experiment (open circles). Their average

value (solid circles) compared well with the theoretically calculated amplitude variance for

the pertinent condensate parameters and imaging settings (solid squares). At each evolution

time, the condensate atom number was independently measured using an absorption image

2.5. The measured condensate number was used in the calculated amplitude variance.
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4.4.5 Comparing our observations with a quantum amplification theory

Next we compare the measured magnetization variance with a quantum ampli-

fication theory. To compare our measurements to the quantum amplification theory, we

performed numerical calculations of G(0)|t, taking into account the inhomogeneous density

profile, dipolar interactions, and quantum fluctuations of the initial state, as outlined in

Ref. [45, 2]. From such simulations, we determined theoretical values for G(0)|t for sev-

eral values of the scattering length difference ∆a within the range of recent measurements

[24, 88].

The measured magnetization variance, evaluated after an interval t of amplifica-

tion, is shown in Fig. 3 of Appendix B. The value of G(0)|t is greater than the photon

shot-noise floor for t & 40 ms. We consider the linear-amplification theory to be applicable

for t ≤ 90 ms, and, following Ref.[42], perform a least-squares fit to a function of the form

G(0)|t = G(0)|tm ×
√

t/tme(t−tm)/τ , (4.43)

where τ is the time constant characterizing the growth rate of the magnetization variance

and we take tm = 77 ms.

As shown in Figs. 4 of Appendix B, our data are consistent with the quantum-

limited amplification of zero-point quantum fluctuations in the case that |∆a| lies in the

upper range of its reported values. Alternatively, under the assumption that the observed

amplification of spin fluctuations is quantum limited, taking the best-fit value of τ = 12

ms, the variance of initial spin fluctuations in our paramagnetic sample is measured to be

roughly five times larger than that of purely quantum fluctuations.

4.5 Contributions from technical or thermal spin fluctua-

tions

We investigated potential contributions from technical or thermal spin fluctuations

to the experimentally probed spin fluctuations of our samples. To determine the quality of

the initial state preparation, we varied the gradient strength, duration, and orientation. In

addition, we varied the spin temperature and the kinetic temperature of our samples.

The initial m = 0 condensate was purified by applying a transient gradient pulse

prior to the quench to expunge the system of any m = ±1 population and to set the spin
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temperature to zero. We checked for a dependence of the time evolution of G(0) upon a

nonzero spin temperature by introducing a variable hold time, ts between the purification

pulse and magnetic field quench. We varied ts up to 110 ms while keeping the total time for

the experiment constant and found the time evolution for G(0) to be in agreement within

experimental error. This is shown in Figure 4.13 for the cases ts = 30, 100 ms.

Similarly, we varied the strength of the purification pulse by increasing the tran-

sient gradient from 4 G/cm to 7 G/cm and found the measured time evolution of G(0) to

be unchanged within experimental error.

We confirmed that the trajectory of the experiment following the purification pulse

was adiabatic by checking that a condensate prepared in the m = −1 state remained a pure

state (N0 < 3 × 103) throughout the experimental sequence, and for evolution times up

to 400 ms following the quench. Further, the time evolution of the magnetization was

observed in the presence of a homogeneous magnetic field, where dBz/dz < 0.16 mG/cm

and dB2
z/dz2 < 5.5 mG/cm2, and we confirmed that a condensate prepared in a transversely

magnetized state, when observed after evolution time periods of up to 350 ms, underwent

uniform Larmor precession. In addition to noise sources which drive atoms into m = ±1,

we may also consider a source of technical noise which transforms the m = 0 condensate

into a slightly ferromagnetic condensate at the start of the experiment. Given that q is

small and that RF fields would therefore tend only to rotate the initial m = 0 state, we

imagine this contribution to the initial fluctuations would be negligible.

Bound on m = ±1 atoms from absorption imaging

We determine an upper bound for the number of atoms in m = ±1 at short

times after the quench given the resolution of our time of flight imaging. These atoms may

contribute as an incoherent source to the magnetization. Given that this is the case, we can

assign an upper bound to the magnetization signal G(0) due to an incoherent population

in m = ±1.

The measured transmission, T = e−σñ u 1 − σñ, is close to unity for an image

containing close to zero atoms and we bound the number of atoms ∆N which could be

present in a blank region of an image. Here σ is the resonant cross section at λ = 780

nm and ñ is the two-dimensional density. Our bound on the atom number fluctuations is

determined from the fluctuations in transmission, ∆T . We define Td = 1 − T and use the
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fact that ñ = Td/σ to determine the atom number in a given region corresponding to the

size of the condensate. Specifically, we sum ñ assigned to each pixel over the area occupied

by the condensate in the image,

Natom =
∑

i

ñi∆x∆z (4.44)

=
∑

i

ñi

(

L

M

)2

=
∑

i

Td,i
1

σ

(

L

M

)2

,

(4.45)

where L is the size of the pixel, M is the magnification, and the sum is over the pixels

labeled by i. The fluctuations in the total atom number is then given by,

∆Natom =
1

σ

(

L

M

)2
√

Npix∆Td, (4.46)

where we assume the transmission to be a random variable and the sum to be over a large

number of pixels. The transmission is calculated from the ratio of the number of photons

per pixel in an image taken with atoms, Np,a, to the same quantity in second image taken

without atoms, Np,b. Let T = Np,a/Np,b. Assuming that the number of photons per pixel is

large, then the average number of photons per pixel, λ is much greater than the fluctuations

about that average, δ v
√

λ. We can then write,

Np,a

Np,b
=

λ + δa

λ + δb
(4.47)

=
1 + δa/λ

1 + δb/λ

≈
δa − δb

λ

(4.48)

We see that Td is given by Td = (δb − δa)/λ, with average value zero. We assume

the photon statistics for images a and b to be identical given that we are interested in the

case with close to zero atoms in a, that is, we assume < δ2
a >=< δ2

b > and < δa >=< δb >.

The fluctuations in Td are given by,
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∆Td =
√

< T 2
d > =

2 < δ2
a >

λ2
. (4.49)

For instance, suppose the fluctuations in the number of photons per pixel, δa, were

determined solely by photon shot-noise according to Poissonian statistics. Then < δ2
a >= λ

and we determine the atom number fluctuations to be,

∆Natom =
1

σ

(

L

M

)2
√

Npix

√

2/Nphot. (4.50)

For our TOF imaging conditions, σ = 2.910−9 cm2, L = 13.410−4 cm, M = 2.1,

Npix = 1250, Nphot = 2500. This would yield a photon shot-noise limited value of ∆Natom =

130. Representative transmission fields measured in the experiment are characterized by

slightly larger fluctuations, given by approximately ∆Natom = 300.

The Stern-Gerlach analysis of populations N± in the |mz = ±1〉 states just after

the quench provides a bound for thermal contributions to the spin fluctuations in our

samples. Using the above estimate, N± ≤ 3 × 102 and assuming an incoherent admixture

of Zeeman sublevels, the thermal contribution to G(0)|0 is below (2N±/N0) = 3 × 10−4.

We checked against technical noise that would induce extrinsic Zeeman transitions during

the experiment, finding that a condensate starting in the |mz = −1〉 state remained so for

evolution times up to 400 ms following the quench.

These investigations suggest that our paramagnetic samples were prepared with a

near-zero spin temperature. While we have done our best to carry out the experiment such

that it is well described by a quantum amplification theory, we recognize that our samples

correspond to non-zero temperature gases subject to constant heating and evaporation

from the finite-depth optical trap that holds them. Previous work has shown that the

non-condensed fraction of a gas may have a strong influence upon its spin dynamics [89].

To investigate this possibility, we compared the amplification of magnetization at kinetic

temperatures of 50 and 85 nK, obtained for different optical trap depths. However, we

observed no variation, but note that the condensate fraction was not substantially varied

in this comparison.

In addition we checked that the magnetic field trajectories were adiabatic by ob-

serving that a pure mF = −1 spin state remained so throughout the experimental sequence.

The microwave field trajectories used were also observed to be adiabatic with respect to

the F = 1,mz = 0 state. At all stages of the experimental sequence, and out to long evo-
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lution times following the quench, we verified that the F = 2 levels were not populated (at

the level of the detection noise, Natom,F=2 < 300). To do so, we used resonant absorption

images without repump, as previously discussed.

4.5.1 Possible role of F = 2 atoms

As discussed in Section 1.6, the applied microwave field serves to couple the F =

1, F = 2 ground state manifolds. By introducing this coupling, it is possible that the

antiferromagnetic character of the F=2 manifold may be effectively mixed into the F=1

manifold.

One surprising observation made during the study of the quench to a variable

final quadratic Zeeman shift, qf , was the suppression of spin mixing for negative qf . To

discount the possibility that this observation was due to hyperfine mixing, we repeated the

quench experiments for three different bias magnetic fields, giving three different values of

qB. These included qB/h = 8 Hz (at B = 250 kHz), qB/h = 36 Hz (500 kHz) and qB/h = 70

Hz (700 kHz). At these magnetic field settings, we applied a microwave field with a constant

detuning of 35 kHz from the hyperfine resonance, and studied spin mixing as a function

of the total quadratic shift, qf . In each case, spontaneous spin mixing was observed for

small positive qf , and was suppressed for a consistent negative value of q. If the conjecture

that spin mixing was suppressed at negative q due to hyperfine mixing were correct, then

the turn-off value of q would depend upon the applied microwave radiation, and would

be smaller in magnitude when |qµ| was larger. Since the observed turn-off value of q was

consistent (±2 Hz) for a range of qB, this conjecture is not supported by the experiment.

In addition, spin mixing was compared while varying qB and holding qµ constant; in this

case, the admixing of hyperfine levels was constant. Spin mixing was maximized for the

expected value of qB (such that qf ≈ 0). While it may be possible to vary the scattering

lengths a0 and a2 with the application of microwaves, the hyperfine mixing applied in these

experiments was insufficient to observe this effect, and to significantly alter the results of

the quench experiment.

4.6 Future investigations

The comparison between our experimental observations and a quantum amplifica-

tion theory could be further constrained by an independent measure of the amplifier gain.
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The theoretical value for the amplifier gain is uncertain as a result of the uncertainty in ∆a.

In a future study, one could empirically determine the gain of the amplifier by studying the

amplification of a coherent seed at a given k using, e.g., a spin modulation imprinted on

the condensate wavefunction. This may be accomplished using a circularly-polarized Bragg

grating, with a tunable periodicity. A coherent seed could also be added at k = 0, provided

q 6= 0, by applying a rotation (RF pulse) to the spinor prior to the quench; however this

characterization could be susceptible to technical noise at k = 0. In this work, where we

characterize the amplifier by seeding it with broadband noise, we have confirmed that in

the presence of an increased noise floor, the performance of the amplifier was in qualita-

tive agreement with theory; however this noise floor was uncontrolled in magnitude due to

technical limitations.

In a future study, it would be interesting to directly investigate the role of dipolar

interactions in the quench experiment. Due to our choice of field alignment, the dipolar

interactions played an insignificant role, slightly reducing the gain of the amplifier and

shortening the characteristic domain size, each by less than ten percent. As discussed

in Ref.[45], by aligning the magnetic field to the ŷ or x̂ axes and performing the quench

experiment, one could enhance the role of dipolar interactions in the quench experiment

and systematically vary their influence on the system dynamics.

4.7 Analysis of the time evolution of populated fluctuation

modes

By mapping the system Hamiltonian onto that of a parametric amplifier we have

established a connection between the physics of a spinor condensate and quantum optics. In

this spirit, we further identify that processes of spontaneous and stimulated emission which

populate the modes φx, φy, for which we have provided a clear physical interpretation. For

this reason, we work with the polar basis set given by Equation 4.8.

We are interested in the growth of the population in the φx, φy modes following

the quench from q = ∞. These modes are initially unpopulated and accumulate population

(or fluctuations) due to spin mixing. Again, it is sufficient to study the time evolution of

one mode, governed by
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Hs,k = (εk + q + c̃2(k))(φ†
x,kφx,k) −

ic̃2(k)

2
((φ2

x,k − φ†2
x,k)) (4.51)

∂tφ
†
x,k = − ı

~
[H,φ†

x,k]

(4.52)

where we absorb the atomic density n0 into c̃2(k) ≡ c̃2(k)n0, which is taken to be constant.

For simplicity we drop the momentum (k) and polarization (x) index from now on. It is

useful to introduce a few quantities, including the population, n, in the mode, φ,

n = φ†φ (4.53)

ρ = ı(φ2 − φ†2)

σ = (φ2 + φ†2).

(4.54)

We determine a system of differential equations to describe the evolution of these quantities

(for convenience ~ = 1),

∂tn = −c̃2σ (4.55)

∂tρ = −2(ε + q + c̃2)σ

∂tσ = 2(ε + q + c̃2)ρ − 4c̃2n + 2c̃2

(4.56)

We interpret the constant term in the time evolution for σ to reflect spontaneous emission

into the mode φ, increasing its population n. Initially n can be identically zero; however,

since ∂tσ is nonzero, σ and hence ∂tn become nonzero and the population n increases.

We next introduce re-scaled variables,

ñ = n +
c̃2
2/2

(ε + q)(ε + q + 2c̃2)
(4.57)

≡ n − n0

ρ̃ =
c̃2

2(ε + q + c̃2)
ρ

σ̃ = c̃2σ,

(4.58)



106

which enable us to re-express the time evolution of the population in the described modes,

∂2
t ñ = −4((ε + q)(ε + q + 2c̃2))ñ (4.59)

= 4ω2ñ

ω =
√

(ε + q)|ε + q + 2c̃2|

and see that the population in the mode φ, in the linear regime, undergoes approximately

exponential growth. For the initial condition corresponding to the mz = 0 state, n = 0 and

σ̃ = 0 and we find,

n(t) =
c̃2
2

ω2
sinh2(ωt). (4.60)

We have now solved for the time evolution of the population in the originally described

modes φx and φy. We wish to determine an expression for the experimentally measured

quantity, the squared transverse magnetization density 〈f †f〉, and connect its time evolution

to the growth of population in these modes. We recall that the transverse magnetization

F⊥ is given by,

F⊥ = Fx + iFy (4.61)

= φ†
+φ0 + φ†

0φ−

=
√

n(φ†
+ + φ−),

where in the last step we consider a linearized treatment about a coherent paramagnetic

state. We make use of the definitions for φx, φy in Equation 4.8, and observe:

φ†
+ + φ− = i

√

i/2((φ†
x − ıφx) − ı(φ†

y − ıφy)) (4.62)

≡ fx − ıfy.

(4.63)

where, in the last step, we implicitly define fx, fy, which may be interpreted as the transverse

magnetization of the x, y polarization modes. We note 〈f †f〉 = 〈f †
xfx〉+ 〈f †

yfy〉. Since fx, fy

are independent quantities, we can focus on the first term which describes the φx mode and

we obtain, after some rearrangement:

〈f †
xfx〉 =

1

2
〈(φ†

x − ıφx)(φx + ıφ†
x)〉 (4.64)

=
1

2
+

c̃2

|ε + q + 2c̃2|
sinh2(ωt).

(4.65)
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The total transverse magnetization density is therefore given by,

〈f †f〉 = 1 +
2c̃2

|ε + q + 2c̃2|
sinh2(ωt) (4.66)

and agrees with the expression determined by Lamacraft [42].

Unlike the population in the modes φx, φy, the transverse magnetization density

has a nonzero value at t = 0, which we often describe as the zero point fluctuations of

the magnetization density. For a general spin-1 vector F , since its components Fi do not

commute, it is always the case that 〈F †F 〉 is initially nonzero, whether or not spin mixing

is occurring.

The theoretical framework we have developed here is physically transparent be-

cause it establishes the fluctuating modes (the φx, φy modes) which are initially zero and

whose population is specifically generated by spin mixing through processes akin to spon-

taneous and stimulated emission.
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q =   -2 Hz            0 Hz 2 Hz           5 Hz          12 Hz

 40 um 370 um

Figure 4.6: The saturated condensate transverse magnetization density as a function of the
endpoint of the quench, qf . For the deep quench, characterized by 0 < qf < 8 Hz, the trans-
verse magnetization profile is characterized by short-range features, which increase with qf .
As qf is raised from 8 to 16 Hz, long-range features are observed and the magnetization
diminishes.
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Figure 4.7: Snapshots of the amplitude, phase, and spatial correlations of the transverse
magnetization of a central region of the condensate,for a range of values of qf . The ampli-
fier’s spatial spectrum, and its tunability with qf , is characterized using the magnetization
correlations.
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Figure 4.8: The temporal evolution of the magnetization correlation function for qf =
2, averaged over 8 repetitions of the experiment. The characteristic feature size remains
roughly constant over time.
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Figure 4.9: The power spectrum of the spatial Fourier transform of the condensate mag-
netization, as described in the text (circles). An approximate theory for a homogeneous
condensate of the same average density as the experiment is shown in comparison (line).
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Figure 4.10: The amplitude variance 〈ALP (r)2〉 increases as a function of the peak precession
amplitude, ALP,max = fA. The simulated amplitude variance averaged over ten repetitions
(red circles) agrees with its theoretical value (blue triangles). It is systematically lower if we
do not include fluctuations in the photon field (green circles) by an approximately constant
offset (green squares).
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Figure 4.11: The boost in the measured variance of the precession amplitude which results
from taking into account the fluctuations in the photon field, as compared to ignoring these
fluctuations, in a numerical simulation. It is found to increase slightly with the average
precession amplitude. It reflects the detection noise of our measurement of spin fluctuations
and corresponds to photon shot-noise.
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Figure 4.12: The amplitude variance of a fully transversely magnetized cloud, is determined
empirically (circles) as well as theoretically (squares). Due to the loss of atoms from the
trap, the measured amplitude variance decreased over time.
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Figure 4.13: The time evolution of G(0), with the introduction of a variable hold time,
ts between the purification pulse and magnetic field quench. For the two cases shown
(ts = 30, 100 ms), the time evolution for G(0) is good agreement.
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Chapter 6

Spinor Condensates as Dipolar

Quantum Fluids

We study the evolution of spin textures in F = 1 87Rb Bose condensates. We find,

much to our surprise, that a long wavelength spin helix dissolves spontaneously into short

range spatially modulated patterns of spin domains [10]. Following extensive experimental

tests, we are able to attribute the observed dissolution of helical spin textures to be a conse-

quence of the dipole-dipole interactions inherent to the magnetized spinor gas. In this way,

our characterization of F = 1 87Rb Bose condensates as dipolar magnetic fluids serves as a

gateway toward a rich landscape of studies of quantum magnetism, featuring short and long

range interactions of tunable relative magnitudes.

6.1 A puzzling observation

Our explorations of the effects of dipole-dipole interactions in spinor Bose con-

densates began with a peculiar observation made during an otherwise routine experimental

procedure. As discussed in Section 1.3, the energetics and dynamics of spinor condensates

are influenced by the magnitude, orientation, and spatial variation of the applied magnetic

field. Prior to performing a given experiment, it was therefore necessary to reduce the

magnetic field inhomogeneity present in our experimental apparatus. To determine the

background field inhomogeneity, we allowed a transversely magnetized condensate to un-

dergo Larmor precession in the presence of the background magnetic field for a given time

period. By measuring the spatial variation of the accrued Larmor phase, we determined
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the spatial variation of the background magnetic field. As discussed in Section 1.5.2, with

the use of suitable electromagnets, we eventually succeeded in reducing the inhomogeneity

of the magnetic field to a level of ∆B < 3 µG over the spatial extent of the condensate.

Prior to achieving this level of control over the background magnetic field, (for

example, during our preparation for our study of the quantum quench of the spinor con-

densate presented in Ref. [1]), we observed the condensate magnetization to behave in an

unexpected manner. Following an evolution period of roughly 200 ms in fairly homogeneous

environment (∆B < 15 µG), we observed the condensate transverse magnetization profile

to dissolve into a finely modulated pattern of magnetic domains. Returning to this puzzling

observation, we systematically studied the evolution of helical textures in a spinor gas in

order to investigate this behavior.

6.1.1 Why so puzzling?

Due to the small magnetic moment of the 87Rb atom, the effect of dipole-dipole

interactions in spinor condensates has previously been assumed to be negligible. The ma-

jority of the experimental characterization of F = 1 87Rb condensates has been limited by

poor spatial resolution (as discussed in Section 1.2) and many of these studies have been car-

ried out in a single-mode regime, imposed by a tight confinement potential [24, 26]. These

observations have been well-described by a mean-field theory which neglects dipole-dipole

interactions in the condensate.

A mean-field theory for the F = 1 87Rb condensate, neglecting dipole-dipole in-

teractions, predicts the ground state of an F = 1 87Rb Bose condensate to be ferromagnetic

at low magnetic fields (Section 1.3). Thus, one would expect a homogeneous transversely

magnetized condensate to minimize the local contact interaction energy (Eq 1.6). Having

prepared the condensate in such a state, one would not expect it to evolve into a finely

modulated texture of magnetic domains, since this would correspond to a significant rise in

kinetic energy.

6.1.2 A possible explanation: dipole-dipole interactions

Taking into account the effect of dipole-dipole interactions in a spinor condensate

[103, 104], however, such a finely modulated magnetized state becomes comparable in energy

to a uniformly magnetized state. While the kinetic energy of the former configuration is
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raised due to its finely modulated spatial profile, the dipole-dipole interaction energy of this

configuration is lowered.

To estimate the contribution from dipole-dipole interactions to the energy of the

modulated magnetization profile, we model the system as a spin helix, taking

F = sin(κz)x̂ + cos(κz)ŷ, (6.1)

where κ = κẑ is the wavevector of the helix. The transverse condensate magnetization

density Mx,y = gF µBñFx,y generates a self-field along the axis of the helix, ẑ, of a magnitude

|Bs| ≈ µ0|M | ≈ µ0gF µBn. The difference in the total dipole-dipole energy between the

finely modulated (large κ) and uniform (κ = 0) magnetization profiles is given by δUd ≈
µ0g

2
F µ2

Bn0/2. For simplicity, we have assumed a Gaussian transverse density profile for the

condensate in this estimate. Taking n0 = 2.3× 1014 cm−3 we find Ud ∼ h× 5 Hz per atom.

The average kinetic energy cost, δEk, of the observed modulated magnetization profile is

of a similar magnitude. For example, assuming 50 % of the atoms to populate a mode

characterized by a spatial modulation frequency κ = 2π/10 µm−1, δEk = (1/2)~2κ2/4m =

h × 6 Hz per atom.

The observation that δUd ≈ δEk certainly motivates the possibility that dipole-

dipole interactions in F = 1 87Rb Bose condensates play a key role in understanding the

observed dissolution of the condensate magnetization into finely modulated spin structures.

To investigate this behavior further and confirm the role of dipole-dipole interactions in

the spinor condensate, we have experimentally characterized the evolution of deliberately

imposed helical spin textures.

6.2 Evolving helical spin textures in spinor condensates

In our studies of helical spin textures, we made use of optically trapped condensates

of up to 2.3×106 87Rb atoms, initially prepared in the mz = −1 state (described in Section

1.5.1). In this experiment, the optical dipole trap is characterized by trap frequencies

(ωx, ωy, ωz) = 2π × (39, 440, 4.2) s−1 and the condensate Thomas-Fermi radii are given by

roughly (rx, ry, rz) = (17.6, 1.6, 165) µm. The spinor gas is considered to be two-dimensional

with respect to spin dynamics since the Thomas-Fermi radius in the ŷ direction (ry = 1.8

µm) was less than the spin healing length, ξs = (8π∆an0)
−1/2 = 2.4 µm, taking n0 =

2.3 × 1014 cm−3.
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The spin helix was prepared using a series of two sequential operations. First, by

applying a resonant π/2 pulse, the condensate magnetization was rotated transverse to the

bias field, B = B0ẑ (Sec 3.3.1). The transversely magnetized condensate was then free to

Larmor precess about the ẑ axis at the precession frequency, ωL = gF µBB0/~ = 2π×115 s−1.

Second, a ẑ−directed magnetic field gradient dBz/dz was applied for a duration τP = 5− 8

ms, using the axial gradient coils (described in Sec 1.5.2). Following this period of Larmor

precession in the presence of a magnetic field gradient, the condensate magnetization was

described by a helical spin texture,

F = sin(κz + ωLt)x̂ + cos(κz + ωLt)ŷ (6.2)

κ = (gF µB/~)(dBz/dz)τP ẑ.

For the remainder of this discussion, we will consider the condensate evolution in the frame

co-rotating about the ẑ axis at the precession frequency, ωL.

Helical spin textures with a pitch, λ = 2π/κ, ranging from 50 to 150 µm were

prepared by varying the magnitude of the applied gradient |dBz/dz|. The duration of

the gradient pulse was chosen to be much shorter than the timescale characterizing the

subsequent evolution of the spinor condensate. Following the application of the gradient

pulse, the spin texture was free to evolve in the presence of a homogeneous magnetic field,

to a level of δB < 3 µ G over the spatial extent of the condensate (Sec 1.5.2).

Following a given evolution period, a sequence of phase-contrast images was taken

using 1.5-µs-long pulses of circularly polarized light propagating along the ŷ direction (de-

scribed in Chapter 2). The condensate’s transverse magnetization was detected by means of

its Larmor precession about the uniform bias field, B0ẑ. Portrayed in Figure 6.1 (a) and (b)

are two such sequences of phase contrast images, which characterize the Larmor precession

of a uniformly transversely magnetized state, and a helical spin texture, respectively.

The amplitude and phase of the Larmor precession signal were extracted from

the sequence of images and used to construct a spatially-resolved profile of the transverse

magnetization density, M̃x,y = (gF µB)ñFx,y, where ñ is the column number density [50, 12].

As discussed in Section 2.3, a second π/2 pulse was applied following this imaging sequence

to characterize the longitudinal component of the condensate magnetization.

The evolution of long-range helical textures revealed the condensate transverse

magnetization profile, M̃x,y, to develop short-range modulations, portrayed in Fig 6.2. The

spontaneous formation of this pattern of magnetic domains, roughly 10 µm in size, was
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Figure 6.1: (Right) A sequence of phase contrast images characterizing the Larmor pre-
cession of a uniformly transversely magnetized condensate (a) and a helical spin texture
imposed upon the condensate (b). (Left) An instantaneous snapshot of the condensate spin
depicts its homogeneous or helical spatial profile.

observed for a wide range of spin helical textures (λ < 2rz). Only for uniformly magnetized

condensates characterized by λ À 2rz were these domains not observed, following evolution

periods up to 300 ms.

For repeated iterations of the experiment, the spatial modulations in the conden-

sate magnetization were observed to nucleate in different locations of the condensate. The

sensitivity of the nucleation to the condensate density is reflected, in Fig 6.2, in the tendency

for the nucleation to occur at one end of the condensate. Here, due to a slight astigma-

tism in the optical trap alignment, the condensate density was highest at one end of the

condensate. Repeating the experiment using an optical trap which was not astigmatic, the

domain pattern was observed to nucleate at random locations in the central region of the

condensate. Following evolution periods up to 300 ms, this pattern of magnetized domains



153

(a)

x

z

35 um

3
5

0
 u

m

t(ms) 30         60          90         120        150                     30          60          90       120        150  

(b)

Figure 6.2: Long-range helical textures evolved into a finely modulated transverse magneti-
zation profile M̃x,y. Shown here, due to a slight astigmatism in the optical trap alignment,
this pattern of magnetized domains was observed to nucleate most often at one end of the
condensate.

extended across the entire condensate.

6.2.1 Quantifying short- and long-range magnetic order

To quantitatively describe the formation of this finely modulated spin texture, we

make use of the spatial Fourier transform of the vector magnetization, M̃(kx, kz). The

spectral power of the condensate magnetization, |M̃(kx, kz)|2, is shown for a λ = 60 µm-

pitch spin helix, following an evolution period of 250 ms. We find 50 % of the spectral

weight to correspond to the long-range order of the initial helical texture. The aspect ratio

of the central component of |M̃(kx, kz)|2 reflects the anisotropic condensate density profile.

The remaining spectral weight is concentrated in regions corresponding to a discrete set of

wavevectors. The magnitude of these wavevectors, given by κ ∼ 2π/10 µm−1, corresponds

to the spatial frequency of the finely modulated magnetization pattern.

To characterize the dissolution of the spin helix, we temporally resolve the frac-
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Figure 6.3: The power spectrum of the spatial Fourier transform of the vector magnetization
M̃(kx, kz). The spectral weight of the initial spin helix is concentrated in a central region
of k-space, reflecting its long-range order (a). Following the dissolution of the spin helix
into a finely modulated magnetization pattern, the spectral weight of short-range features,
characterized by modulation frequencies ∼ 2π/10 µm−1, is apparent [10].

tional spectral weight in the finely modulated spin structure. As depicted by Fig 6.4, this

corresponds to the fractional spectral power in an annulus in Fourier space, providing a

quantitative measure of the system’s short range order. This annulus is bounded at small k

by the initial long-range spin helix, and at large k by the resolution of our imaging system

(Sec 2.2.2). Prior to normalizing the spectral weight contained in this region of Fourier space

by the total spectral power, the contribution to each, due to imaging noise, was subtracted

(described in Sec 4.4.4).

Accompanying the dissolution of the helical spin texture was an increase in the

short-range order of the condensate magnetization, shown in Fig 6.4. Simultaneously, the

long-range order of the condensate magnetization, corresponding to the fractional spectral

weight in the spin helix, was observed to decrease. The total spectral power was roughly

constant over the observed evolution period, reflecting the conservation of magnetization (in

the transverse plane). Independent of the initial pitch of the helix, λ, the spectral weight

of the short- and long-range magnetic order corresponded to roughly 50 %. The rate of

growth of short-range structure increased with λ, as shown in the inset to Figure 6.4 and
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Figure 6.4: The short- and long-range magnetic order of the evolving spin texture are found
to increase and decrease respectively, at a rate which depends upon the initial pitch of the
helix (inset) [10].

Appendix C.

6.2.2 Manipulating dipole interactions

To investigate the role of magnetic dipole-dipole interactions in the observed dis-

solution of the helical spin textures, as suggested in Section 6.1.2, we applied a technique

which geometrically averaged and hence effectively eliminated, dipole-dipole interactions in

the spinor condensate. Described by Eq 1.11, the interaction between two magnetic dipoles,

displaced by R̂ from one another, is proportional to F1 ·F2−3(R̂ ·F1)(R̂ ·F2). By applying

a rapid series of random rotations, common to F1 and F2, the interaction could be effec-

tively averaged to zero. For this cancelation to be robust, each rotation must be chosen at

random from the three-dimensional group of rotations. This technique is a modification of

the NMR technique of spin-flip narrowing [105].

To simultaneously study the evolution of the helical spin textures and remove

the influence of dipole-dipole interactions, we applied a series of random rotations to the

condensate’s magnetization while it evolved. During the evolution period, we applied a rapid

sequence of π/2 rf pulses to the Larmor precessing gas, spaced at random time intervals; this
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resulted in a sequence of rotations of the condensate magnetization about random rotation

axes.

For the dipole-canceling pulses to work, each three-dimensional rotation must

be effected with equal likelihood. Following a variable period of Larmor precession of a

uniformly-magnetized gas, during which this technique was applied, the ẑ projection of the

condensate magnetization was determined. To check that the applied rotations were un-

biased, the weight in each mz state was shown to statistically averaged to 1/3 over many

repetitions of this procedure. This was indeed the case when the sequence of rf pulses was

applied with a mean rate of 1-2 kHz, the setting which was used in the above experiment.

For higher and lower values of the average pulse frequency, the applied series of rotations no

longer uniformly sampled the S0(3) group of rotations, remaining as a subject of future in-

quiry. The imperfection of this technique could be related to the diffusion of magnetization

during the rf pulses.

The spontaneous dissolution of the helical spin texture was significantly suppressed

when the dipole-cancelation pulses were applied throughout the evolution period (Fig 6.5.

The detected spectral weight of the short-range magnetic order was not completely sup-

pressed, however. Neglecting dipole interactions, the quantum spin fluctuations atop the

transversely magnetized initial state are predicted to grow according to a spectrum of dy-

namical instabilities. Even in the absence of dipole-dipole interactions, a detectable spec-

tral weight of short-range magnetic features is expected, although of a reduced magnitude

[106, 107].

Since the application of the dipole-canceling pulses has the additional effect of

canceling the quadratic Zeeman shift (q) induced by the magnetic field, these studies were

performed at several values of q. For 0.8 < q < 4 Hz, we observed no variation in the finely

modulated magnetic phase.

6.2.3 Examining spin correlations

Complementing our characterization of condensate magnetization in Fourier space,

we examine the spatial correlation function of the condensate magnetization (Eq 4.38),

G(δr) =

∑

r M̃(r + δr) · M̃(r)

(gF µB)2
∑

r ñ(r + δr)ñ(r)
. (6.3)

Portrayed in Fig 6.6 and Appendix C, the modulated magnetization pattern exhibits short-

range correlations in the ẑ and x̂ directions with a periodicity of roughly 10 µm. As
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Figure 6.5: The evolution of the short-range order acquired by the condensate magnetization
is characterized with and without the application of dipole-cancelation pulses. The initial
helix pitch was λ = 80 µm [10].

indicated by the width of the Fourier peaks, the correlations diminish over a few spacings

of the lattice-like correlations. The six-fold structure in the spatial Fourier transform of the

modulated phase is inherent to the lattice-like correlations in the condensate magnetization.

The observed long-range order is thought to be mediated by dipole interactions, but has

not been reproduced by a theoretical calculation.

Our experimental characterization of the evolution of helical spin textures in spinor

condensates has revealed that dipole-dipole interactions play a significant role in the behav-

ior of spinor gases. This is only one example of the experimental discoveries to be made by

observing the dynamics of spinor condensates with high spatial resolution. Presently, we

are investigating whether the equilibrium phase of this dipolar quantum fluid is described

by a coherent magnetic lattice, providing an experimental platform for future studies of

“spinor supersolids” [108, 109].
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Figure 6.6: Correlations in the spatial correlation function of the condensate magnetization
reveal magnetic order characterized by a spatial periodicity of roughly 10 µm.
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M. Vengalattore,1 J. M. Higbie,1 S. R. Leslie,1 J. Guzman,1 L. E. Sadler,1 and D. M. Stamper-Kurn1,2

1Department of Physics, University of California, Berkeley California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 15 December 2006; published 17 May 2007)

We demonstrate a precise magnetic microscope based on direct imaging of the Larmor precession of a
87Rb spinor Bose-Einstein condensate. This magnetometer attains a field sensitivity of 8:3 pT=Hz1=2 over

a measurement area of 120 �m2, an improvement over the low-frequency field sensitivity of modern

SQUID magnetometers. The achieved phase sensitivity is close to the atom shot-noise limit, estimated as

0:15 pT=Hz1=2 for a unity duty cycle measurement, suggesting the possibilities of spatially resolved spin-

squeezed magnetometry. This magnetometer marks a significant application of degenerate atomic gases to

metrology.

DOI: 10.1103/PhysRevLett.98.200801 PACS numbers: 07.55.Ge, 03.75.Mn

Precision magnetometers that map magnetic fields with

high spatial resolution have been applied to studies of

condensed matter systems [1], biomagnetic imaging [2],

and tests of fundamental symmetries [3]. Many of these

applications require the measurement of magnetic fields

at low (<10 Hz) frequencies. Current technologies capable

of micron-scale magnetic microscopy include supercon-

ducting quantum interference devices (SQUIDs), scanning

Hall probe microscopes, magnetic force microscopes, and

magneto-optical imaging techniques [4]. Of these,

SQUIDs offer the highest sensitivity, demonstrated at

30 pT=Hz1=2 over a measurement area of around 100 �m2

[5]. The low-frequency sensitivity of these devices is lim-

ited by (1=f) flicker noise of unknown origins [6].

Magnetic fields may also be sensed by detecting the

Larmor precession of spin-polarized atomic gases. To

date, atomic magnetometers have achieved field sensitiv-

ities of 0:5 fT=Hz1=2 over measurement volumes of

0:3 cm3 [7]. However, attaining high spatial resolution

with a hot-vapor medium is precluded by rapid thermal

diffusion of the atoms, restricting the minimum resolved

length scale of these magnetometers to around 1 mm.

Trapped ultracold gases present an attractive medium for

a variety of precision measurements due to their negligible

Doppler broadening and long coherence times [8–10].

Spinor Bose gases, composed of atoms with a spin degree

of freedom, are particularly well suited to magnetic mi-

croscopy. Unlike in hot-vapor atomic magnetometers, the

suppression of thermal diffusion in a gas through Bose

condensation enables precise measurements at high spatial

resolution. Also, density-dependent collision shifts, which

deleteriously affect other types of precision measurements

using dense ultracold gases, do not affect Larmor preces-

sion due to the rotational invariance of interparticle inter-

actions in a spinor gas [9,11].

Here, we perform precise magnetic microscopy with

high two-dimensional spatial resolution using a 87Rb F �
1 spinor Bose-Einstein condensate (BEC). In our magne-

tometer, longitudinally spin-polarized spinor condensates

are prepared in an optical trap. Larmor precession is in-

duced using a rf pulse to tip the magnetization perpendicu-

lar to a bias field imposed along the axis of the condensate.

The spins in each region of the condensate then precess at a

rate that is proportional to the local magnetic field. After a

variable integration time, the condensate is probed using

magnetization-sensitive imaging to extract the local

Larmor phase. The difference in this phase between various

regions of the condensate reveals the spatial variation of

the magnetic field.

The determination of the accrued Larmor phase of a

coherent spin state, such as the transversely magnetized

condensate, is subject to an uncertainty in the initial phase

of ��a � 1=
����

N
p

due to projection noise of measuring N
atoms. This noise limits the field sensitivity over a mea-

surement area A to �B � �@=g�B��1=
����������

�DT
p

��1=
������

~nA
p

�,
where � is the Zeeman coherence time and ~n the local

column density of the gas. We assume the measurement is

repeated over a total time T at a duty cycle D. The A�1=2

scaling of field sensitivity with the measurement area for

the atomic magnetometer may be compared with the area

scaling for SQUID magnetometers. This scaling ranges

between A�3=4, for a fixed SQUID sensor coupled opti-

mally to a variable pickup loop, and A�5=8, for direct

sensing with a SQUID optimized to operate at the quantum

limit for the noise energy [12]. In either case, the atomic

magnetometer outperforms SQUID magnetometers at

small measurement areas (Fig. 1).

Optical detection of Larmor precession is limited also by

photon shot noise. In this work, the Larmor precession

phase is measured by repeated phase-contrast imaging of

the condensate using circular polarized light [9]. For our

probe detuning of � � 2�� 500 MHz below the F �
1 ! F0 � 2 (D1) transition of 87Rb, the phase-contrast

signal can be written as s ’ 1� 2~n�0��=2���
�c0 � c1hFyi�, where �0 � 3�2=2� is the resonant cross

section, � is the natural linewidth, and Fy is the projection

of the local atomic spin on the imaging axis ŷ, which is

perpendicular to the field axis. The detuning-dependent

PRL 98, 200801 (2007)
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constants c0 � 0:118 and c1 � 0:274 describe the iso-

tropic polarizability and optical activity, respectively. We

neglect the effects of linear birefringence (/hF2
yi). The

Larmor precession phase is estimated by tracking the

sinusoidal oscillation of the phase-contrast signal across

the sequence of phase-contrast images. The photon shot-

noise limited sensitivity of this estimate is then ��� 	
������������������

�2=	Np�
q

�
��������������������������������������

1� ~n�0��=2��c0
p

=~n�0��=2��c1�, limiting

the field sensitivity to �B��@=g�B�����=
����������

�DT
p

�. Here,

	 is the detection quantum efficiency and Np is the total

photon fluence, integrated across the multipulse imaging

sequence, within the region of interest.

For our demonstration, spin-polarized 87Rb condensates

of up to 1:4� 106 atoms were confined in a single-beam

optical dipole trap characterized by trap frequencies

�!x; !y; !z� � 2��165; 440; 4:4� s�1 [9]. The tight con-

finement along the imaging axis (condensate radius ry �
2:0 �m) ensured that the condensate is effectively two

dimensional with respect to spin dynamics. Next, we ap-

plied a 
100 �s resonant rf pulse at 115 kHz to rotate the

magnetization perpendicular to the ẑ axis. The sample was

then allowed to Larmor precess in the presence of a

165(7) mG bias field aligned along its long axis (ẑ). A

measurement integration time of 250 ms was chosen; at

longer times, measurements were hampered by uncon-

trolled motion of the condensate along the weakly confin-

ing dimension (see below).

We operated our ultracold-atom magnetometer under

two testing conditions. In one, we assessed the measure-

ment noise at short spatial length scales by measuring the

long length-scale inhomogeneous background magnetic

field in our apparatus. We applied a third-order polynomial

fit to the measurements from each run of the magnetometer

to account for this fluctuating background [13], and ana-

lyzed residuals from this fit to characterize experimentally

the noise limits to our magnetometer.

In the second testing condition, we used the magnetome-

ter to measure a deliberately applied, localized magnetic

field. Such a field was simulated using a circularly polar-

ized laser beam at a wavelength of 790 nm. The choice of

wavelength and polarization ensured that this beam im-

posed a local optically induced Zeeman shift [14] on the

trapped atoms [Fig. 2(a)]. The beam was aligned at an

angle 

 60� to the direction of the bias field, incident

and focused in the plane perpendicular to the imaging axis.

The magnetic background for each run of the magnetome-

ter was again determined by third-order polynomial fits,

but using measurements from regions far from the local-

ized field. The magnitude of the localized field was ex-

tracted from the residuals of this fit.

Measurements of this simulated field were affected by

small center-of-mass oscillations of the condensate along

its long axis. An oscillation with amplitude �z blurs the

magnetic landscape and washes out features smaller than

�z. Unable to eliminate this motion, we monitored the

condensate position for each run of the magnetometer by

a sequence of 4 images spaced at a quarter period of the

FIG. 2 (color). (a) A sequence of phase contrast images, taken

at a strobe rate of 14 kHz, reveal Larmor precession as an aliased

frame-to-frame oscillation of the signal. (b) The resulting 2D

map of the magnetic field, obtained by a pixel-by-pixel estima-

tion of the Larmor precession phase, reveals the optically in-

duced local magnetic field near the condensate center. (c) The

1D phase profile precisely maps the applied field inhomogeneity

with peak strength of 166:2� 1:2 pT.
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FIG. 1. Field sensitivity for repeated measurements using the

spinor BEC magnetometer. Curves marked ASN (PSN) represent

atom (photon) shot-noise limited sensitivities, assuming � �
250 ms, D � 1, and the atomic column density and probe light

levels for our experiment. Diffusion of magnetization limits the

sensitivity for a given length scale by imposing a limit on �
(short dashed line, assuming D � 1). The gray line indicates the

measured spatial root Allan variance; the sensitivity demon-

strated in measurements of an optically induced magnetic field

(see text), assuming duty cycles of D � 0:003 (�) or D � 1 (
),

is also shown. Results are compared both to the ideal sensitivity

of a quantum-limited SQUID magnetometer (dot-dashed line)

and to demonstrated low-frequency sensitivities [5,16] (4).
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axial trap frequency, taken prior to the Larmor imaging

sequence. We discarded measurements in which the excur-

sion was comparable to the extent of the localized field.

Two-dimensional maps of the magnetic field were ob-

tained from a pixel-by-pixel analysis of the Larmor pre-

cession phase within the profile of the condensate

[Fig. 2(b)]. The frame-to-frame variation of this signal

showed the characteristic oscillations due to Larmor pre-

cession as well as an overall decay of the condensate

number due to off-resonant scattering of probe light. This

decay was taken into account in obtaining an unbiased

estimate of the local Larmor phase. Our 2D approach

was found to be susceptible to imaging aberrations, pri-

marily in the narrow (x̂) dimension of the gas.

More robust measurements were obtained by reducing

measurements to a single resolved direction along the ẑ
axis. For this, the aberrated signal profile in the x̂ direction

was determined at each z coordinate in the images from

averages over the multiple frames. The phase-contrast

signal height in each image frame and at each z coordinate

was then determined, effectively integrating the signal over

x̂. As before, the local Larmor phase was estimated by a

least squares fit to the phase-contrast signal to obtain 1D

phase profiles [Fig. 2(c)].

The demonstrated sensitivity of our magnetometer is

shown in Fig. 1. The spatial root Allan variance [15]

from the 1D data was determined for each of 15 runs of

the magnetometer under the first testing conditions (back-

ground only) and then averaged. The measurement area is

determined by accounting for the effective 5:3 �m length

over which the aberrated signals are averaged in the x̂
direction. The observed noise level agrees closely with

photon shot noise estimates and is 
3 times that due to

atomic shot noise given the number of atoms in the corre-

sponding areas. Excess noise for areas larger than about

20 �m2 was found to correlate with the local intensity of

the probe light, an effect we attribute to probe-light in-

duced shifts of the Larmor frequency during imaging. This

noise can be reduced further by using a linearly polarized

probe with a more homogenous intensity profile and by

carefully aligning the magnetic bias field to be normal to

the imaging axis.

Results from measurements under the second testing

condition (background plus localized field) are shown in

Fig. 3. Here, the strength of the applied field (peak value of

Gaussian fits) was measured repeatedly at several powers

of the field-inducing laser beam. From these measure-

ments, a calibration between the laser power and the

localized field strength was obtained. From the residual

scatter in measurements of field with strengths up to 60 pT,

we determine the rms sensitivity of our Larmor precession

phase measurements as 1:0� 10�2 rad over the 120 �m2

area under the Gaussian profile, corresponding to a single-

shot field sensitivity of 0.9 pT. A marginally larger variance

at higher fields points to the existence of small systematic

effects, e.g., residual motion of the condensate or varia-

tions in the localized field strength.

Under repeated operation, our magnetometer, with a low

duty cycle of just D � 3� 10�3, attains a field sensitivity

of 8:3 pT=Hz1=2, an improvement over that demonstrated

for low-frequency (<10 Hz) field measurements with

modern SQUID magnetometers [5,16]. Plausible exten-

sions of current cold-atom experimental methods should

enable duty cycles of order unity. At full duty cycle, our

single-shot sensitivity would yield a field sensitivity of

0:5 pT=Hz1=2.

In the photon shot-noise limit, the sensitivity of an

atomic magnetometer increases with increasing probe flu-

ence. While calculations based on linear Raman scattering

rates indicated that reliable phase estimates could be ob-

tained even at a fluence of 3400 photons=�m2, it was

found that light-induced decay of our imaging signal far

exceeded these predictions. The discrepancy was attributed

to superradiant Raman scattering of atoms into

the F � 2 hyperfine states, in which atoms are no longer

observed by our probe. To counter this problem, we re-

duced the superradiant gain by lowering the probe inten-

sity and divided the probe light shone on each frame

of the imaging sequence into four pulses, each of duration

2:2 �s and spaced by the Larmor period of 
10 �s. We

also applied additional light during imaging that was reso-

nant with the F � 2 ! F0 � 3 (D2) transition so as to

scatter light preferentially off the F � 2 atoms produced

during superradiance and induce motional decoherence.

Together, these strategies enabled a probe fluence of

750 photons=�m2.

Our magnetometry medium, though Bose condensed, is

still a gas in which atoms are free to move. Thus, in

determining the phase shift accrued due to a local magnetic

field, one must consider atomic motion due to both

quantum-mechanical and classical effects. For instance,

imposing a weak inhomogeneous field of characteristic

length � leads to quantum diffusive motion of the fluid.

For times � > �Q � m�2=@, with m the atomic mass, the
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FIG. 3. Single-shot measurements of the localized magnetic

field imposed by a laser beam focused to � � 24 �m rms width.

Residuals are shown from a linear calibration fit of the field

magnitude versus laser power. Error bars indicate standard

deviations for 10 measurements per setting.
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motion of the spinor gas will reduce the phase accrued due

to Larmor precession. This evolution can be considered to

be the quantum limit of thermal diffusion observed in

NMR studies [17]. In our experiment, the condition � �
250 ms> �Q is reached at length scales below 10 �m

(Fig. 1). For integration times � � �Q, effects of quantum

diffusion require that phase measurements � be corrected

by an amount ��=�
 ��=�Q�4.
An inhomogeneous magnetic field also exerts forces on

magnetic dipoles. In the extreme case of static inhomoge-

neous fields with a Zeeman energy comparable to the

chemical potential (
105 times larger than those studied

in this work), these classical forces can visibly modify the

density distribution of the condensate [18]. In our case,

these forces result in small corrections and limits to the

accrued Larmor phase. The field strength B and a charac-

teristic length � for its variation define a classical time

scale �C �
����������������������

m�2=�BB
p

, the time taken by an atom to

move � when accelerated by this field. For an integration

time �, this classical motion imposes a limit on the maxi-

mum detectable phase shift (when � � �C) of �m ’ �Q=�.

It should be noted that neither the diffusion of an imprinted

phase nor the limitation on the dynamic range are funda-

mental; both can be eliminated by constraining atomic

motion with suitable optical potentials.

To observe the dilution of magnetization due to atomic

motion, we imposed a light-induced Zeeman shift local-

ized to a 1=e width of 5:4 �m onto the transversely mag-

netized spinor condensate. Following a 5 ms exposure to

the field-inducing laser beam, the condensate magnetiza-

tion was allowed to evolve freely for variable time before

being probed. During this evolution, the imprinted Larmor

phase diminished in peak height and grew in extent, match-

ing well with calculations based on a noninteracting spinor

gas in a localized field (Fig. 4).

In conclusion, we have demonstrated a spinor-BEC

magnetometer, a powerful application of ultracold atoms

to precision measurement of scientific and technological

significance. Inasmuch as the Larmor precession phase

represents the phase relations among BECs in several

Zeeman states, this magnetometer can be regarded as a

condensate interferometer with high temporal and spatial

resolution. The single-shot phase sensitivity and shot-to-

shot variations of 10 mrad achieved here represent an order

of magnitude improvement over the performance of pre-

vious BEC interferometers [19].

The demonstrated phase sensitivity is close to the atom

shot-noise limit. This augurs spin-squeezed magnetometry

via continuous quantum nondemolition measurements of

the condensate [20] and novel spatially and temporally

resolved studies of spin-squeezed ensembles.
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FIG. 4. Quantum evolution of an imprinted phase. (a) Cross

sections of the phase imprint after free evolution times of t � 0,

40, and 90 ms. Traces are offset for clarity. (b) The 1=e width

and (c) peak value of the imprinted phase are compared to (b)

numerical simulations based on a noninteracting spinor gas and

to (c) the expected scaling imposed by normalization of magne-
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Appendix B

Amplification of Fluctuations in a

Spinor Bose Einstein Condensate
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Amplification of Fluctuations in a Spinor Bose Einstein Condensate
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(Dated: November 9, 2008)

Dynamical instabilities in a 87Rb F = 1 spinor Bose-Einstein condensate are used as a parametric
amplifier of quantum spin fluctuations. We demonstrate the spectrum of this amplifier to be tunable,
in quantitative agreement with theory. We quantify the microscopic spin fluctuations of the initially
paramagnetic condensate by applying this amplifier and measuring the resulting macroscopic mag-
netization. The variance of these fluctuations agrees with predictions of a beyond-mean-field theory.
This spin amplifier is thus shown to be nearly quantum-limited at a gain as high as 30 dB.

Accompanied by a precise theoretical framework and
prepared in a highly controlled manner, ultracold atomic
systems serve as a platform for studies of quantum dy-
namics and many-body quantum phases, and as a poten-
tial resource for precise sensors. Among these systems,
gaseous spinor Bose-Einstein condensates [1–5], in which
atoms may explore all sub-levels of the hyperfine spin F ,
give access to interesting static and dynamical properties
of a magnetic superfluid [6–9] and can serve as a medium
for precise magnetometry [10].

Particularly interesting dynamics are associated with
a quantum phase transition between a paramagnetic and
ferromagnetic phase in an F = 1 spinor Bose-Einstein
condensate [8]. This transition is crossed as the quadratic
Zeeman energy term, of the form qF 2

z , is tuned through a
critical value q = q0; here, Fz is the longitudinal (ẑ axis)
projection of the dimensionless vector spin F. This phase
transition is accompanied by the onset of dynamical in-
stabilities in a condensate prepared in the paramagnetic
state, with macroscopic occupation of the |mz = 0〉 state
[11–13]. The instabilities cause transverse spin pertur-
bations to grow, producing atoms into the |mz = ±1〉
sublevels. In contradiction with the mean-field predic-
tion that the paramagnetic state should remain station-
ary because it lacks fluctuations by which to seed the
instability, experiments revealed the spontaneous mag-
netization of such condensates after they were quenched
across the phase transition by a rapid change in q.

Here, we consider making use of dynamical instabili-
ties in a quenched spinor condensate to realize a mode-
by-mode, low-noise parametric amplifier of magnetiza-
tion. Low-noise amplifiers have been developed in myriad
physical systems to enable precision measurements and
studies of quantum noise. For example, parametric am-
plifiers constructed with Josephson junctions have been
used to measure weak microwave signals and to induce
squeezing of microwave fields [14]. Similarly, quantum-
limited amplification of spin excitations in spinor con-
densates could lead to the preparation of spin squeezed
states, with applications toward metrology.

In this work, following studies of solid-state low-noise

∗Electronic address: sleslie@berkeley.edu

amplifiers [14, 15, for example], we characterize the spin-
mixing amplifier by seeding it with broadband noise and
measuring precisely the spectrum of its output. We
present two main results. First, we characterize the spec-
trum of the spin-mixing amplifier and demonstrate it to
be tunable by varying the quadratic Zeeman shift. This
spectrum compares well with a theoretical model that
accounts for the inhomogeneous condensate density and
for magnetic dipole interactions. Second, we measure
precisely the transverse magnetization produced by this
amplifier at various stages of amplification, up to a gain of
30 dB in the magnetization variance. Under the assump-
tion that the system performs as a quantum-limited am-
plifier with the aforementioned spectral gain profile, this
magnetization signal corresponds to the amplification of
initial fluctuations with a variance slightly greater than
that expected for zero-point fluctuations of the quantized
spin excitation modes that become unstable.

Descriptions of the dynamics of initially paramag-
netic spinor condensates [12, 13, 16–19] have focused
on the effects of the quadratic Zeeman energy and of
the spin-dependent contact interaction. The latter has
the mean-field energy density c2n〈F〉2, and, with c2 =
4π~2∆a/3m < 0, favors a ferromagnetic state; here,
∆a = (a2−a0) where aFtot

is the s-wave scattering length
for collisions between particles of total spin Ftot and m
is the atomic mass. Excitations of the uniform conden-
sate include both the scalar density excitations and also
two polarizations of spin excitations with a dispersion
relation given as E2

s (k) = (εk + q)(εk + q − q0), where
εk = ~2k2/2m and q0 = 2|c2|n. For q > q0, spin ex-
citations are gapped (E2

s > 0), and the paramagnetic
condensate is stable. Below this critical value, the para-
magnetic phase develops dynamical instabilities, defined
by the condition E2

s < 0, that amplify transverse magne-
tization. The dispersion relation defines the spectrum of
this amplification, yielding a wavevector-dependent time
constant for exponential growth of the power in the un-
stable modes, τ = ~/2

√

|E2
s |.

The unstable regime is divided further into two regions.
Near the critical point, reached by a “shallow” quench to
q0/2 ≤ q < q0, the fastest-growing instability occurs at
zero wavevector, favoring the “light-cone” evolution of
magnetization correlations at ever-longer range [12]. For
a “deep” quench, with q < q0/2, the instabilities reach
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a maximum growth rate of 1/τ = q0/~. The non-zero
wavevector of this dominant instability sets the size of
magnetization domains produced following the quench.

Similar to previous work [8], we produce condensates
of N0 = 2.0 × 106 87Rb atoms, with a peak density of
n = 2.6(1) × 1014 cm−3 and a kinetic temperature of
' 50 nK, trapped in a linearly polarized optical dipole
trap characterized by trap frequencies (ωx, ωy, ωz) =
2π×(39, 440, 4.2) s−1. Taking ∆a = −1.4(3) aB [20], with
aB being the Bohr radius, the spin healing length ξs =
(8πn|∆a|)−1/2 = 2.5 µm is larger than the condensate
radius ry = 1.6 µm along the imaging axis (ŷ). Thus, the
condensate is effectively two-dimensional with respect to
spin dynamics. For this sample, q0 = 2|c2|〈n〉 = h × 15
Hz given the maximum ŷ-averaged condensate density
〈n〉.

The quadratic Zeeman shift arises from the applica-
tion of both static and modulated magnetic fields. A
constant field of magnitude B, directed along the long
axis of the condensate, leads to a quadratic shift of
qB/h = (70 Hz/G2)B2. In addition, a linearly polar-
ized microwave field [21], with Rabi frequency Ω and de-
tuned by δ/2π = ±35 kHz from the |F = 1, mz = 0〉 to
|F = 2, mz = 0〉 hyperfine transition, induces a quadratic
(AC) Zeeman shift of qµ = −~Ω2/4δ [22].

The condensate is prepared in the |mz = 0〉 state using
rf pulses followed by application of a 6 G/cm magnetic
field gradient that expels atoms in the |mz = ±1〉 states
from the trap [8]. This preparation takes place in a static
4 G field and with no microwave irradiation, setting q =
qB + qµ > q0 so that the paramagnetic condensate is
stable. Next, we increase the microwave field strength to
a constant value, corresponding to a Rabi frequency in
the range of 2π×(0 – 1.5) kHz, to set qµ. To switch on the
amplifier, we ramp the magnetic field over 5 ms to a value
of B = 230 mG (giving qB/h = 7.6 Hz). During separate
repetitions of the experiment (for different values of qµ),
the quadratic Zeeman shift at the end of the ramp was
thus brought to final values qf/h between -2 and 16 Hz.

Following the quench, the condensate spontaneously
develops macroscopic transverse magnetization, saturat-
ing within about 110 ms to a pattern of spin domains,
textures, vortices and domain walls [8]. Using a 2-ms-
long sequence of phase-contrast images, we obtain a de-
tailed map of the column-integrated magnetization M̃ at
a given time after the quench [10]. The experiment is
then repeated with a new sample.

The observed transverse magnetization profiles [23] of
spinor condensates (Fig. 1) confirm the salient features
predicted for the spin-mixing amplifier. The variation of
the amplifier’s spatial spectrum with qf is reflected in the
characteristic size of the spin domains, taken as the mini-
mum distance from the origin at which the magnetization
correlation function,

G(δr) =

∑

r
M̃(r + δr) · M̃(r)

(gF µB)2
∑

r
ñ(r + δr)ñ(r)

, (1)

acquires its first minimum; here gF µB is the atomic mag-
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FIG. 1: Transverse magnetization produced near the conden-
sate center after 87 ms (top) and 157 ms (bottom) of amplifi-
cation at variable qf . Magnetization orientation is indicated
by hue and amplitude by brightness (color wheel shown). The
characteristic spin domain size grows as qf increases. The re-
duced signal strength for qf/h ≥ 9 Hz reveals the diminished
gain of the spin-mixing amplifier.

netic moment and ñ is the ŷ-integrated column density.
This characteristic size increases with increasing qf (Fig.
2). For qf/h ≥ 9 Hz, the magnetization features become
long ranged, as predicted. An exact determination of
their characteristic size then becomes limited by residual
magnetic field inhomogeneities (< 2 µG).

The data also confirm the distinction between deep
and shallow quenches. The spatially averaged magneti-
zation strength during the amplification, quantified by
G(0) at t = 87 ms after the quench, is found to be con-
stant for 0 < qf/h < 6 Hz, reflecting the gain of the
amplifier being uniform over 0 ≤ q ≤ q0/2 [12]. For
shallow quenches, with qf/h ≥ 7 Hz, the measured mag-
netization decreases, reflecting a diminishing gain as qf

increases up to the transition point.
While the above observations agree with theoretical

predictions, we note the unexpected and unexplained
outcome of quenches to negative values of qf . That is, for
quenches to qf/h ≤ −7 Hz, the growth of magnetization
was greatly suppressed (G(0)|t=160ms ≤ 10−2).

Having characterized the spin-mixing amplifier, let us
consider the source of its input signal. For this, we de-
velop a quantum field description of the spin-mixing in-
stability [12, 19], working in the polar spin basis, where
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FIG. 2: Characteristic domain size after 87 ms of amplifica-
tion at variable qf . Data (circles) are averages over 5 experi-
mental repetitions; error bars are statistical. Horizontal error
bar reflects systematic uncertainty in qf . Predictions based
on numerical simulations for |∆a| = 1.45 aB [7] (squares) and
1.07 aB [24] (triangles) are shown, with error bar reflecting
systematic uncertainty in the atomic density.

φ̂n,k is the annihilation operator for atoms of wavevector
k in the zero-eigenvalue states of F · n. Treating a uni-
form condensate within the Bogoliubov approximation,

one defines mode operators b̂n,k = uφ̂n,k +vφ̂†

n,−k for the

two polarizations of transverse (n ∈ {x, y}) spin excita-
tions. The portion of the spin-dependent Hamiltonian
representing dynamic instabilities, HDI , is then approx-
imated as representing a set of parametric amplifiers:

HDI = − i

2

∑

k

|Es(k)|
(

b2

x,k − b†2x,k + b2

y,k − b†2y,k

)

. (2)

The parametric amplifiers serve to squeeze the ini-
tial state in each spin excitation mode, amplifying one
quadrature of bn,k and de-amplifying the other.

The above treatment may be recast in terms of spin
fluctuations atop the paramagnetic state: fluctuations of
the transverse spin, represented by the observables Fx

and Fy, and fluctuations in the alignment of the spinor,
represented by the components Nyz and Nxz of the spin
quadrupole tensor. We identify the Bogoliubov opera-
tors defined above as linear combinations of these ob-
servables. Based on this identification, we draw two con-
clusions. First, an ideally prepared paramagnetic con-
densate is characterized by quantum fluctuations of the
Bogoliubov modes. In the linear regime, fluctuations in
bx,k (by,k) correspond to projection noise for the con-
jugate observables Fx (Fy) and Nyz (Nxz). Second, the
dynamical instabilities lead to a coherent amplification of
these initial shot-noise fluctuations. While in the present
work we observe only the magnetization, in future work
both quadratures of the spin-mixing amplifier may be
measured using optical probes [25] or by using quadratic
Zeeman shifts to rotate the spin quadrature axes.

To test the validity of this description, we evaluate
G(0)|t, the magnetization variance after an interval t of

40 80 120 160
10 -4

10 -3

10 -2

10 -1

1

G
(0

)|
t

evolution time (ms)

FIG. 3: Temporal evolution of the transverse magnetization
variance G(0)|

t
at qf = 2 Hz, evaluated over the central

16 × 124 µm region of the condensate and averaging over
8 experimental repetitions; error bars are statistical. The
contribution to G(0)|

t
from imaging noise was subtracted

from the data. Predictions from numerical calculations for
|∆a| = 1.45 aB and 1.07 aB are shown as black and gray lines,
respectively.

amplification, over the central region of the condensate.
As shown in Fig. 3, G(0)|t rises above our detection noise
floor for t & 40 ms. We consider the linear-amplification
theory to be applicable for t ≤ 90 ms, and, following Ref.
[12], perform a least-squares fit to a function of the form

G(0)|t = G(0)|tm
×

√

t/tme(t−tm)/τ (3)

Here τ is the time constant characterizing the growth
rate of the magnetization variance and tm = 77 ms.

To compare our measurements to the amplifier theory
outlined above, we performed numerical calculations of
G(0)|t, taking into account the inhomogeneous density
profile, dipolar interactions, and quantum fluctuations of
the initial state [26]. We simulate the condensate dynam-
ics using the Truncated Wigner Approximation (TWA),
i.e., we evolve classical spin fluctuations, whose initial
variance is quantum-limited in magnitude, according to
the Gross-Pitaevskii equation. This treatment is exact
in the linear amplification regime, and also provides an
approximate description of non-linear behaviour associ-
ated with depletion of the |m = 0〉 population and with
inter-mode coupling. To solve the Gross-Pitaevskii equa-
tion numerically we employ a 6th order Runge-Kutta
method with a time and position-space resolution of 3.5
µs and 0.5 µm respectively. In contrast to the linear ho-
mogeneous case, which has been previously studied us-
ing momentum-space spin excitation modes [12, 13], the
nonlinear inhomogeneous case requires the use of proper
position-space modes. Our calculations show the rate of
growth of magnetization fluctuations to be smaller than
that indicated by the maximum condensate density, ow-
ing to the inhomogeneous density profile of the trapped
gas. The asymmetric trap potential also causes the calcu-
lated magnetization correlations to be stronger along the
long axis of the trapping potential [27], a tendency that
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FIG. 4: The magnetization variance G(0)|
tm

at tm = 77 ms
and exponential time constant τ of the amplifier, obtained by
fitting data in Fig. 3 corresponding to 57 ≤ t ≤ 87 ms, are
indicated by contours of the 1, 2, and 3 σ confidence regions
using a χ

2 test. Predictions from numerical calculations of
the quantum amplification theory, assuming different values
of |∆a|, are shown (circles and interpolating line). Error bars
reflect systematic uncertainty in qf and in the condensate
density. Time constants corresponding to reported values for
|∆a| are indicated at bottom.

is supported by our observations (Fig. 1). For our exper-
imental settings, the calculation indicates that dipolar
interactions serve to increase slightly the time-constant
and decrease the length scale which characterize the for-
mation of transversely magnetized domains in the con-
densate.

From such simulations, we determined theoretical val-
ues for G(0)|t for several values of the scattering length
difference ∆a within the range of recent measurements
[7, 24]. As shown in Figs. 3 and 4, our data are consis-
tent with the quantum-limited amplification of zero-point
quantum fluctuations in the case that |∆a| lies in the up-
per range of its reported values. Alternatively, under the
assumption that the observed amplification of spin fluc-
tuations is quantum limited, taking the best-fit value of
τ = 12 ms, the variance of initial spin fluctuations in
our paramagnetic sample is measured to be roughly five
times larger than that of purely quantum fluctuations.

We performed several investigations to identify possi-
ble technical or thermal contributions to the spin fluctu-
ations of our samples. A bound on such noise was ob-
tained by performing a Stern-Gerlach analysis of popula-
tions N± in the |mz = ±1〉 states just after the quench.
Our measurements were found to be insensitive to varia-
tions in the gradient strength, duration, and orientation
used during the initial state preparation, and also to the
delay (varied between 0 and 110 ms) between this prepa-
ration and the initiation of the spin amplifier. Obtaining
N± ≤ 3 × 102 and assuming an incoherent admixture of
Zeeman sublevels, the thermal contribution to G(0)|0 is
below (2N±/N0) = 3×10−4. We checked also for techni-

cal noise that would induce extrinsic Zeeman transitions
during the experiment. For the experimental conditions
used for the measurements reported here, we found that
a condensate starting in the |mz = −1〉 state remained
so for evolution times up to 400 ms following the quench,
confirming the absence of noise-induced spin flips. For
comparison, we also performed tests of the spin-mixing
amplifier under experimental conditions in which noise-
induced flips were indeed observed. Under these noisier
conditions, the increased spin fluctuations input to the
spin-mixing amplifier indeed yielded stronger magnetiza-
tion outputs at early times following the quench.

Altogether, these results suggest that the state-purified
paramagnetic samples were prepared with a near-zero
spin temperature. Nevertheless, it remains uncertain
whether the zero-temperature amplifier theory should re-
main accurate out to a gain in the magnetization variance
as high as 30 dB, in a non-zero temperature gas subject to
constant heating and evaporation from the finite-depth
optical trap. Indeed, previous work showed a strong in-
fluence of the non-condensed gas on spin dynamics in a
two-component gaseous mixture [28]. We examined the
role of thermal effects by comparing the amplification of
magnetization at kinetic temperatures of 50 and 85 nK,
obtained for different optical trap depths. We observed
no variation, but note that the condensate fraction was
not substantially varied in this comparison.

As indicated by the experimental uncertainties pre-
sented in Fig. 4, the comparison between a quantum am-
plification theory and experimental observations could
be further constrained by an independent measure of the
amplifier gain. The theoretical value for the amplifier
gain is uncertain as a result of the uncertainty in ∆a.
In a future study, one could empirically determine the
gain of the amplifier by studying the amplification of a
coherent seed at a given k, e.g. a finite k spin modulation
produced by Raman scattering or a k = 0 seed produced
by tipping the condensate spinor before the quench to
q 6= 0.

In conclusion, we have demonstrated the use of the
spinor condensate as an amplifier of magnetization. Two
tests of the amplifier have been performed simultane-
ously. First, assuming the input to the amplifier to have a
white spatial spectrum and an initial variance consistent
with quantum noise, we measure the tunable spatial spec-
trum and gain of the amplifier and find good agreement
with predictions of a quantum linear amplification the-
ory. Second, assuming the amplifier to be described well
by our theory, we find the magnitude and spatial distri-
bution of magnetization fluctuations in the initial para-
magnetic sample to be consistent with quantum noise.
This demonstration of a low-noise spin amplifier holds
promise for a host of applications and for future studies
of quantum magnetism.

Moreover, by performing rapid quenches of paramag-
netic condensates to variable qf , we characterize the vari-
ation of the spin-mixing instability spectrum as one ap-
proaches the critical value of the quadratic shift, q0, from
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below. As discussed in several theoretical works, the
nature of this variation determines the dynamical scal-
ing behaviour expected for variable-rate quenches across
a phase transition between paramagnetic and ferromag-
netic states [12, 13, 16, 17]. The observation that para-
magnetic gases are prepared with near quantum-limited
spin fluctuations supports the possibility of quantitative
investigations of quantum phase transitions with spinor
gases.
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Helical spin textures in a 87Rb F � 1 spinor Bose-Einstein condensate are found to decay sponta-

neously toward a spatially modulated structure of spin domains. The formation of this modulated phase is

ascribed to magnetic dipolar interactions that energetically favor the short-wavelength domains over the

long-wavelength spin helix. The reduction of dipolar interactions by a sequence of rf pulses results in a

suppression of the modulated phase, thereby confirming the role of dipolar interactions in this process.

This study demonstrates the significance of magnetic dipole interactions in degenerate 87Rb F � 1 spinor

gases.
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In a wide range of materials, the competition between

short- and long-range interactions leads to a rich landscape

of spatially modulated phases arising both in equilibrium

and as instabilities in nonequilibrated systems [1,2]. In

classically ordered systems such as magnetic thin films

[3] and ferrofluids [4], short-range ferromagnetic interac-

tions are commonly frustrated by the long-range, aniso-

tropic magnetic dipolar interaction, rendering homogene-

ously magnetized systems intrinsically unstable to various

morphologies of magnetic domains [5]. Long-range inter-

actions are also key ingredients in many models of strongly

correlated electronic systems [6] and frustrated quantum

magnets [7].

In light of their relevance in materials science, strong

dipole interactions have been discussed as an important

tool for studies of many-body physics using quantum gases

of atoms and molecules, offering the means for quantum

computation [8], simulations of quantum magnetism [9]

and the realization of supersolid or crystalline phases

[10,11]. However, in most ultracold atomic gases, the

magnetic dipolar interaction is dwarfed by the contact

(s-wave) interaction. Hence, experimental efforts to attain

dipolar quantum gases have focused on nonalkali atoms,

notably 52Cr with its large magnetic moment [12], and on

polar molecules [13].

In this Letter, we demonstrate that magnetic dipole

interactions play a critical role in the behavior of a quan-

tum degenerate F � 1 spinor Bose gas of 87Rb. In this

quantum fluid, s-wave collisions yield both a spin-

independent and a spin-dependent contact interaction

[14,15], with strengths proportional to �a � �2a2 � a0�=3
and �a � �a2 � a0�=3, respectively, where the scattering

length aF describes collisions between particles of total

spin F. In 87Rb, with a0�a2� � 5:39�5:31� nm, the spin-

dependent contact interaction is far weaker than the spin-

independent one; nevertheless, it is a critical determinant

of the magnetic properties of degenerate F � 1 87Rb gases

[16–18]. The magnetic dipole interaction strength may be

parameterized similarly by a length ad � �0g
2
F�

2
Bm=

�12�@2�, where �0 is the permeability of vacuum, gF �

1=2 the gyromagnetic ratio, �B the Bohr magneton and m
the atomic mass [19]. Given ad=�a � 0:4, the F � 1
spinor Bose gas of 87Rb is an essentially dipolar quantum

fluid [20].

In our study, the influence of dipolar interactions on the

spinor gas is evidenced by the spontaneous dissolution of

deliberately imposed long-wavelength helical spin tex-

tures, in favor of a finely modulated pattern of spin do-

mains. We ascribe the emergence of this modulated phase

to the magnetic dipole energy that disfavors the homoge-

nously magnetized state and drives the fluid toward short-

wavelength spin textures. To test this ascription, we reex-

amine the behavior of spin helices in condensates in which

the dipolar interaction is tempered using a rapid sequence

of rf pulses. The suppression of the modulated phase

observed in this case confirms the crucial role of dipolar

interactions.

For this work, spin-polarized 87Rb condensates of up to

2:3�1� � 106 atoms in the jF � 1; mF � �1i hyperfine

state and at a kinetic temperature of T ’ 50 nK were

confined in a single-beam optical dipole trap characterized

by trap frequencies �!x; !y; !z� � 2��39; 440; 4:2� s�1.

The Thomas-Fermi condensate radius in the ŷ (vertical)

direction (ry � 1:8 �m) was less than the spin healing

length �S � �8��an0��1=2 � 2:4 �m, where n0 � 2:3�
1014 cm�3 is the peak density of the condensate. This

yields a spinor gas that is effectively two-dimensional

with regard to spin dynamics.

The condensate was transversely magnetized by apply-

ing a �=2 rf pulse in the presence of an ambient magnetic

field of B0 � 165�5� mG aligned to the ẑ axis. Stray mag-

netic gradients (curvatures) were canceled to less than

0:14 mG=cm (4:3 mG=cm2). A helical spin texture was

then prepared by applying a transient magnetic field gra-

dient dBz=dz for a period �p � 5–8 ms. Larmor preces-

sion of the atomic spins in this inhomogeneous field

resulted in a spatial spin texture with a local dimensionless

spin of F � cos��z�!Lt�x̂� sin��z�!Lt�ŷ, where

~� � �gF�B=@��dBz=dz��pẑ is the helix wave vector. The
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fast time variation at the !L=2� ’ 115 kHz Larmor pre-

cession frequency will be henceforth ignored by consider-

ing the spin at a particular instant in this rapid evolution.

The helix pitch � � 2�=� ranged between 50 and

150 �m. Given � � �S, the kinetic energy per atom in

this spin texture, E� � @
2�2=4m, was always negligible

compared to the ferromagnetic contact-interaction energy

[21].

The helical spin texture was then allowed to evolve in a

homogenous magnetic field for a variable time before the

vector magnetization was measured using a sequence of

nondestructive phase contrast images. Because of Larmor

precession, a sequence of images taken with circularly

polarized light propagating along the ŷ direction can be

analyzed to determine the column-integrated magnetiza-

tion perpendicular to the ambient field [22,23], with vector

components ~Mx;y � �gF�B�~nFx;y, where ~n the column

number density. Subsequent to this imaging sequence, a

�=2 pulse was applied to rotate the longitudinal spin Fz

into the transverse spin plane, and a second sequence of

images was obtained. A least-squares algorithm comparing

data from the two imaging sequences allowed the longitu-

dinal magnetization ~Mz to be determined [24].

The evolution of helical textures is portrayed in Fig. 1.

While uniform spin textures (� � 2rz) remain homoge-

nous for long times, helical textures (� < 2rz) spontane-

ously develop short-wavelength modulations of the

magnetization. This modulated phase is characterized by

spin domains with typical dimensions of ’ 10 �m, much

smaller than the pitch of the imprinted helix, with the

magnetization varying sharply between adjacent domains.

To quantify this behavior, we considered the power

spectrum of the spatial Fourier transform of the vector

magnetization, j ~M�kx; kz�j2, where (kx, kz) is the spatial

wave vector in the image plane. This spectrum was found

to consist of two distinct components: a central component

that quantifies the long-range order of the helical texture,

and a second concentration of spectral power at a discrete

set of wave vectors of magnitude kmod ’ 2�=�10 �m�
representing the short-range order of the final modulated

texture. After subtracting out the background representing

image noise, we divided spatial Fourier space into regions

indicated in Fig. 2 and defined the integrated spectral

power in the central region (annular region) as the parame-

trization of long-range (short-range) spatial order in the

quantum fluid.

The formation of the spontaneously modulated texture is

reflected in the reduction of the long-range order parameter

and the concomitant rise of the short-range order parameter

(Fig. 3). During this process, the total spectral power was

found to be roughly constant indicating that the bulk of the

quantum fluid remains fully magnetized even as the long-

range order is reduced. Further, the longitudinal magneti-

zation ~Mz was found to be much smaller than ~Mx;y

throughout this process. The growth rate � of the short-

range order parameter determined from such data was

found to rise monotonically with the wave vector � of

the initial helical texture. While the long-range order was

found to decrease after sufficiently long evolution times

even in condensates prepared with nearly uniform magne-

tization, we note that stray magnetic field inhomogeneities

of �5 �G across the axial length of the condensate would

by themselves produce a helical winding across the con-

densate over a period of 300 ms, constraining our ability to

test the stability of homogenous spin textures.

Another measure of the spontaneous short-range modu-

lation in the condensate is the appearance of polar-core

spin vortices throughout the gas. Such vortices were iden-

tified as in Ref. [18] by a net winding of the transverse

magnetization along a closed two-dimensional path of

nonzero magnetization in the imaged gas. The number of

identified spin vortices was roughly proportional to the

short-range order parameter, with no vortices identified

in the initially prepared spin helix and up to 6 vortices/

FIG. 1 (color). Spontaneous dissolution of helical textures in a quantum degenerate 87Rb spinor Bose gas. A transient magnetic field

gradient is used to prepare transversely magnetized (b) uniform or (a),(c) helical magnetization textures. The transverse magnetization

column density after a variable time T of free evolution is shown in the imaged x-z plane, with orientation indicated by hue and

amplitude by brightness (color wheel shown). (b) A uniform texture remains homogeneous for long evolution times, while (c) a helical

texture with pitch � � 60 �m dissolves over �200 ms, evolving into a sharply spatially modulated texture.
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image identified in the strongly modulated texture pro-

duced after free evolution. In each instance, the number

of vortices with positive and negative charge was found to

be approximately equal.

A striking feature in the evolution of spin textures is the

significant rise in the kinetic energy of the condensed

atoms, reaching a value of @
2k2mod=8m � h� 6 Hz per

atom given that roughly half the spectral weight of the

texture’s magnetization is at the wave vector kmod. One

expects the total energy per atom in the condensate to be

constant during this evolution, or even to diminish through

the transfer of energy to the noncondensed portion of the

gas. Yet, in examining the energy of the initially prepared

spin helix, we find the local contact-interaction energy is

minimized, the quadratic Zeeman energy is just q=2 �
h� 1 Hz at the ambient magnetic field, and the kinetic

energy of the spin helix is just E� < h� 0:5 Hz for a helix

pitch of � > 50 �m.

This apparent energetic deficit of the spin helix state

can be accounted for by the magnetic dipole interaction.

The on-axis magnetic field produced by a spin helix in

an infinite axial column of gas with a Gaussian trans-

verse density profile can be simply calculated. From

this calculation, we estimate that a gas with uniform

transverse magnetization possesses an excess of Ed �
�0g

2
F�

2
Bn0=2� h� 5 Hz compared to the energy of a

tightly wound helix, a figure that is close to the excess

kinetic energy of the finely modulated texture.

To confirm the role of magnetic dipolar interactions in

the evolution of these spin textures, we employed a modi-

fication of the NMR technique of spin-flip narrowing [25]

to eliminate effectively the dipolar interactions. The inter-

action energy of two magnetic dipoles separated by the

displacement vector r is proportional to F1 	 F2 � 3�r̂ 	
F1��r̂ 	 F2�. If both dipoles experience rapid, common

spin rotations that evenly sample the entire SO�3� group

of rotations, the interaction energy will average to zero

regardless of the relative orientations of the spin vectors

F1;2 and of the displacement vector r. We note that such

spin rotations also annul the quadratic Zeeman shift.

However, since the nature of the spontaneously modulated

phase was observed to be unchanged as q was varied over a

factor of 5 (0:8< q=h < 4 Hz), we suggest this annulment

is inconsequential.

Experimentally, after the initial spin texture had been

prepared as before, we effected such spin rotations by

applying a rapid sequence of �=2 rf pulses to the Larmor

precessing atoms at random intervals, and thus, along

random rotation axes, at a mean rate of 1–2 kHz. We

confirmed that such a sequence of �=2 pulses led to an

uniform sampling of the rotation group and that each pulse

was spatially homogenous across the extent of the conden-

sate. The spin helix was allowed to evolve under the

constant action of these dipole-cancellation pulses until

the pulses ceased and the sample was imaged as described

earlier. In this case, the short-range order parameter grew at

a similar rate at early evolution times, but reached a lower

plateau at late times, demonstrating a suppression of the

modulated phase (Fig. 4). The reduction of the excess

kinetic energy of the final spin texture in the spin-rota-

tion-averaged sample supports our identification of the

dipole energy as its source.

To account for the residual (but weakened) appearance

of short-length scale features in the power spectra

[Fig. 4(b)], we note that this technique of spin-flip narrow-

ing is most effective in the case of static dipoles. It is

possible that motion of the gas, either coherent or thermal,

prevents the �=2 pulse train from completely eliminating

FIG. 3 (color online). Growth of the spontaneously modulated

phase (�) coincides with a reduction in the integrated energy in

the low spatial frequency region (�). The data shown correspond

to an initial helical pitch of 60 �m. Inset: The initial growth rate

� of the modulated phase as a function of the helix wave vector.

These were extracted from linear fits of the short-range order

parameter at short evolution times.

FIG. 2 (color online). Power spectrum of the spatial Fourier

transform and the two-point correlation function G�x; z� for the

initial spin helix (a),(c) and the spontaneously modulated phase

(b),(d). These data are derived from the same image sequence

shown in Fig. 1(c). The images (a),(c) correspond to an evolution

time T � 0 ms while (b),(d) correspond to an evolution time

T � 250 ms. The short-range spatial order is defined as the

integrated spectral power in the annular region shown in (b).
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Helical spin textures in a 87Rb F � 1 spinor Bose-Einstein condensate are found to decay sponta-

neously toward a spatially modulated structure of spin domains. The formation of this modulated phase is

ascribed to magnetic dipolar interactions that energetically favor the short-wavelength domains over the

long-wavelength spin helix. The reduction of dipolar interactions by a sequence of rf pulses results in a

suppression of the modulated phase, thereby confirming the role of dipolar interactions in this process.

This study demonstrates the significance of magnetic dipole interactions in degenerate 87Rb F � 1 spinor

gases.
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In a wide range of materials, the competition between

short- and long-range interactions leads to a rich landscape

of spatially modulated phases arising both in equilibrium

and as instabilities in nonequilibrated systems [1,2]. In

classically ordered systems such as magnetic thin films

[3] and ferrofluids [4], short-range ferromagnetic interac-

tions are commonly frustrated by the long-range, aniso-

tropic magnetic dipolar interaction, rendering homogene-

ously magnetized systems intrinsically unstable to various

morphologies of magnetic domains [5]. Long-range inter-

actions are also key ingredients in many models of strongly

correlated electronic systems [6] and frustrated quantum

magnets [7].

In light of their relevance in materials science, strong

dipole interactions have been discussed as an important

tool for studies of many-body physics using quantum gases

of atoms and molecules, offering the means for quantum

computation [8], simulations of quantum magnetism [9]

and the realization of supersolid or crystalline phases

[10,11]. However, in most ultracold atomic gases, the

magnetic dipolar interaction is dwarfed by the contact

(s-wave) interaction. Hence, experimental efforts to attain

dipolar quantum gases have focused on nonalkali atoms,

notably 52Cr with its large magnetic moment [12], and on

polar molecules [13].

In this Letter, we demonstrate that magnetic dipole

interactions play a critical role in the behavior of a quan-

tum degenerate F � 1 spinor Bose gas of 87Rb. In this

quantum fluid, s-wave collisions yield both a spin-

independent and a spin-dependent contact interaction

[14,15], with strengths proportional to �a � �2a2 � a0�=3
and �a � �a2 � a0�=3, respectively, where the scattering

length aF describes collisions between particles of total

spin F. In 87Rb, with a0�a2� � 5:39�5:31� nm, the spin-

dependent contact interaction is far weaker than the spin-

independent one; nevertheless, it is a critical determinant

of the magnetic properties of degenerate F � 1 87Rb gases

[16–18]. The magnetic dipole interaction strength may be

parameterized similarly by a length ad � �0g
2
F�

2
Bm=

�12�@2�, where �0 is the permeability of vacuum, gF �

1=2 the gyromagnetic ratio, �B the Bohr magneton and m
the atomic mass [19]. Given ad=�a � 0:4, the F � 1
spinor Bose gas of 87Rb is an essentially dipolar quantum

fluid [20].

In our study, the influence of dipolar interactions on the

spinor gas is evidenced by the spontaneous dissolution of

deliberately imposed long-wavelength helical spin tex-

tures, in favor of a finely modulated pattern of spin do-

mains. We ascribe the emergence of this modulated phase

to the magnetic dipole energy that disfavors the homoge-

nously magnetized state and drives the fluid toward short-

wavelength spin textures. To test this ascription, we reex-

amine the behavior of spin helices in condensates in which

the dipolar interaction is tempered using a rapid sequence

of rf pulses. The suppression of the modulated phase

observed in this case confirms the crucial role of dipolar

interactions.

For this work, spin-polarized 87Rb condensates of up to

2:3�1� � 106 atoms in the jF � 1; mF � �1i hyperfine

state and at a kinetic temperature of T ’ 50 nK were

confined in a single-beam optical dipole trap characterized

by trap frequencies �!x; !y; !z� � 2��39; 440; 4:2� s�1.

The Thomas-Fermi condensate radius in the ŷ (vertical)

direction (ry � 1:8 �m) was less than the spin healing

length �S � �8��an0��1=2 � 2:4 �m, where n0 � 2:3�
1014 cm�3 is the peak density of the condensate. This

yields a spinor gas that is effectively two-dimensional

with regard to spin dynamics.

The condensate was transversely magnetized by apply-

ing a �=2 rf pulse in the presence of an ambient magnetic

field of B0 � 165�5� mG aligned to the ẑ axis. Stray mag-

netic gradients (curvatures) were canceled to less than

0:14 mG=cm (4:3 mG=cm2). A helical spin texture was

then prepared by applying a transient magnetic field gra-

dient dBz=dz for a period �p � 5–8 ms. Larmor preces-

sion of the atomic spins in this inhomogeneous field

resulted in a spatial spin texture with a local dimensionless

spin of F � cos��z�!Lt�x̂� sin��z�!Lt�ŷ, where

~� � �gF�B=@��dBz=dz��pẑ is the helix wave vector. The
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is presented in the zero-temperature, low saturation limit. We take spatial and motional effects into account and
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I. INTRODUCTION

Cavity quantum electrodynamics (CQED) in the strong-

coupling regime holds great interest for experimentalists and

theorists for many reasons [1–3]. From an applied perspec-

tive, CQED provides precise tools for the fabrication of de-

vices which generate useful output states of light, as exem-

plified by the single-photon source [4–6], the N-photon

source [7], and the optical phase gate [8]. Conversely, CQED

effects transform the high-finesse cavity into a sensitive op-

tical detector of objects which are in the cavity field. Viewed

simply, standard optical microscopy is made more sensitive

by having a probe beam pass through the sample multiple

times and by efficiently collecting scattered light. In the

weak-coupling regime, this has allowed for nanometer-

resolution measurements of the positions of a trapped ion

[9,10]. In the strong-coupling regime, the presence and posi-

tion of single atoms can be detected with high sensitivity by

monitoring the transmission [11,12], phase shift [13], or spa-

tial mode [14] of probe light sent through the cavity.

In this paper, we consider using strong-coupling CQED

effects to precisely count the number of atoms trapped inside

a high-finesse optical microcavity. The principle for such de-

tection is straightforward: the presence of atoms in the cavity

field splits and shifts the cavity transmission resonance. A

precise N-atom counter could be used to prepare the atoms-

cavity system for generation of optical Fock states of large

photon number [7], or to study ultracold gaseous atomic sys-

tems [15] in which atom number fluctuations are important,

such as number-squeezed [16] and spin-squeezed [17–19]

systems.

A crucial issue to address in considering such a CQED

device is the role of the spatial distribution of atoms and their

motion in the cavity field. An N-atom counter (or any CQED

device) would be understood trivially if the N atoms to be

counted were held at known, fixed positions in the cavity

field. This is a central motivation for the integration of

CQED with extremely strong traps for neutral atoms [20,21]

or ions [9,10]. The Tavis-Cummings model [22], which ap-

plies to this case, predicts that the transmission spectrum of a

cavity containing N identically coupled (with strength g),

resonant atoms will be shifted from the empty cavity reso-

nance by a frequency gÎN at low light levels. Atoms in a

cavity can then be counted by measuring the frequency shift

of the maximum cavity transmission and distinguishing the

transmission spectrum of N atoms from that of N+1 atoms in

the cavity. However, to assess the potential for precise

CQED-aided probing of a many-body atomic system, we

consider here the possibility that atoms are confined at length

scales comparable to or indeed larger than the optical wave-

length.

In this paper, we characterize the influence of cavity mode

spatial dependence and atomic motion on the transmission

spectrum for an arbitrary number of atoms in the limit of low

temperature, low light intensity, and low atomic recoil en-

ergy. The impact of atomic motion on CQED has been ad-

dressed theoretically in previous work [23–26], although at-

tention has focused primarily on the simpler problem of a

single atom in the cavity field. We show that when spatial

dependence is included, the intrinsic limits on atom counting

change significantly. The organization of this paper is as fol-

lows. In Sec. II we introduce the system Hamiltonian, define

our notation, and derive an explicit expression for the intrin-

sic transmission function. In Sec. III, we introduce the

method of moments, and use this method to calculate the

shape of the intrinsic transmission function. Conclusions and

implications for atom counting are presented in Sec. IV.

II. TRANSMISSION

Let us consider the Hamiltonian for N identical two-level

atoms in a harmonic potential inside an optical cavity which

admits a single standing-wave mode of light. We consider

atomic motion and the spatial variation of the cavity mode

only along the cavity axis, assuming that the atoms are con-

fined tightly with respect to the cavity mode waist in the

other two dimensions. The Hamiltonian for this system is

H = "vca
†a + o

i=1

N

"vaueilkeiu + H0 + V , s1d

where vc is the frequency of the cavity mode and asa†d is the

annihilation screationd operator for the cavity field. The mo-

tional Hamiltonian H0=oiH0,i is a sum over single-atom

Hamiltonians H0,i= pi
2
/2m+mv

0

2xi
2
/2, where m is the atomic
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mass and v0 the harmonic trap frequency. The atomic

ground and excited internal states, ugl and uel, respectively,

are separated by energy "va. The dipole interaction with the

light field V=oiVi is a sum over interactions with the dipole

moment of each atom Vi="g cosskxidsueilkgiua+ugilkeiua
†d,

where g is the vacuum Rabi splitting, which depends on

the atomic dipole moment and the volume of the cavity

mode. In this paper we assume the cavity mode frequency

to be in exact resonance with the atomic transition fre-

quency, vc=va.

Since the Hamiltonian [Eq. (1)] commutes with the total

excitation operator, nT=a†a+oiueilkeiu, the eigenspectrum of

H breaks up into manifolds labeled by their total excitation

number. In this work, we are concerned with excitation spec-

tra of the atoms-cavity system at the limit of low light inten-

sity, and we therefore restrict our treatment to the lowest two

manifolds, with nT= h0,1j.
We consider here the excitation spectra from the ground

state (motional and internal) of the atoms-cavity system. This

represents the simplest system that can be treated analyti-

cally and provides a basis for more realistic treatments of the

initial state. In practice, scattering of a few photons or finite

temperatures would excite the system to a higher motional

state. These effects can be minimized experimentally by

working at low light intensity (highest signal to noise per

spontaneously emitted photon) and low temperature. The ini-

tial state uC0l is given simply as a product of motional and

internal states, uC0l= uFIl ^ u0c ;g1 ,g2 , . . . ,gNl. In the un-

coupled internal-state notation, the 0c symbol indicates there

are zero photons in the cavity and the gi symbol indicates

that atom i is in the ground state. The motional state uFIl
=pi=1

N uf0sxidl is a product of single-atom ground states of the

harmonic trap.

Let us calculate the low light intensity transmission spec-

trum of the cavity. We assume that the system is pumped by

a near-resonant linearly coupled driving field such that the

cavity excitation Hamiltonian is HI=Esa†e−ivt
+aeivtd, where

E is the product of the external driving electric-field strength

and the transmissivity of the input cavity mirror and v is the

driving frequency. To determine the cavity transmission

spectrum, we determine the excitation rate to atoms-cavity

states in the nT=1 manifold from the initial ground state. The

atoms-cavity eigenstates decay either by cavity emission,

with the transmitted optical power proportional to kkNcl,
where k is the cavity decay rate and Nc=a†a is the intracav-

ity photon number operator, or by other processes (spontane-

ous emission, losses at the mirrors, etc.) at the phenomeno-

logical rate constant g. Neglecting the width of the

transmission spectrum caused by cavity and atomic decay

sk ,g→0d, we use Fermi’s golden rule to obtain the trans-

mission spectrum Isvd:

Isvd ~ o
j,nT=1

ukC jua
†uC0lu2dsv j − v0 − vd

= o
j,nT=1

ukC juCIlu
2
dsv j − v0 − vd , s2d

where uCIl=a†uC0l. In the summation over all atoms-cavity

eigenstates, we make the simplification that only states with

nT=1 need be included since only these states are coupled to

the ground state by a single excitation. To simplify notation,

we make this implicit assumption throughout the remainder

of this paper. We denote by Isvd the “intrinsic transmission

spectrum.” In the limit of k ,g→0 this is composed of d

functions in frequency, while an experimentally observed

transmission spectrum would be convolved by nonzero line-

widths.

To proceed further, we introduce the basis states hu0l ; uilj
which span the space of internal states in the nT=1 manifold.

The state u0l= u1c ;g0 ,g1 , . . . ,gNl has one cavity photon and

all atoms in their ground state. The state uil
= u0c ;g0 ,g1 , . . . ,ei , . . . ,gNl is the state in which the cavity

field is empty, while a single atom (atom i) is in the excited

state. Restricted to the nT=1 manifold, the Hamiltonian [Eq.

(1)] is written as H=H0+VnT=1, where

VnT=1 = o
i

"g cosskxid ^ suilk0u + u0lkiud . s3d

To gain intuition regarding the behavior of the system, let

us define the operator Vsxd as the optical potential operator

VnT=1 for which the position operators are replaced by defi-

nite positions x. In the sN+1d-dimensional space of internal

states for the nT=1 manifold, the operator Vsxd has two non-

zero eigenvalues, ±"gxsxd= ±"gÎoi cos
2 kxi with corre-

sponding eigenstates

uD±sxdl =
1

Î2
Su0l ±

1

xsxd
o

i

cos kxiuilD . s4d

We will refer to the uD−sxdl and uD+sxdl eigenstates of the

potential matrix as the red and blue internal states, respec-

tively, in reference to their energies being red or blue de-

tuned from the empty cavity resonance. The remaining N

−1 eigenvalues of the optical potential matrix are null val-

ued. These correspond to dark states having no overlap with

the excited cavity internal state, u0l, and which, therefore,

cannot be excited by the cavity excitation interaction HI.

Note that kNcl=1/2s0d for all bright sdarkd states, hence the

cavity transmission spectrum is equivalent to the excitation

spectrum in this treatment. We can now write the optical

potential operator VnT=1 as

VnT=1 = gE dxxsxduxlkxu ^ suD+sxdlkD+sxdu

− uD−sxdlkD−sxdud . s5d

We also note that the initial state uCIl can be written as a

superposition of bright states,

uCIl =
1

Î2
sufIsxd ^ D−sxdl + ufIsxd ^ D+sxdld . s6d

Our treatment allows us to recover easily results of the

Tavis-Cummings model [22] in which a collection of fixed

two-level atoms are coupled to a single-mode cavity with

fixed, identical dipole coupling. Considering Vsx0d with all

atoms at the origin fx0= s0,0 , . . . ,0dg, we find a spectrum
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composed of d functions at ±gÎN [see Fig. 1(a)] correspond-

ing to the two bright states uD±sx0dl. The clear dependence of

the frequency of peak transmission on the integer number of

atoms in the cavity provides the background for a basic,

transmission-based atom-counting scheme. “Extrinsic” line

broadening, due to cavity decay and other losses, will smear

out these sharp transmission peaks [see Fig. 1(b)], and will

determine the maximum number of atoms that can be

counted at the single-atom level by discriminating between

the transmission spectra for N and N+1 atoms. For the re-

mainder of the paper, we focus on intrinsic limitations to

atom counting, i.e., those due to atomic localization and mo-

tion.

III. METHOD OF MOMENTS

To analyze the transmission characteristics of the atoms-

cavity system in the presence of spatial dependence and

atomic motion, we shall assume that the key features of the

spatially independent limit discussed above are maintained

(Fig. 2). Specifically, the transmission spectrum will still be

described by two sidebands, one red shifted and one blue

shifted from the empty cavity resonance by some frequency

on the order of g. In determining the cavity transmission

Isvd, we may thus divide the bright excited states huC jlj of

the nT=1 manifold into red huC j,−lj and blue huC j,+lj states.

From these red and blue states, we determine the transmis-

sion line shapes I−svd and I+svd of the red and blue side-

bands, respectively.

The validity of this approach is made more exact by the

following considerations. We have already obtained the lo-

cally defined internal-state eigenbasis for the nT=1 manifold

as eigenstates of the operator Vsxd, namely, the states uD±sxdl

and the remaining N−1 dark states. Let Ûsxd be the rotation

operator which connects the uncoupled internal states

hu0l , u1l , . . . , uNlj to the eigenstates of Vsxd at a particular set

of coordinates x (the “coupled internal-state basis”). Now,

consider applying this local choice of “gauge” everywhere in

the system. Since the dipole interaction operator V is diago-

nalized in the coupled internal-state basis, it is convenient to

examine the full Hamiltonian H in this basis. Defining the

spatially dependent rotation operator Û=edxuxlkxuÛsxd, we

therefore consider the transformed Hamiltonian H8= ÛHÛ
†
.

Returning to Eq. (1), the only portion of the Hamiltonian

H which does not commute with the operator Û is the kinetic

energy. Considering the transformation of the momentum op-

erator for atom i,

ÛpiÛ
†

= pi +
"

i
Û

d

dxi

Û
†

= pi + Ai s7d

the transformed Hamiltonian H8 can be expressed as H8

=Had+DH, where

Had = o
i

S pi
2

2m
^ I +

1

2
mv

0

2xi
2

^ ID
+ "gxsxduD+lkD+u − uD−lkD−u , s8d

DH =
1

2m
o

i

spiAi + Aipi + AiAid . s9d

The operator Had describes the behavior of atoms which

adiabatically follow the coupled internal-state basis while

moving through the spatially varying cavity field and DH

represents the kinetic energy associated with this local gauge

definition.

We assume we are working in the limit of small atomic

recoil energy, i.e., "g@"
2k2

/2m, and therefore treat DH as a

perturbation and expand the eigenvalues and eigenstates of

H8 as

E j,± = E j,±
s0d

+ E j,±
s1d

+ ¯ , s10d

uC j,±l = uC j,±
s0dl + uC j,±

s1dl + ¯ . s11d

We define projection operators onto the red and blue and

dark internal states, P− ,P+ ,Pd, respectively, with the ex-

plicit forms

P± =E dxuxlkxu ^ uD±sxdlkD±sxdu . s12d

These projection operators commute with Had. Hence the

bright eigenstates of Had, which are simultaneous eigenstates

of P± and Pd, can be written as

uC j,±
s0dl = uf j,±

s0d
^ D±l ;E dxf j,±

s0dsxduxl ^ uD±sxdl . s13d

FIG. 1. (a) Intrinsic transmission spectrum of atoms-cavity sys-

tem neglecting spatial dependence of potential and atomic motion.

(b) Transmission spectrum of spatially independent case including

cavity decay.

FIG. 2. (a) Intrinsic transmission spectrum of atoms-cavity sys-

tem including spatial dependence of potential and atomic motion.

(b) Corresponding transmission spectrum including cavity decay.
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We now assign an eigenstate, uC jl, of H8 to the red or

blue sideband if its zeroth-order component uC
j

s0dl belongs,

respectively, to the uD−l or uD+l manifold. We can therefore

define the sideband transmission spectra I±svd as the separate

contributions of red/blue sideband states to the total trans-

mission spectra [see Eq. (2)]:

I±svd ~ o
j

ukC j,±uCIlu
2
dsv j,± − v0 − vd . s14d

Determining the exact form of I±svd is equivalent to solving

for all the eigenvalues "v j,± of the full Hamiltonian. This is

a difficult problem, particularly as the number of atoms in

the cavity increases. In practice, given the potential extrinsic

line-broadening effects which may preclude the resolution of

individual spectral lines, it may suffice to simply character-

ize the main features of the transmission spectra. As we

show below, general expressions for the various moments of

the spectral line can be obtained readily as a perturbation

expansion in DH. These moments allow one to assess the

feasibility of precisely counting the number of atoms con-

tained in the high-finesse cavity based on the transmission

spectrum.

In general, we evaluate averages kv
±

nl weighted by the

transmission spectral distributions I±svd. We make use of the

straightforward identification (for notational clarity, shown

here explicitly for the case of the blue sideband)

"kv+l =

"E dvI+svdv

E dvI+svd

s15d

=

o
j

E j,+kCIuC j,+lkC j,+uCIl

o
j

kCIuC j,+lkC j,+uCIl
s16d

=

o
j

E j,+kCIusP+ + P−duC j,+lkC j,+usP+ + P−duCIl

o
j

kCIusP+ + P−duC j,+lkC j,+usP+ + P−duCIl
,

s17d

where we have made use of the facts that P++P−+Pd= I and

PduCIl=0. To zeroth order, Eq. s15d becomes

"kv+ls0d
=

o
j

E j,+
s0dkCIuC j,+

s0dlkC j,+
s0duCIl

o
j

kCIuC j,+
s0dlkC j,+

s0duCIl
= 2kCIuP+HadP+uCIl .

s18d

The first-order correction to this result is given by,

"kv+ls1d
= 2skCIuP+DHP+uCIl + kCIuP−o

j

E j,+
s0duC j,+

s1dlkC j,+
s0duP+uCIl + kCIuP+o

j

E j,+
s0duC j,+

s0dlkC j,+
s1duP−uCIld

− 4kCIuP+HadP+uCIlskCIuP−o
j

uC j,+
s1dlkC j,+

s0duP+uCIl + kCIuP+o
j

uC j,+
s0dlkC j,+

s1duP−uCIld . s19d

To evaluate the sums over the first-order corrections to the

eigenstates, uC
j,±

s1dl, we approximate the energy denominator

in the first-order perturbation correction as the difference be-

tween the average energies of the red and blue sidebands,

kCIuP−o
j

uC j,+
s1dlkC j,+

s0duP+uCIl

= kCIuo
j

o
k

uCk,−

s0dlkCk,−

s0d uDHuC j,+
s0dl

"v j,+
s0d

− "vk,−

s0d kC j,+
s0duP+uCIl ,

s20d

<
1

k"v
+

s0dl − k"v
−

s0dl
kCIuP−DHP+uCIl . s21d

It is valid to approximate the denominator by the differ-

ence between the average energies of the red and blue side-

bands when the eigenstates in the different sidebands are

well separated in energy. In the exceptional case in which v0

is sufficiently large, some states in the uD+sxdl (red) manifold

may have high motional contributions to their energy which

cause their energy to be comparable with states in the

uD+sxdl (blue) manifold. However such states will have neg-

ligible overlap with the initial state and therefore should not

contribute to Eq. (20). Using this approximation, we can

evaluate Eq. (15) to first order in the perturbation, yielding

"kv+l=2kP+HP+l +
1

k"v
+

s0dl − k"v
−

s0dl
s4kP+HadDHP−l

− 8kP+HadP+lkP−DHP+ld , s22d

where all expectation values are calculated over the initial
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state uCIl. We can also calculate the second moment of the

distribution using the same technique. To first-order, we ob-

tain

"
2kv

+

2l = 2kP+sHad
2

+ DHHad + HadDHdP+l

+
1

k"v
+

s0dl − k"v
−

s0dl
s4kP+Had

2
DHP−l

− 8kP+Had
2

P+lkP−DHP+ld . s23d

In order to evaluate these expressions, we must calculate

expectation values of the form P
±Had

j
DHk

P
±

over the initial

state uCIl. To simplify matters, we note that we can act with

the projection operators on the initial state uCIl, which is

equivalent to operating in the uD±l internal-state basis. Since

Had is diagonal in the uD±l basis, and fIsxd is the

N-dimensional harmonic-oscillator ground state, it is

straightforward to obtain

HadufIsxdD±l = fE0 ± "gxsxdgufIsxdD±l . s24d

Using the definition in Eq. s9d, we find that the uD±l matrix

elements of DH are given by the matrix

DH =
"

2k2
zsxd

4m
^ S 1 − 1

− 1 1
D , s25d

where we have defined

zsxd = −
N − 1

x
2

+ 1 − o
i=1

N
cos

4skxid

x
4

. s26d

Combining Eqs. s22d and s23d with Eqs. s24d and s25d, we

obtain to first order in DH,

"kv+l − E0 = "gkxl +
1

2

"
2k2

2m
kzl +

1

2

"
2k2

2m

1

kxl

3s− kzxl + kzlkxld , s27d

"
2skv

+

2l − kv+l2d = "
2g2skx2l − kxl2d + "g

"
2k2

2m
S 1

kxl
skzx

2l

+ kzlkx2ld − 2kzlkxlD . s28d

Here all expectation values are taken over the spatial state

fIsxd. Although the function fIsxd is simply the product of N

harmonic-oscillator ground states, the presence of various

powers of xsxd and zsxd in the above expectation values

makes their analytic evaluation very difficult for arbitrary N.

To determine the dependence of these integrals on atom

number N, one may expand the integrand as a Taylor series

in x
2
, leading to approximate analytic solutions for the inte-

gral as a series in 1/N. After some tedious algebra, we find

the average positions of the red- and blue-transmission side-

bands to be

"kv±l − E0 = ±"gÎNÎ1 + e

2
S1 −

1

N

s1 − ed2

16
D

−
"

2k2

2m
S 1 − e

2s1 + ed
D + OS 1

N
D . s29d

Here we quantify the relative length scales of the initial har-

monic trap as compared to the optical interaction potential

through the parameter e=exps−k2
s

2d, which is related to

the Lamb-Dicke parameter h by Î2h=ks and s

=Î" /mv0. Note that we recover the zeroth-order result

that the sideband expectation value scales as ÎNg.

Next, we obtain an expression for the width of the red and

blue sidebands by evaluating the second moment of the side-

bands. Expanding Eq. (28) as a series in 1/N, we obtain

"
2skv

±

2l − kv±l2d =
1

16
"

2g2s1 − ed2s1 + ed

± "g
"

2k2

2m

1

4ÎNÎ2s1 + ed

3s1 − ed2s3 + ed + OS 1

N
D . s30d

To gain some physical insight into these results, we con-

sider two important regimes: the tight- and loose-trap re-

gimes. These different regimes are reflected in the corre-

sponding values of the parameter e, which tends towards 1 in

the extreme tight-trap limit and to 0 in the extreme loose-trap

limit. In the tight regime, the length scale of the trapping

potential is much smaller than the wavelength of the light,

i.e., ks!1. This is equivalent to the Lamb-Dicke regime and

is applicable to current experiments for trapped ions in cavi-

ties [9,10], or for neutral atoms held in deep optical poten-

tials [20]. In the loose-trap regime, ksù1 and atoms in the

ground state of the harmonic-oscillator potential are spread

out over a distance comparable to the optical wavelength. As

atoms in this regime sample broadly the cavity field, one

expects, and indeed finds, a significant inhomogeneous

broadening of the atoms-cavity resonance.

In the extreme loose-trap limit se→0d, we find

kv±l − E0/" = ± gÎN

2
S1 −

1

16N
D +

1

2

"k2

2m
+ OS 1

N
D ,

s31d

ksDv±d2l =
1

8
g2

± g
"k2

2m

3

4Î2N
+ OS 1

N
D . s32d

In the loose-trap limit, the center of the red sideband is now

located at gÎN /2 instead of at gÎN as we obtained for the

spatially independent case. This difference is due to the

spatial dependence of the standing mode; the atoms no

longer always feel the full strength of the potential, but

are sometimes located at nodes of the potential. We also

see that the sidebands have an intrinsic width of <g /Î8.

This width will play an important part in limiting our
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ability to count the number of atoms in the cavity in the

limit of a loose trap.

Considering the tight-trap limit, we expand in the small

parameter ks and obtain

kv±l − E0/" = ± gÎNS1 −
1

4
k2

s
2D −

1

4

"k2

2m
k2

s
2

+ Osk4
s

4d ,

s33d

ksDv±d2l =
1

8
g2k4

s
4

± g
"k2

2m

1

2ÎN
k4

s
4

+ Osk6
s

6d . s34d

In the limit ks→0, the atoms are confined to the origin

and we recover the Tavis-Cummings result discussed earlier,

wherein the transmission sidebands are d functions at ±gÎN

away from the empty cavity resonance. As the tightness of

the trap decreases, the atoms begin to experience the weaker

regions of the optical potential and the centers of the side-

bands move towards the origin. In addition, the sidebands

develop an intrinsic variance which scales as k4
s

4
.

An important feature of both regimes is the intrinsic line-

width of both the red and blue sidebands [see Fig. 2(a)]. This

linewidth has a magnitude of approximately gÎs1−ed /8

when the vacuum Rabi splitting is much larger than the

atomic recoil energy, i.e., g@"k2
/2m. It is unrelated to line-

width due to cavity decay or spontaneous emission which we

have not addressed here and results purely from the spatial

dependence of the atom-cavity coupling. Thus, it will pro-

vide an intrinsic limit to our ability to count N atoms, regard-

less of the quality of the cavity that is used. Our expression

for the intrinsic linewidth also highlights an asymmetry be-

tween the red and blue sidebands. To first order, increasing

the atomic recoil energy reduces the linewidth of the red

sideband but increases the linewidth of the blue sideband.

Consequently probing the red sideband of the atoms-cavity

system rather than the blue sideband would facilitate count-

ing atoms. In addition, these results suggest that the ability to

tune both the atomic recoil energy "k2
/2m and the coupling

strength g (this can be done, for instance, using CQED on

Raman transitions) would be beneficial. We attribute the

asymmetry between the sidebands to the different effective

potentials seen by states within the red and blue sidebands. A

detailed analysis of this aspect will be provided in a future

publication.

IV. CONCLUSIONS

We have found that the transmission spectrum of the cav-

ity containing N atoms trapped initially in the ground state of

a harmonic potential will consist of distinct transmission

sidebands which are red and blue detuned from the bare-

cavity resonance, when the vacuum Rabi splitting dominates

the atomic recoil energy. Analytic expressions for the first

and second moments of the transmission sidebands were de-

rived, and evaluated in the limits of tight and loose initial

confinement. These expressions include terms containing the

vacuum Rabi splitting "g and the recoil energy "
2k2

/2m.

The former can be regarded as line shifts and broadenings

obtained by quantifying inhomogeneous broadening under a

local-density approximation, i.e., treating the initial atomic

state as a statistical distribution of infinitely massive atoms.

The latter quantifies residual effects of atomic motion, in

essence quantifying effects of Doppler shifts and line broad-

enings. We surmise that this understanding of our results

should allow them to be applied directly to a finite-

temperature sample, characterized by some thermal size

(leading to inhomogeneous broadening) and velocity (lead-

ing to Doppler effects).

These results can be applied to assess the potential for

precisely counting the number of atoms trapped in a high-

finesse optical cavity through measuring the transmission of

probe light, analogous to the work of Hood et al. [11] and

Münstermann et al. [11,12] for single-atom detection. To set

the limits of our counting capability, we assume that atoms

are detected through measuring the position of the mean of

the red sideband. In order to reliably distinguish between N

and N+1 atoms in the cavity, the difference between the

means for N and N+1 atoms must be greater than the width

of our peaks, i.e., ukv±sNdl− kv±sN+1dlu.Dv± (see Fig. 3).

Let us consider that, in addition to the intrinsic broadening

derived in this paper, there exists an extrinsic width k8 due to

the finite cavity finesse and other broadening mechanisms.

Evaluated in the limit g@"k2
/2m and assuming large N,

kv−sNdl − kv−sN + 1dl . gÎ1 + e

8N
. s35d

We thus obtain an atom counting limit of

Nmax .
1 + e

8
k8

2

g2
+

1

2
s1 − ed2s1 + ed

, s36d

FIG. 3. Plot of kv−l as a function of the trap tightness e

=exps−k2s2d for N=8 and N=9 and small ratio of atomic recoil

energy to vacuum Rabi splitting, "k2
/2mg=0.01. The shaded re-

gions indicate the intrinsic width of the red sideband,

±ÎksDv−d2l /2. In the tight-trap limit, N=8 and N=9 can be distin-

guished. In the loose-trap limit, the intrinsic width of the spectra

render determination of atom number difficult.
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where we have assumed that the intrinsic and extrinsic

widths add in quadrature. This atom counting limit ranges

from Nmax=g2
/4k8

2
in the tight-trap limit to Nmax=1/ s1/2

+8k8
2
/g2d in the loose-trap limit. Figure 4 shows Nmax as a

function of e for various values of k8. In general, atom

counting will be limited by extrinsic linewidth when

16k8
2
.g2s1−ed2

and by intrinsic linewidth when

16k8
2
,g2s1−ed2

.

These results demonstrate that atom counting using the

transmission spectrum is best accomplished within the tight-

trap limit. Certainly, in the loose-trap limit, atom counting

will be rendered difficult as the intrinsic linewidth of the

sidebands is increased. However, several questions regarding

the feasibility of atom-counting experiments remain. First,

although atom counting by a straightforward measurement of

the intensity of the transmitted light may be difficult, it is

possible that the phase of the transmitted light may be less

affected by motional effects [13]. Dynamical measurements

(possibly using quantum feedback techniques) might also

yield higher counting limits. Second, atomic cooling tech-

niques could be used in the loose-trap limit to cool the atoms

into the wells of the optical potential, thereby decreasing the

observed linewidth [27–30]. In addition, cavity-cooling-

based detection would naturally stabilize the problems of

heating atoms during the measurement of their number. Fi-

nally, the state dependence of spontaneous emission has not

yet been taken into account. Although the loose-trap regime

leads to an intrinsic linewidth which limits atom counting, it

may also suppress the extrinsic linewidth as a result of con-

tributions from superluminescence. On the other hand, in the

Lamb-Dicke limit, the atoms are all highly localized, which

could lead to enhanced spontaneous emission due to coop-

erative effects. Future work will investigate alternative meth-

ods of atom counting and will explore complementary tech-

niques of reducing the intrinsic linewidth in atom-cavity

transmission spectra.
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