
Ultracold Atoms, Circular Waveguides, and Cavity QED with
Millimeter-scale Electromagnetic Traps

by

Kevin Lawrence Moore

B.S. (Harvey Mudd College) 1999
M.A. (University of California, Berkeley) 2005

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Dan M. Stamper-Kurn, Chair

Professor Dmitry Budker
Professor Brigitta Whaley

Spring 2007



The dissertation of Kevin Lawrence Moore is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2007



Ultracold Atoms, Circular Waveguides, and Cavity QED with

Millimeter-scale Electromagnetic Traps

Copyright 2007

by

Kevin Lawrence Moore



1

Abstract

Ultracold Atoms, Circular Waveguides, and Cavity QED with Millimeter-scale

Electromagnetic Traps

by

Kevin Lawrence Moore

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dan M. Stamper-Kurn, Chair

The construction of a laser cooling/trapping apparatus with a versatile mm-scale magnetic

trap for ultracold atoms is described herein. The design, operation, and performance of

this unique trap are presented. The manipulation of this magnetic trapping system facili-

tated the Bose-condensation of 87Rb atoms in a variety of magnetic traps, most notably a

millimeter radius circular magnetic trap for ultracold atoms. The dynamics of the quantum

degenerate atom beam in this geometry are explored, as well as future applications with

refinements of this system. A new probe of the phase space distribution of a generalized

atomic beam is presented, and this probe was employed in the circular magnetic waveg-

uide to characterize the quantum state of the system. Finally, this mm-scale magnetic

trap was integrated with a mm-scale high-finesse optical cavity which accesses the strong

coupling regime of cavity quantum electrodynamics (QED). Large ensembles of ultracold

atoms were delivered to this cavity, and the first experimental results of this new dispersive

regime of many-atom cavity QED are described.

Professor Dan M. Stamper-Kurn
Dissertation Committee Chair
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