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Chapter 7

First Experiments with the

BEC-CQED System

While its operators harbored no illusions about the substantial technical complexity

of this experiment, we were somewhat surprised by the downright finicky nature of the

apparatus. This could have been foreseen from the increased infrastructure (added to

the already substantial complexity of the apparatus described in chapters 2 and 3), but

we soon found the sensitivity of the locking chain described in Figure ?? to be the largest

impediment to forward progress. Operating the system required much longer start-up time

than the pure millitrap work, and for many months ∼ 2 all-nighters per week became the

norm as the system appeared to retain lock for longer stretches of time if the clock time was

single digits, followed by A.M. While many missteps were made and many confused debates

were conducted in the wee hours of the morning, at the time of this writing the system

appears very well understood (as evidenced by the two papers referenced above). While the

definitive word on the new physics which will be borne out of BEC-CQED system awaits

documentation in other theses, this chapter follows (somewhat chronologically) the critical

experiments which allowed us to understand the unique system we had implemented.
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7.1 Atom Transits

The first step in any cavity QED experiment is the observation of atom “transits”

through the cavity by the change in the cavity transmission. The atoms will ultimately be

precisely delivered to the cavity mode, but to begin the cavity mode must be located. The

cavity was thereby tuned to resonance and we blindly moved the atoms through the cavity

while monitoring the cavity transmission. After some trial and error in the transverse

positioning of the atom trajectory, the signal shown in Figure 7.1 was observed.
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Figure 7.1: Observation of controlled atom transits. As shown in the sketch on the left,
the TOP-trapped atoms are brought through the cavity mode. As seen in the cavity
transmission, the presence of the atoms in the mode shifts the resonance away. After the
atoms have left the mode, the transmission returns to its previous level.

With this signal in hand, the precise spatial position of the cavity mode could be

determined via cavity transmission alone. Ultimately we would gain another method by

which to “see” the mode, but this must await a later section.

7.2 Probing the Shifted Cavity

As reliably transferring ultracold atomic clouds (initially bound in the TOP trap) into

the cavity mode became commonplace, a new language began to emerge as we dutifully

recorded “uptick times,” searched far and wide for the “the line,” and dreamt lofty goals of

publishing a PRL entitled simply “Quantum Upticks.” While obscure to outside observers,

these phenomena became familiar to us as our first window in the dynamics of the many-
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atom cavity system, and surely deserve a detailed exploration here.

7.2.1 Upticks

As seen in the atom transit graph of Figure 7.1, the cavity is rapidly shifted out of

resonance as atoms are introduced to the cavity mode. The hard edge which is seen as

the cavity comes back into resonance, however, is caused in this case by the fact that the

atoms are removed from the cavity mode as quickly as they arrived while the cloud follows

a constant velocity trajectory.

Far more interesting is the case where the atoms are placed in the cavity mode and

are removed from the system through other mechanisms. We defer a detailed discussion

of the loss induced by the cavity probe (both off- and on-resonance) [144], but at the very

least the number loss due to background gas collisions is omni-present. As these losses

take the atom number in the mode N → 0, the cavity shift ΔN =
Ng2

eff

Δa
will be tuned

back to ΔN = 0. For the experimentalist monitoring the transmission of the cavity with

probe tuned to the unshifted cavity resonance (Δc = 0), the CRVC output will resemble

the data stream presented in Figure 7.2(b).
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Figure 7.2: Upticks (a) Frequency-space picture of the uptick process. Atoms are loaded
into the cavity ODT, shifting the cavity from resonance by ΔN = Ng2

eff/Δa. Light
resonant with the empty cavity is impinged upon the system, but is reflected due to the
ΔN shift. As the atoms are depleted from the trap, the cavity is brought back into
resonance, finally sparking full transmission as seen in (b).

The time delay between the initiation of the probe and the moment at which the cavity
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transmission spikes back to its “empty cavity” level is known as the uptick time. With

a weak probe (Γmeas = 105 /s, n̄ = 0.24), uptick times of > 40 seconds were observed.

Shortened uptick times spoke to either poor atom number population (which could be

confirmed by absorption imaging) or an increased atom loss rate. The increased atom loss

rate could speak to higher chamber pressure or, far more likely, some light-induced losses

from the action of the probe. There are some important subtleties for off-resonance probe

losses which will be revisited later in this chapter.

7.2.2 The Stationary Probe

Measuring the cavity shift ΔN of course involves tuning the probe away from the bare

cavity resonance. Two types of experiments which explore the cavity shift are possible,

both with their own virtues. The first is the “stationary probe,” which is closely related

to the uptick measurements and is depicted in Figure 7.3.
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Figure 7.3: Cavity Line Transits with Stationary Probe. (a) Similar to the uptick process,
the cavity is shifted by the presence of the atoms, but the probe is now tuned between the
shifted cavity and the bare cavity. (b) As the atoms are depleted the cavity is brought into
resonance for a brief time, and then tuned away from resonance as the system returns to
the empty cavity resonance. The atomic detuning in this case was Δa = −2π × 300GHz.

For these stationary probe experiments, the cavity probe is detuned from the bare

cavity resonance by Δc = ωp − ωc. With N intracavity atoms in the dispersive limit, the

cavity shift is ΔN = Ng2
eff/Δa and is presumably greater than Δc. As atoms are lost

from the system, ΔN will steadily be reduced until it approaches and equals Δc. Up to
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this point, the probe light which was incident upon the cavity was mostly reflected as the

lorentzian lineshape dictates the transmission to be (1 + (Δc−ΔN )2

κ2 )−1 off-resonance. As

Δc ≈ ΔN within κ, the transmission spikes as the resonance condition is met and the

intracavity light field is built up. The presence of λp ≈ 780 nm light in the cavity causes

heating which accelerates the atom loss [144]. This will rapidly take the system from

ΔN > Δc to ΔN < Δc, and the observation at the photodetector will be a “line” which

represents the photons which passed through the cavity for the brief time when ΔN ≈ Δc.

As the value of Δc is set by the experimentalist, the arrival of the line is in fact a

measurement of the atom number from N = ΔaΔc

g2
eff

(on resonance). This hypothesis may be

tested by triggering an absorption image on the arrival of the line, and the linear correlation

between the cavity shift and the number count in Figure 7.4(b) not only confirms the

theory but also provides an independent measurement of g2
eff . For the data shown in

Figure 7.4(b), the data confirm the expected value of g2
eff = 1

2 × 5
6 × (2π×15.6MHz). The

1
2 factor is of course from spatial averaging, the 15.6 MHz conforms to the expected value

of the cavity coupling from the knowledge of the mode volume, and the 5
6 factor arises

from the σ+ polarization of the probe light.

7.2.3 The Chirped Probe

The second method of probing the cavity shift involves operating the probe in “sweep”

mode, where the cavity detuning Δc is swept linearly in time across ΔN . This situation

is perhaps more controlled than the passive line transits of the stationary probe, as in the

sweep experiments the probe level and sweep rate are determined by the experimentalist.

In particular, the probe power can be reduced to such a level that the traversal of the

line (and corresponding dose of optical power) hardly influences the atom number after

sweeping through resonance, yielding a “non-destructive” probe of the atom number. The

relation of this non-destructive nature to the topic of quantum non-demoltion (QND) mea-

surements will be discussed in a subsequent section, but for the purposes of this discussion

the technique may be thought of as an alternative measurement of the atom number akin

to phase-contrast imaging [21] in its weak effect on the atom population. The sweeping

method is depicted in Figure 7.5.
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Figure 7.4: Cavity line shift as a number measurement. (a) The CRVC output is set
to trigger an absorption image at a certain count rate corresponding to Δc ≈ ΔN . (b)
The absorption images provide an independent measurement of the atom number, and
for a set of such experiments with Δa = 2π × (100GHz) the number count from the
triggered absorption images are plotted against the ΔN . There is not one but two lines
through the data, with the black line representing the slope predicted by the expected
g2
eff = 1

2× 5
6×g2

m = (2π)2×104MHz2 and the grey line the least squares fit to the data (with
a constrained zero crossing). The fit gives the measured value of g2

eff to be (2π)2×99MHz2,
5% off the expected value. The noise on the absorption imaging measurements were at
least at this level due to poor image quality from light diffraction off the mirror edges,
so this should be interpreted as a confirmation of our hypothesis within the experimental
precision.

7.3 FORT in the Cavity

While the primary function of the 850 nm laser is to lock the cavity length, it boasts a

second and remarkably useful function: that of a Far-Off-Resonance optical Trap (FORT)

[145]. The advantages of optical trapping in a cavity are many, but perhaps none as

much as the “state independent” nature of the trapping [41]. Optical trapping opens the

possibility of probing ensemble spin dynamics with the cavity, a scenario which is precluded

by a magnetic trap and explored later in this chapter.

The theory behind optical trapping is explored in great detail elsewhere [20, 63, 146,

147]. The AC Stark shift of the ground state for a far-detuned π-polarized beam of intensity



Section 7.3. FORT in the Cavity 137

frequency

ΔN = Ngo/2Δa
2

     final cavity 
probe frequency

shifted cavity
   frequency

(a) (b)

    initial cavity 
probe frequency

 frequency chirp
increases linearly
         in time

av
e.

 p
ho

to
n

 n
um

b
er

Δc (MHz)

0.2

0.1

0.0
-10 -5 0 5 10

frequency

ΔN = Ngo/2Δa
2

bare cavity
resonance

final cavity 
obe frequency

shifted cavity
  frequency

(a) (b)

    initial cavity
probe frequency

 frequency chirp
increases linearly
         in time

av
e.

p
ho

to
n

n
um

b
er

Δc (MHz)

0.2

0.1

0.0
-10 -5 0 5 10

Figure 7.5: Sweeping the probe over the shifted cavity resonance. (a) Unlike the passive
process of Figure 7.3, the probe is chirped in time such that it sweeps across the shifted
cavity resonance. (b) A

I incident upon a 87Rb atom is given by

ΔEg =
�γ2

8
I

Isat

(
1
3

1
δD1

+
2
3

1
δD2

)
, (7.1)

where Isat = 1.4 mW/cm2, δD1 and δD2 are the detunings of the beam from the D1 and

D2 lines (the 1
3 and 2

3 factors are from the Clebsch-Gordon coefficients for the transitions).

The optical power inside the cavity Pc is discerned from the output power Pout by

Pc = FtPout/ηt, where ηt is the efficiency budget for the 850 nm light ηt = 1
2×0.66

× 0.8 = 0.26,

where the factors were the balanced cavity, the dichroic mirrors, and the interference filter,

respectively. The maximum AC stark shift in the cavity is thus given by

ΔEg = −kB × 65 ×
(

Pout

nW

)
nK . (7.2)

As the mode structure inside the cavity is of the form |φ(r)|2 ∝ sin2(ktz) e−ρ2/w2
t , the

conversion to the trapping frequencies of the wells of the optical potential is given by:

ωz = 2π × 4.1 × 103 ×
√

Pout

nW
Hz (7.3)

ωρ = 2π × 32.5 ×
√

Pout

nW
Hz . (7.4)

While these conversions come from the theoretical equations, they were ultimately con-

firmed experimentally.
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This is not the first standing wave FORT inside a cavity to trap cold atoms [41], but

it is the first instance where atoms are controllably delivered pre-cooled to an intracavity

FORT. Loading the atoms into the FORT was complicated by the fact that the intracavity

optical power couldn’t be arbitrarily lowered without losing the cavity lock. The lowest

level which we would maintain lock was effected an AC Stark shift of ΔEg ∼ −kB×100 nK,

well below the 4Erec = kB ×710 nK level at which the FORT cannot support bound states,

so its effect can be ignored other than a modification of the effective mass. The 1μK level

is approximately the temperature of atoms which will be placed into the cavity region

from the TOP trap. While the “sky’s the limit” on the largest Stark shift possible, other

detrimental effects enter in such as increased three-body losses and enhanced heating from

the ODT power fluctuations.

Loading the atoms was optimized through a sequence which lowered the FORT to

∼ 1 μK, aligned the TOP-trapped atoms with the cavity mode, and then terminated the

magnetic trap and, over the course of ≈ 1ms, increased the FORT depth to 6μK. While

some atoms were lost in the transfer process, the loading was > 25% efficient. The loading

process is depicted in Figure 7.6(a), including an image of ∼ 105 atoms trapped in the

FORT.

As the 6 μK trap was typical, it is instructive to consider some thermodynamic

quantities of interest. With similarly typical loading conditions, we can consider plac-

ing 100, 000 atoms evenly distributed over 300 sites, meaning each lattice site holds ap-

proximately 300 atoms. Finally, observed temperatures1 consistently showed ∼ 0.8 μK

temperatures for the optically trapped atoms. Table 7.3 summarizes relevant energetic

and thermodynamic quantities.

A few facts stand out from Table 7.3. First, the ground state energy of the axial

trap is 1
2�ωz ≈ 1 μK, almost exactly the observed temperature. Thus, the atoms will

primarily be found in the axial ground state and are thermally distributed amongst the

transverse harmonic states. Second, the evaporation parameter η = Uo/kBT = 6 is very
1These were measured in the brief time of flight imaging available when the cavity FORT is extinguished

and the atoms fall under gravity. With less than 100 μm to fall before the majority of the cloud is obscured
by the lower cavity mirror, no more than 4 ms of free fall time was available. Temperatures were estimated
from the growth of the transverse width, though the data were rather noisy due to the diffraction of imaging
light off mirror edge.
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kt : Cavity FORT wavevector . . . . . . . . . . . . . . . . . . 2π/850 nm
wt : TEM00 mode waist for 850 nm . . . . . . . . . . . . 24.4 μm
Ns : Atom number per site . . . . . . . . . . . . . . . . . . . . . ∼ 300
Uo : Trap depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5μK
T : Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8 μK
η : Evaporation parameter, Uo

kBT . . . . . . . . . . . . . . 6

ωz : Axial trapping frequency, kt

√
2Uo
m . . . . . . . . . 2π × 40 kHz

ωρ : Transverse trapping frequency, 2
wt

√
Uo
m . . . . 2π × 310Hz

σz : Axial width (rms),
√

2�

mωz
. . . . . . . . . . . . . . . . . 70 nm

σρ : Transverse width (rms), 1
ωρ

√
kBT
m . . . . . . . . . 12μm

n : Density, Ns/σzσ
2
ρ . . . . . . . . . . . . . . . . . . . . . . . . . 3 × 1013 cm−3

g : Interaction strength, 4πn�
2as

m . . . . . . . . . . . . . . 2π × 210Hz
Tc : BEC transition temperature, ≈ �ω̄N

1/3
s /kB 0.5 μK

Γc : Collision rate, n(8πa2
s)

√
kBT
m . . . . . . . . . . . . . . 500 Hz

Γt : Tunneling rate, ≈ ωze
−λp

√
2m(Uo−�ωz)/2� . . . 0.02Hz

ηLD : Lamb-Dicke parameter, kpσz . . . . . . . . . . . . . . 0.28

Table 7.1: Optical lattice parameters
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Figure 7.6: Loading atoms into the cavity FORT. (a) Diagram shows the transfer of atoms
from outside to inside the cavity, with the imaging axis shown. (b) In-trap images of a
condensate being loaded into the ODT of the cavity. The TOP minimum is smoothly
shifted from outside the cavity to inside over 500ms, and then finally loaded into the ODT
as described in the text. (c) A much larger ODT population in the cavity FORT is seen
by the loading of a 1μK thermal cloud.

noteworthy, as typically during forced rf evaporation towards BEC this parameter is held

at ≈ 10. Finally, that the ratio of T/Tc = 1.6 is so close to 1 raises the possibility of

Bose condensation in each lattice site. As Tc ∝ U
1/2
o × N

1/3
s , modest enhancements could
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readily bring the transition temperature to 1μK. The trap depth was particularly easy to

increase, but even we operated the system with Uo > 20μK (nominally, T/Tc = 1.1) we

did not observe any signature of condensation. Further improvements are well within the

realm of possibility, and this remains a subject surely worth further investigation.

TEM00

TEM01

TEM03

150 μm150 μm

Figure 7.7: Ultracold atoms as intracavity power meters. The cavity is locked to different
transverse modes of the 850 nm locking/trapping light, and the atoms are loaded from
the TOP as in Figure 7.6. The higher order TEM modes show the characteristic Hermite
polynomial shape, with a slight bias in population on the loading side.

While this apparatus was designed to magnetically confine atoms in the cavity mode,

utilizing the FORT to confine the atoms has proven to be the most useful experimental

avenue. One reason for this is the fact that each well of the standing wave potential is in

the regime where the Lamb-Dicke parameter ηLD = kpσz = 0.28 for the 6μK FORT. The

“Lamb-Dicke regime” is the case where ηLD < 1, and in the context of cavity QED this

implies that each site in the optical lattice has a well-defined cavity coupling. The value of

each well coupling is easily calculated by the beat note between the 850 nm trapping light

and the 780 nm probe light. The coupling is thus approximately periodic over 4.7 μm, or

∼ 11 lattice sites, which is depicted in Figure 7.8.

7.4 Splitting the Cavity Shift with Atomic Polarization

It is likely to be the case that the TOP-to-ODT transfer will retain the entire popula-

tion in the |F = 1,mF = ±1〉 state. With this known atomic polarization, we may verify

the effect of light polarization on the cavity shift. In the dispersive limit, the hyperfine

energy splittings are irrelevant and a look at the Clebsch-Gordon coefficients (presented in

Figure 6.1) for the D2 transitions shows how the polarization will affect the line splitting.
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Figure 7.8: The axial variation of the cavity coupling g2(z) (red) is compared with the
axial variation of the optical trap potential Ut(z). Atoms are confined to the minima of
Ut(z), and for atoms well-localized in these minima each well will have a specific value of
g2
i as shown.

The sum of the squared coefficients for each transition gives the coefficient on the cavity

shift, i.e. ΔN → (
5
6

) Ng2

Δa
in the case of σ+ polarization and ΔN → (

1
2

) Ng2

Δa
in the case of

σ− polarization.

Presented in Figure 7.9 is a stationary probe trace for the system with a linearly

polarized probe, which of course consists of equal parts σ+ and σ−. Two lines are seen as

two different values of the atom number satisfy the σ+ resonance condition (Δc = 5
6

N+g2
o

2Δa
)

and the σ− resonance condition (Δc = 1
2

N−g2
o

2Δa
). The σ− is seen first, as its resonance

occurs with 1.5× the atom number of the σ+ resonance. This line splitting may be used

to verify the polarization character of the probe, which may differ from the “on-the-table”

polarization due to cavity birefringence (though we did not observe this). The fact that

the σ+ trace in Figure 7.9 shows only one discernable line is compelling evidence that

other spin states remain unpopulated in the transfer to the cavity FORT, but definitive

experimental evidence for this must await a later section.
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Figure 7.9: Line Splitting with a linearly polarized probe for Δa = 2π × (−80GHz),
Δc = 2π × (−5MHz). Shown are stationary probe traces for a σ+ polarized probe (grey)
and a linearly polarized probe (black). The distinctly different widths and heights actually
portended recent work cavity heating [144] and nonlinear optics [148].

7.5 Hybrid Trap

One novel functionality of the apparatus came when the atoms confined in the TOP

trap were overlapped with the cavity mode while intracavity locking/trapping light was also

engaged at a level sufficient to trap the atoms. We came to call this dual trapping scenario

the “hybrid trap,” and while it is not immediately interesting as a testbed for many-atom

cavity QED, it is instructive to consider the dynamics of the hybrid trap. It also highlights

the atomic polarization sensitivity of the cavity, which leads to the introduction of a new

data analysis technique explored in the subsequent section.

In the hybrid trap the majority of the atoms are confined entirely in the TOP (very

weakly coupled to the cavity), but a fraction of the atoms are confined by both the TOP

and FORT (strongly coupled to the cavity). There is no motional dissipation, so this

conservative system assures that the populations will be exhanging particles at a rate at

roughly the transverse trapping frequency of the TOP trap. This situation is depicted in

Figure 7.10(a).

Investigating this system with a stationary detuned probe shows this system to behave

quite differently than the lines observed for atoms in the FORT. As seen in Figure 7.10(b),

the line is much longer in duration and heavily asymmetric on the “outgoing” side (when

atom loss is tuning the cavity shift away from resonance). This asymmetric line may be
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Figure 7.10: The hybrid trap. (a) Absorption image of the hybrid trap, with both TOP
trapped atoms and ODT trapped atoms. (b) Stationary probe at a detuning of Δa =
2π×(−5.7GHz) shows a line biased to the “outgoing” side. (c) Numerical models described
in text account for the TOP and ODT populations (Na and N2, respectively) in time. (d)
The same model (at high bandwidth � ωr) shows the cavity transmission to qualitatively
match the observed output, with a heavy modulation at ωr.

understood in the context of a simple two population model involving N1 (the atoms in

the cavity) and N2 (the atoms outside the cavity but still bound by the TOP trap). Both

populations suffer a homogeneous loss rate λH from background losses. The populations

exchange particles at a rate ∼ ω (the transverse TOP trapping frequency) and the nominal

ratio of the populations is f = N2(t=0)
N1(t=0) (this will depend on a number of factors including

trap volume, temperature, cavity mode size, FORT intensity, etc.). Finally, the population

N1 is susceptible to loss due to the intracavity photons, given by a per-atom loss rate of

α/(1 + (Δc−ΔN )2

κ2 ). α is a coefficient predicted by cavity heating models (see the last

section of this chapter), and the Lorentzian lineshape of the cavity quantifies the number

of intracavity photons for a constant input flux2. Finally, the action of the TOP field
2Recent investigations presented in Ref. [144] show that this should in fact be the Voigt profile, a

convolution of the Lorentzian cavity lineshape and a Gaussian probe. Incorporating this into the present
analysis would not give qualitatively different results, and qualitative features are all this model is expected
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must be considered. Under a probe circularly-polarized along the cavity axis, the orbiting

TOP field orients the |F = 1, mF = −1〉 atoms along (effectively σ+ polarization) and

against (effectively σ− polarization) the cavity axis, yielding respective squared couplings

of 1
2

g2
o
2 and 5

6
g2

o
2 . This implies that the cavity shift is oscillating at the TOP frequency as

ΔN = N1g2
o

2Δa

(
2
3 + 1

6 sin ωrt
)
.

With this we can construct a first-order model of the hybrid trap lineshape under a

stationary probe. The coupled differential equations for this simple model are:

Ṅ1 = −ΓHN1 + ω (fN2 − N1) − α

⎛
⎜⎝1 +

(
Δc − N1g2

o
2Δa

(
2
3 + 1

6 sin ωrt
))2

κ2

⎞
⎟⎠

−1

N1 (7.5a)

Ṅ2 = −ΓHN2 − ω (fN2 − N1) (7.5b)

which are numerically integrated in and displayed in Figure 7.10(c). The cavity output

is proportional to
[
1 +

(
Δc − N1g2

o
2Δa

(
2
3 + 1

6 sin ωrt
))2 /

κ2

]−1

and is the observed quantity

at the photodetector. The cavity transmission for the numerically integrated equations in

Equations 7.5a and 7.5b are shown in 7.10(d) with the same asymmetric lineshape seen

in the data. Briefly stated, the reservoir of N2 atoms streaming into N1 provides a source

term on ΔN , which is otherwise a monotonically decreasing quantity. This was initially

thought to be a situation of negative feedback where, for a time, the source term ωfN2 was

balanced by the losses. This would not hold N1 constant, as N2 is obviously decreasing

as well, but the line would be “stretched” until the N2 reservoir is so depleted that the

N1 loss rate returns to ≈ λH . In the presence of the fast TOP frequency ωr this picture

is muddied further, and the hybrid line is perhaps better thought of as merely a complex

interplay between the reservoir N2, the inhomogeneous cavity losses on N1, and the now

oscillating ΔN .

One upshot of this complex system is the fact that the line is now 30ms long as

opposed to 1 ms, the overall signal for a hybrid line is substantially greater than that of

the FORT line from sheer photon counts. In particular, the harmonic drive ωr on the cavity

coupling should be evident in the data stream, and by taking the fourier power spectrum

of the raw SPCM data stream associated with the hybrid line shown in Figure 7.10(b), we

obtain the graph in Figure 7.11 with a prominent and familiar frequency component.

to provide.
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Figure 7.11: Fourier transform power spectrum of a hybrid line. The 5 kHz TOP frequency
is picked up as a modulation on the cavity shift. (The power spectrum is obtained by taking
the fourier transform of the SPCM data stream.)

7.6 Cavity Fourier Transform Spectroscopy

At this stage, Figure 7.11 is merely a measurement of the (already known) TOP

frequency, but this “cavity fourier transform spectroscopy” on the internal state of the

atoms will prove itself even more useful when considering the far more interesting cases

of Larmor precession. It can also be employed in the case of collective atomic motion, as

a coordinated reorganization of the N atoms in the cavity can take the cavity shift from

ΔN = 5
6Ng2

o for the atoms all located at λ = 780 nm cavity anti-nodes, ΔN = 0 for the

atoms all located at λ = 780 nm cavity nodes.

The concept of cavity fourier transform spectroscopy also relates to the correlation

function of the cavity transmission, which has been the preferred method for measuring

photon anti-bunching [42] and even counting statistics of atom lasers (as measured by a

strongly-coupled cavity) [50]. The first-order correlation function is defined as G(1)(τ) ≡∫ ∞
−∞ dt f∗(t)f(t + τ). In this case, f(t) is the TTL output of the SPCM, which was of

course the source of the fourier transform power spectrum shown in Figure 7.11. A few

lines of algebra yields the connection of the correlation function to the fourier transform

spectrum.
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G(1)(τ) =
∫ ∞

−∞
dt f∗(t)f(t + τ)

=
∫ ∞

−∞
dt

(∫ ∞

−∞
dω F ∗(ω)e−iωt

)(∫ ∞

−∞
dω′ F (ω′)eiω′(t+τ)

)

=
∫ ∞

−∞
dω

∫ ∞

−∞
dω′ F ∗(ω)F (ω′)eiω′τ

∫ ∞

−∞
dt ei(ω′−ω)t

=
∫ ∞

−∞
dω

∫ ∞

−∞
dω′ F ∗(ω)F (ω′)eiω′τδ(ω − ω′)

=
∫ ∞

−∞
dω |F (ω)|2eiωτ , (7.6)

which is of course just the inverse fourier transform of the square of the fourier transform

of f(t). Thus, all the information in the fourier transform power spectrum is accessible via

the correlation techniques of Refs. [42, 50], and vice versa.

7.7 Sub-“Shot Noise” Number Counting

That a measurement of the cavity resonance directly relates to a measurement of the

atom number immediately invites the question as to how precisely the ensemble popula-

tion could be determined. If we presuppose the ideal initial condition of a coherent state

of number and phase for the ensemble3, then Poissonian statistics are expected and the

atom number uncertainty is given by ΔN =
√

N . Using the previously-described “non-

destructive” probe to initialize the system at N = 24, 000 atoms, we found that we could

trigger on and then measure the atom number to a precision of ΔN = 95 atoms. This

is well below the predicted “shot noise” value of ΔN = 155 atoms. As this method ap-

pears akin to spin squeezing techniques [150], it is instructive to consider whether such

cavity transmission measurements achieve a Heisenberg-limited determination of the atom

number.

For the following reasons, we claim that this method does not represent number

squeezing of the atom population, and the arguments herein apply to any other quantum

variable (e.g. position, momentum, or spin) to which the atom-cavity system is sensitive.
3There is no a priori reason to expect the system to be in a coherent state of number and phase, but

this serves as the ”ideal” initial state in the absence of more advanced preparation techniques [149].
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First, we note that the measurement made was not directly measuring the atom number,

but instead
∑

i Nig
2
i , where i indexes the respective wells of the optical trap. As previ-

ously noted, g2
i can varies from 0 to 5

6g2
o depending on the overlap of the 850 nm trapping

potential with the 780 nm probe. Second, it is conceivable that instead of squeezing the

atom number N that perhaps we are projecting the system into a subset of atom distri-

butions which satisfy ΔN =
∑

i Nig
2
i /Δa. While this is not an obviously a useful subset

of states, it is composed of two quantum variables – number and position – which could

be squeezed. Again we must assert that no squeezing has occurred because neither the

atomic populations in the wells, nor the atoms which comprise them, have an a priori

phase coherence. Thus, even if the atomic population were measured to a precision of one

atom, the absence of either initial phase correlations or in situ mechanisms to establish

phase correlations in the system preclude the possibility that we have yet accomplished

any Heisenberg-limited measurement. The presence of cavity heating terms could further

doom the prospects of cavity-enhanced Heisenberg-limited measurements; a discussion of

these deleterious effects can be found in Ref. [144].


