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Chapter 5

Diagnosis of a Guided Atom Laser

Pulse

This chapter explores the derivation and implementation of a new tomographic tech-

nique to ascertain the state of a freely-propagating atomic ensemble; the work in this chap-

ter was presented in the publication:

• K. L. Moore, S. Gupta, K. W. Murch, and D. M. Stamper-Kurn, Probing the quan-

tum state of a guided atom laser pulse, Phys. Rev. Lett. 97, 180401 (2006). Included

in Appendix H.

Upon observation of the unterminated motion the atom beam launched into the cir-

cular waveguide, the following question immediately came to mind: “Is it still a BEC?”

For reasons that will be discussed in this chapter, the query itself is ill-posed. Neverthe-

less, this was the most commonly asked question upon presentation of the ultracold atom

storage ring, even to the community of experts working in the field of quantum degenerate

atomic systems. The curiosity underlying this problematic question does represent a valid

concern, and this chapter will address how to ask and answer the correct formulation of

this concern. The answer is of paramount importance if this system is to be viable for atom

interferometry, as all contributions to the evolution of the atomic phase under propagation

in the circular waveguide must be accounted for.



Section 5.1. Initial Conditions 76

5.1 Initial Conditions

The central question of this chapter is depicted in Figure 5.1. Succinctly stated, we

want to know the quantum state of the atom laser beam as it propagates around the

circular waveguide.

BEC in trap,
state is known

atom laser beam,
state is uncertain

Figure 5.1: Expanding guided atom laser beam

With the general Thomas-Fermi solution for static traps, we input our particular

experimental parameters (summarized in Table 5.1) and proclaim with confidence the

initial state of the beam. To begin to understand the subsequent state of the system, we

first examine the “launch” sequence. This was described briefly in the preceding chapter,

but given the known effects of the bias field on the TORT field, we may guess the form of

the longitudinal potential U(θ) experienced by the beam to be

U(θ, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2mω2

θ (ρoθ)
2 t < 0

mρoΩθ
2

(
t

30 ms

)
0 ≤ t < 30ms

mρoΩθ
2

(
60 ms− t

30 ms

)
30 ms < t ≤ 60ms

0 60ms ≤ t .

(5.1)

This equation is obtained by a knowledge of the endpoints of the motion, i.e. the initial

azimuthal trapping potential (1
2mω2

θ(ρ
2
oθ)

2) and the final angular velocity (Ω). Any θ

dependence beyond the linear terms in the 0 ≤ t ≤ 60ms would add or subtract to the
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m : Atomic mass of Rb-87 . . . . . . . . . . . . . . . . . 1.44 × 10−25 kg
N : Number of atoms . . . . . . . . . . . . . . . . . . . . . 3× 105

ρo : Circular trap radius . . . . . . . . . . . . . . . . . . . 1.25mm
(ωz, ωρ, ωφ) : Trapping frequencies (pre-launch) . . . . . 2π × (85, 85, 6) Hz

(ωT , ωφ) : Trapping frequencies (post-launch) . . . . 2π × (85, 0) Hz
aT : Transverse oscillator length,

√
m/2�ωT 0.82μm

Ω : Mean angular velocity of beam. . . . . . . . . depends on launch

Table 5.1: Guided atom laser beam parameters.

observed rms momentum width σP , which is already fully accounted for by the conversion

of the mean-field energy of the cloud into longitudinal kinetic energy. This said, the exact

effect of the launching sequence upon the beam is uncertain, and while we can propose

models for the evolution from the trapped state into the freely-propagating guided beam

state, we must independently verify the state of the beam after the launch and during free

propagation.

5.2 Free Evolution in the Circular Waveguide

As the longitudinal potential is “turned off” by balancing the magnetic storage ring,

the desired final state is an atomic beam propagating azimuthally while in the ground state

of the transverse potential 1
2mω2

T ((ρ − ρo)2 + z2). As the mean field energy is converted

into kinetic energy on a timescale of ∼ 10ms [104], it would seem logical to guess that the

transverse state of the beam would evolve to the ground state on the same timescale.

We tested this hypothesis by imaging the beam after variable propagation times in

the ring under a relatively slow launch of Ω = 2π × 6.3Hz. The slow launch part is

important because, as noted in Table 5.1, the oscillator length is aT = 0.82μm, well below

the resolution of our imaging system (1.8μm per pixel at a magnification of 3.7). Thus,

time-of-flight imaging must be employed. Of course, for a propagating beam the atoms

will not simply drop vertically under gravity, but retain a horizontal velocity of ρoΩ. This

will carry them to the edges of the 3 mm inner diameter (ID) imaging aperture in a time
1

ρoΩ

√
(ID/2)2 − ρ2

o (= 16.7 ms, in this case). With 15 ms TOF, the rms width of the ground
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state oscillator length is 6.6 μm, a size scale our imaging system can resolve. To be sure we

are imaging the central width of the beam in the same location (with same magnification,

etc.), the rms widths are measured after each period of orbit T = 2π/Ω = 158 ms (presented

in Figure 5.2).
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Figure 5.2: Observed transverse widths for atoms pulses after 15 ms TOF. Atoms were
launched at very low angular velocity, Ω = 2π × 6.3 Hz. The ground state oscillator
length and the first excited state oscillator length (after 15 ms time of flight) are set for
reference. The single error bar represents the typical statistical uncertainty in the time-of-
flight measurement. Solid line is a 1D model for the transverse width, given experimental
parameters.

These data clearly contradict our initial guess of a ∼ 10ms decay to the ground state

oscillator length, with the characteristic timescale at least an order of magnitude longer

than expected. To account for this discrepancy, we developed a 1-dimensional model for

the evolution of the interacting atoms as they freely expanded into the waveguide, roughly

following the treatment of Salasnich et al. [105]. The prediction of this model is compared

to the observed data in Figure 5.2, and while the correspondence between the simplified

model and the observed transverse widths is hardly perfect, it is perhaps not terrible for

the simplicity of the model. That both the model and the data approach the ground state

oscillator length on the same timescale (∼ 100’s of ms) indicate that the atomic beam in
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the waveguide does appear one-dimensional, with the decay to the transverse ground state

oscillator length merely limited by mean-field repulsion. This result gives strong evidence

that theoretical considerations of the longitudinal state of the beam, which will occupy

the remainder of this chapter, need not consider the transverse state of the beam beyond

the predicted values extrapolated from the model. We now focus our efforts solely on the

longitudinal state of the beam, a rather involved topic which will consume the rest of this

chapter.

5.3 A Note on Coordinates

It will be convenient to treat the system in the rest frame of the propagating atom

beam. As the beam is rotating with respect to the lab frame, this may cause some con-

fusion in regards to coordinate systems. To clarify this, we present Figure 5.3 to define

the rotating beam coordinates relative to the stationary lab frame. Similarly, Table 5.3

summarizes the coordinate conventions.
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(starting point)

propagation
   direction

optical probe
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Figure 5.3: Coordinate Axes for the Rotating Atom Beam.

Included is the presence of an optical probe which may illuminate the beam at any

position θ in the ring. The relevant coordinate for the optical probe will be the relative
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x, y, z : Cartesian coordinates in lab frame, defined (as in chapter 1)
θ : Angular position in ring, measured off y-axis (as in chapter 4)

X̂ : Propagating axis of the atom beam
X : Longitudinal position, ρoθ

σX : rms longitudinal width
P : Longitudinal momentum, ρoΩ

σP : rms momentum width (= m × 1.8 μm/ms)
Ŷ : Transverse axis of the atom beam
φ : Orientation of optical probe relative to the propagating axis of the beam

Table 5.2: Guided atom laser beam coordinate definitions.

angle φ between the wavevector of the probe and the longitudinal axis of the beam, X̂.

These are not to be confused with the stationary axes x, y, z and θ defined in previous

chapters.

The remainder of the chapter is concerned with dynamics of the longitudinal coordi-

nate, and the phase space formalism introduced in the next section will be applied to the

canonical coordinates X and P , as defined in Table 5.3. As we will show, the system will

be characterized entirely by the variables X, σX , P , σP , and φ.

5.4 Phase space Density and the Wigner function

As non-equilibrium systems, particle beams are best understood in the context of

a phase space density function f(r,p, t) which describes the distribution of particles in

phase space with
∫

f(r,p, t) dr dp = N , the total number of particles . The evolution of

the system is then given by the equation of motion:(
∂

∂t
+

p
m

· ∂

∂r
− ∂U(r, t)

∂r
· ∂

∂p

)
f(r,p, t) =

(
∂f

∂t

)
coll

, (5.2)

where U(r, t) is the potential energy function and (∂f/∂t)coll describes the effect of col-

lisions; for dilute gases where binary collisions are dominant, one obtains the Boltzmann

transport equation [106]. A wide variety of systems may be understood in this context,

spanning an immense energy range from astrophysical phenomena [107] to high-energy

beams of charged particles [108] and finally down to the lowest energy scales known to
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man, ultracold molecular beams [109, 53]. Full knowledge of the phase space density

function and its time evolution completely characterizes a particle beam.

The notion of a phase space density function is predicated upon the assumption that

a particle may have a well-defined position and momentum, a supposition which strictly

has no validity in the context of quantum mechanics. The phase space picture in quantum

mechanics may be recovered through the Wigner quasi-probability distribution [110], and

as we have a particle beam which originated from a quantum degenerate source governed

by a many-body wavefunction such a treatment would seem appropriate. Proceeding, the

single-particle Wigner function is defined relative to a pure quantum state |ψ〉 as:

W (r,p) =
1
2π

∫
e−ip·a/�ψ∗

(
r − a

2

)
ψ

(
r +

a
2

)
d3a . (5.3)

W(r,p) is the equivalent of the classical phase space density function as
∫ W(r,p) d3p =

|ψ(r)|2 and
∫ W(r,p) d3r = |ψ̃(p)|2, where ψ̃(p) =

(
1

2π�

)3/2 ∫
ψ(r) exp (−ip · r/�) d3r is

the momentum-space wavefunction. While the case of a BEC opens the possibility that

many particles could occupy the same wavefunction, usually a phase space description is

concerned with many particles, perhaps with a statistical mixture of quantum states. All

the information about the state of a quantum system is contained in the density matrix ρ̂,

and the density operator relates to the Wigner function through the equation

W (r,p) =
1
2π

∫
e−ip·a/�

〈
r − a

2

∣∣∣ ρ̂
∣∣∣r +

a
2

〉
da . (5.4)

For a free-particle system in the absence of inter-particle interactions the equation of

motion for the Wigner function, i.e. the quantum mechanically correct equivalent to the

classical Equation (5.2), is given by [111, 112]:(
∂

∂t
+

p
m

· ∂

∂r

)
W(r,p, t) =

∞∑
j=0

(�/2i)2j

(2j + 1)!
∂2j+1U(r, t)

∂r2j+1
· ∂2j+1W

∂p2j+1
(5.5)

For potentials with no spatial dependence beyond second-order, Equation (5.5) is identical

to Equation (5.2), though the Wigner function famously allows W(r,p) < 0 for certain

regions of phase space which may arise from non-classical interference terms. For a system

with U = 0, the time evolution dictated by Equation (5.5) may be written simply as:

W(r,p, t) = W
(
r − pt

m
,p, 0

)
. (5.6)
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This “shearing” associated with free evolution in phase space introduces an important

component of the phase space picture, namely the correlation between position and mo-

mentum. Without delving into the details which are more carefully considered elsewhere

[113, 114], we can identify the first-order correlation term as 〈(rj −〈rj〉)(pj −〈pj〉)〉 on any

component of r. If this is non-zero, then the position and momentum of the phase space

distribution are not statistically independent (to first order). Under Equation (5.6), this

correlation term becomes non-zero for all t > 0.

With this architecture in hand we may hypothesize about the evolution of the longitu-

dinal state of the atomic ensemble, with the accuracy of the guess to be checked against the

phase space probe developed in the latter part of this chapter. In this vein, three different

regimes present themselves. First, there is the condensate regime where the distribution

is spread out in X but tightly distributed about P = 0. The second regime occurs after

the confining potential is extinguished and the mean field energy is converted into kinetic

energy. In phase space, this process looks like a vertical shear, driving a strong correlation

between position and momentum. The third regime is that of free evolution, as dictated

by Equation (5.2). In this regime, the mean field energy is negligible and the beam is freely

expanding in the flat waveguide. These three processes are depicted in Figure 5.4.

P
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in trap mean-field expansion free evolution

(a) (b) (c)

P

X

P

X

P

X

in trap mean-field expansion free evolution
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P

X

P
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Figure 5.4: Hypothesized phase space evolution. Shown are the three regimes of phase
space evolution arising from the launch in Equation (5.1).

With this picture in mind, and our notion of phase space and the Wigner function as

the appropriate framework to describe the quantum state of a particle beam, we look for a

probe which can ascertain the form of the phase space distribution. The final state can then

be described in this context, and since we are considering a system of many particles, the
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notion of phase space density remains a useful construction. The distribution of particles

will occupy an effective “area” A in phase space, and this area will be some greater-than-

unity multiple of �. The ratio of the number of particles to the phase space area of the

Wigner distribution yields the phase space density Γ, and under the free evolution both

are conserved conserved. As Γ = N for a T = 0 Bose condensate, we look for a similarly

macroscopic phase space density of the propagating beam. We may also borrow a useful

notion from particle beams at the other end of the energy spectrum, namely emittance.

Emittance is employed somewhat in a statement of ignorance of the true phase space area

of a beam, but bounds the system by an ellipsoid inside of which the true phase space

area must lie [108]. Thus emittance serves as an upper bound on the phase space area,

subsequently giving a lower bound on the phase space density.

In this spirit, we posit further that the phase space description of the ultracold atom

beam in the circular waveguide can be reasonably described (or at least bounded) by a

Gaussian phase space distribution. As the longitudinal width (σX) is measurable at all

times by absorption imaging and the momentum width (σP ) is obtained through successive

absorption images. An absolute upper bound on the phase space area is obtained by the

product Amax = σXσP . We may be initially comforted by inserting some experimental

values into this formula; after just a half revolution in the waveguide the rms longitudinal

width was measured to be σX = 120μm, implying a phase space area of A = 310�. For

3 × 105 atoms, this yields a phase space density of Γ ≈ 1000. This is surely evidence

of macroscopic occupation of quantum states, but is a far cry from the presumed initial

condition of Γ = N . Examining Figure 5.4(b) and (c) immediately show that the mere

product of the observed σX and σP could be overestimating the true phase space area in

the presence of a strong X − P correlation. Indeed, after both mean field expansion and

free evolution we have every reason to believe that there exists a very strong correlation

between position and momentum. Taking this into consideration, we may write down a

provisional Wigner function for the beam:

W (X, P ) =
exp

[
− 1

2(1−η2)

(
X2

σ2
X
− 2η XP

σXσP
+ P 2

σ2
P

)]
2πσXσP

√
1 − η2

, (5.7)

where η = 〈XP 〉/σXσP is the correlation parameter in the center-of-mass frame of the
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beam. The actual phase space area of such a beam is smaller than the aforementioned

estimate by a factor A/Amax =
√

1 − η2. Put another way, for proper characterization

of a beam with position-momentum correlations one must distinguish between a spatially

inhomogeneous momentum width σP , which may be dominated by a coherent velocity

chirp across the length of the beam, and a “homogeneous” width A/σX .

While Equation (5.7) is not purported to be an exact description of the state, there

are numerous reasons to posit this function (not the least of which is its simplicity for

the ensuing calculations). Even after many months of launching beams derived from

a BEC into motion about the ring, we observed no “smoking gun” which consistently

distinguished the distribution as an expanding Thomas-Fermi profile (see Equation (??))

versus a Gaussian profile. At the very least, this can again be thought of only as an upper

bound on the true phase space distribution, constraining the emittance of the beam.

5.5 Tomographic Imaging of the Wigner Function

In the preceding chapters, absorption imaging yielded x − y projections of the three-

dimensional spatial density distribution of an atomic population, n(x, y, z), via attenuation

of a known light intensity function Io(x, y) as

I(x, y) = Io(x, y) exp
(
−

∫
n(x, y, z) σ dz

)
, (5.8)

where I(x, y) is the transmitted intensity and σ is the absorption cross section [?]. Such

imaging is of course impossible for the two-dimensional Wigner distribution W(X, P ), as

it is not a function on real space. Spatial images do yield some information about the

phase space distribution, however, as the 1D spatial density distribution n(x) is related to

the Wigner function of N particles by

n(X) = N

∫
W(X,P ) dP. (5.9)

This projection has given, at the very least, a spatial bound on the phase space area,

but the single line integral of the Wigner function is insufficient to “image” the full two-

dimensional distribution W(X,P ).
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Tomography is the method by which a two-dimensional function is fully imaged with

line integrals such as that in Equation (5.9). The technique relies on a mathematical

symmetry between a line integral of a function and a line integral of its fourier transform,

formally known as the Projection-Slice Theorem [115]. Suppose f(u, v) is an unknown

two-dimensional function; its full fourier transform is given by

F (ku, kv) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
f(u, v)e−ikuu e−ikvv du dv. (5.10)

We now consider a line integral on the y-axis

s(u) =
∫ ∞

−∞
f(u, v)dv, (5.11)

and its one-dimensional fourier transform

S(ku) =

√
1
2π

∫ ∞

−∞
s(u)e−ikuu du. (5.12)

Combining Equations 5.11 and 5.12, we obtain the relation

S(ku) =

√
1
2π

∫ ∞

−∞

[∫ ∞

−∞
f(u, v)dv

]
e−ikuu du

=
∫ ∞

−∞

∫ ∞

−∞
f(u, v)e−ikuu du dv

=
√

2π F (ku, 0). (5.13)

The meaning of this relation is that the fourier transform S(ku) of a projection s(u) of the

source function f(u, v) is proportional to a “slice” of the 2D fourier transform F (ku, 0).

This procedure can be generalized to any line integral on f(u, v) in a rotated coordinate

system (ũ = u cos ϑ + v sin ϑ, ṽ = −u sin ϑ + v cos ϑ), allowing an infinite set of projections

s(ũ) =
∫ ∞
−∞ f(u, v) dṽ from 0 ≤ ϑ < π to construct the full fourier transform F (ku, kv).

Applying the inverse transform yields a “reconstruction” of the desired distribution f(u, v),

so named because the original function was not directly imaged (as in the case of absorption

imaging), but rather inferred from a set of projections s(ũ). A visual representation of this

process is shown in Figure 5.5.

The two-dimensional function of interest for a propagating beam is of course the

Wigner quasi-probability distribution. We thus seek a probe which yields a signal depen-

dent on the generalized line integral

w(X̃) =
∫ ∞

−∞
W (X,P ) dP̃ . (5.14)
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Figure 5.5: The Projection-slice theorem. Fourier transforms of line integrals in coordinate
space correspond to slices in fourier space. A set of line integral projections thus clarifies
the full fourier transform F (ku, kv), and thereby the desired source function f(u, v).

Obtaining the spatial probability distribution w(X) =
∫ ∞
−∞W (X, P ) dP is typically straight-

forward, but obtaining projections for ϑ �= 0 is not. Finding and applying a probe capable

of resolving a sufficient set of projections w(X̃) to reconstruct the Wigner function W(X, P )

occupies the remaining sections of this chapter, though we close this section by considering

what tomography of the Gaussian Wigner function in Equation (5.7) would look like.

As depicted in Figure 5.6, simple spatial and momentum projections of Gaussian

distributions such as that in Equation (5.7) cannot distinguish between correlated and

uncorrelated distributions. Because of the functional simplicity of the Wigner function,

the off-axis projections can be fully characterized by their rms Gaussian widths. Plotting

these widths in Figure 5.6(b) shows that the correlation parameter is revealed in the full

set of tomographic projections. The shaded region highlights the limits of allowing free

propagation to carry out tomography. It is surely the case that information about σX ,

σP , and η can be obtained by absorption imaging after variable times of free propagation.

This is tomography, of a sort, with assistance of Equation (5.6), which can be shown to

yield

σ2
X(t) =

(
σ2

X(0) +
σ2

P

m2
t2

)
+ 2

(
σP t

m

)
η . (5.15)
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Figure 5.6: Probing a Gaussian Wigner function. (a) Off-axis projections are needed to
access the true phase space density. The system is fully characterized by three parameters,
σX , σP , and η = 〈XP 〉/σXσP . (b) Plot of observed projection widths σϑ show the virtues
of tomography, with the widths directly measuring the correlation parameter η. Most
desired is the region from 0 < ϑ < π/2, as the projection along the narrowed axis provides
a much more accurate measure of η. The shaded region from π/2 < ϑ < π is the region
accessible to “time of flight tomography,” and fails as an accurate measure of η because
for a highly-correlated system η → 1.

According to this equation, making a large number of measurements of |ψ(X, t)|2 for

0 < t < ∞, would allow all three parameters to be extracted. There is a practical problem,

however, namely that η is a number very close to unity and is thereby a weak fitting

parameter. Ideally one would obtain the set of projections 0 < ϑ < π/2 as, the minimum

value of σϑ at ϑ = π/4 gives a normalized width of
√

1 − η. This is the “most sensitive”

angle from which to probe, and is inaccessible to time-of-flight techniques because of the

time asymmetry arising from the mean-field expansion, i.e. Equation (5.6) is only valid for

t > 0. For an arbitrary distribution, projections at all angles 0 ≤ ϑ < π must of course be

obtained to accurately reconstruct the distribution, but for the Gaussian distribution of

Equation (5.7) only time-of-flight measurements of σX , σP , and a single projection along

the narrowed axis are required to bound the phase space area.
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5.6 Superradiance - A Signature of Coherence

One of the more dramatic signatures of Bose condensation in dilute gases involves

the phenomenon known as “superradiance,” first elucidated in the seminal work of Robert

Dicke in 1954 [116]. Dicke’s treatment does not necessitate a Bose-condensed sample,

but the topic has seen a substantial revival in interest due to the dramatic superradiant

behavior of BECs under certain experimental conditions. The crucial connection between

BECs and superradiance is “coherence,” and insofar as a BEC represents a macroscopic,

many-particle wavefunction with a spatial extent significantly larger than the wavelength

of resonant light, the superradiant properties of an ensemble are intimately related with

the state of the system.

The details must be omitted here1, but three factors collude to make superradiant

scattering in BECs truly remarkable. The first factor of superradiance is the notion of

“end-fire” modes, which come about for a collection of particles which are distributed

inhomogeneously in space such that the ensemble is elongated in one direction (say, ẑ)

relative to the remaining two. In this instance, final modes kf = ±|ko|X̂ which are emitted

along the long axis are preferred from the bosonic stimulation (or the effective “bosonic”

stimulation in the thermal or even fermionic gases [120]). Bose condensates, especially

those confined in the aforementioned optical dipole and Ioffe-Pritchard traps, usually have

an elongated axis and thereby strongly scatter along these directions. The second factor

which make BECs ideal superradiance testbeds is the “global” coherence of the ensemble

atoms, a consequence of the macroscopic occupation of a single quantum state. This

will be explored in greater detail in the following section, but simply stated the phase

coherence across the spatial extent of the ensemble allows an additive “phased antennae”

effect which can cause constructive interference for some output modes and destructive

interference for others. The third factor is purely a consequence of the nature of dilute

atomic gas BECs, namely that the critical temperatures occur well below the recoil energy

�
2|q|2/2m associated with the scattering even. This means that the scattered atoms will,

under free propagation, separate from the atoms at rest. Counting the number of scattered

atoms gives another method, besides the sometimes technically difficult photon detection
1We refer the reader to the Refs. [117, 118, 119] for more complete treatments.
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of scattered light, to quantify the superradiant scattering rate.

5.7 Superradiance in the Ring

Enacting superradiant light scattering in the ultracold atom storage ring proved to be

relatively simple in implementation. We began these experiments with the ∼ 3×105 atoms

in a decompressed (ωT , ωφ) = 2π × (85, 6) Hz trap (as compared to the ωθ = 2π × 35Hz

trap in the preceding chapter. The atoms were illuminated both in the trap and after the

launch, approximately along the x̂ direction with laser light −560MHz detuned from the

|2S1/2, F = 1〉 → |2P3/2F = 0〉 transition. The light was circularly-polarized, implying that

the phase of the TORT field (and therby the orientation of the atomic spins) should be

irrelevant for determining the scattering rate2. Typical laser intensities were 10 mW/cm2,

yielding single particle Rayleigh scattering rates of 400 s−1, and pulses were of duration

> 50 μs to ensure that we were not in the Kaptiza-Dirac regime (see Section 4.10.2).

After launching the atoms into motion about the ring, we illuminated the atom beam

at various incidence angles φ and observed the characteristic superradiance effect of elon-

gated Bose condensates, collective scattering out the end-fire mode. As the momentum

dispersion of the beam (σP = m × 1.8mm/s) is nearly an order of magnitude less than

the momentum imparted from a superradiant scattering event 2�k = m× 12.3mm/s, free

propagation in the ring will separate the scattered atoms from the unscattered atoms. This

is depicted in Figure 5.7.

Quantifying the superradiant scattering rate has been accomplished previously [117]

by direct photocounting of the scattered photons. Despite numerous attempts, we were

unable to measure the scattered photons in this system. This is likely due to the small

number of scattered photons as well as the “orientation problem,” in that at best we

would be able to observe the superradiated photons at only a specific angle because the

orientation of the superradiating axis is constantly rotating. As shown in Figure 5.7(d),

we may quantify the number of superradiant scattering events by counting not photons

but recoiling atoms. This most easily done by measuring the longitudinal center of mass,
2This was explicitly verified by synchronizing the superradiant light pulse to the TORT fields and varying

the phase. As expected, no significant variation of the scattering rate with TORT phase was observed.
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Figure 5.7: Superradiance of the atom pulse propagating in the circular waveguide. (a)
Pump light illuminates the freely propagating atom beam at angle φ relative to the mean
angular position, and (b) scattered atoms separate from the original pulse and can be
distinguished from unscattered atoms. (c) Raw image of an atomic beam that has under-
gone superradiance. The contrast on the image cannot immediately make out Azimuthal
density distributions n(X) in the ring 160 ms after illumination are shown for beams that
have (black) or have not (grey) undergone superradiant light scattering. The shifted center
of mass (indicated by arrows) quantifies the total superradiant scattering rate.

Xc.m., given by

Xc.m. =
∫

X n(X) dX∫
n(X) dX

=
Nsc

Ntot

(
2�k

m
t

)
, (5.16)

where Nsc is the number of scattered atoms and Ntot is the total number of atoms. Nsc is

of course a measure of the superradiant scattering rate, but to be useful we must remain

in the “small-signal gain” regime [117] where the number of scattered atoms is still small

relative to the unscattered atoms. If the superradiant “gain” exceeds the “loss” (which

will be discussed extensively in subsequent sections), Nsc will increase exponentially and

a center-of-mass measurement can be related to the exponential rate.

Using this method, we examined the angular dependence of the outcoupled fraction

fsc = Nsc/Ntot for a given laser pulse of 150μs duration and launch of Ω = 2π × 9.1 Hz,

shown in Figure 5.8:

This graph is, strictly speaking, a measurement of gain minus loss, so it is not imme-

diately unclear from these data whether the gain, the loss, or both are responsible for the

spike in Nsc around φ = 0. The contributing factors [117] would not seem to account for

the large variation of the overall superradiant gain, so we proceed by attempting to isolate

the loss process. As we will see, the mechanism responsible for the angular variation of

the superradiant scattering rate in Figure 5.8 is intimately related to the Wigner function

of the atomic beam. This fact will be used to provide the desired phase space probe.
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Figure 5.8: Angular dependence of superradiance. The propagating cloud was illuminated
at various angles with a single optical pulse of intensity 10 mW/cm2, detuning −560MHz
from the F = 1 → F ′ = 0 transition, and duration 150μs. The superradiant population
is counted via the center of mass measurements technique in Equation (5.16). These data
do not distinguish between the angular dependence of the superradiant gain vs. loss, but
do show the dramatic dependence of one or both of these quantities with angle.

5.8 Superradiant Pump-Probe Spectroscopy

Superradiant pump-probe spectroscopy (SPPS) was introduced by Yoshikawa et al.

[121], and at its core utilizes the “wavefunction overlap” inherent in the superradiant

scattering rate to probe the quantum mechanical character of a system. As noted in the

preceding section, a BEC is an ideal source for superradiance. Thermal systems would

not immediately seem a good source for superradiance given lack of large-scale coherence,

but the particles comprising a gas of atoms at temperature T do have a thermal deBroglie

wavelength of λdB =
√

2π�2/mkBT . This sets the “size” of the single-particle wavepackets,

as Gaussian wavefunctions with the momentum-space form φ(p) = exp
(−p2/2mkBT

)
.

We humbly rename the technique of Yoshikawa et al. as monochromatic SPPS, for

reasons that will become apparent. In monochromatic SPPS, an initial coherence in a gas

is established by initiating superradiant Rayleigh scattering with a laser beam of wavevec-

tor ko (the “pump” beam). The elongated geometry of the atom beam strongly favors

scattering out the endfire mode3 kf = |ko|X̂, the effect of which is to convert all atomic

3This could be either or both ±X̂, with the preference depending on the orientation of the input mode
ko [122].
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wavepackets in the system as ψi(r) → (α + βeiq1·r)ψi(r), where q1 = kf − ko. The hall-

mark of superradiance is the exponential growth of |β|2 due to corresponding increase in

the visibility of the 2π/|q1| density modulation, though this superposition state could be

created via other processes, e.g. Bragg scattering.

The system is then allowed to evolve for a time τ , after which the same laser beam

of wavevector ko (now the “probe” beam) illuminates the system and superradiant light

scattering is recommenced. That the identical wavevector is utilized for the pump and

probe motivates the preface of monochromatic SPPS. The scattering rate ΓSR of this pump

pulse off the modulated density profile is proportional to square of the phase matching

integral

ΓSR ∝
∫

dΩ(kf )
∣∣∣∣∫ e−i(kf−ko)·rψ∗

sc(r, τ)ψ(r, τ) d3r
∣∣∣∣2 , (5.17)

where

ψsc(r, τ) = ψ

(
r − �q1

m
τ, τ

)
eiq1·r e−i

�|q1|2
2m

τ , (5.18)

and ψ(r, τ) is the atomic wavefunction.

End-fire superradiance is still preferred, meaning kf = |ko|X̂ and we find that the

superradiant scattering rate is just given by

ΓSR ∝
∣∣∣∣∫ ψ∗

(
r − �q1

m
τ, τ

)
ψ(r, τ) d3r

∣∣∣∣2 , (5.19)

If σP � �qq, then the argument of Equation 5.19 is just G(1)
(

�q1
m τ

)
, the first-order spatial

correlation function. The scattering rate thus decreases in time from the increasing non-

overlap of the initial and scattered atomic wavefunctions. A Gaussian form for the atomic

wavefunction will give

ΓSR ∝ exp
(
− t2

τ2
c

)
, (5.20)

where τc = m/
√

2|q1|σP is the 1/e coherence time, and σP is the rms momentum width.

Yoshikawa et al. measured the coherence time for both a thermal gas and partially con-

densed cloud below Tc, showing a strong divergence in τc for the condensate component.

For the purposes herein, we may consider utilizing monochromatic SPPS on the atom

beam in the circular waveguide along the elongated propagation axis with a laser beam

of wavevector ko = 2π
780nm . End-fire superradiance will strongly favor backscattering, so
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q1 = −2koX̂. The longitudinal momentum dispersion is σP = m × 1.8mm/s, so the

coherence time with the SPPS scheme should be τc = 24μs.

As we explore in the next sections, carrying out this experiment showed that the coher-

ence time was nearly two orders of magnitude longer than the prediction from monochro-

matic SPPS! We now introduce bichromatic SPPS to explain this dramatic discrepancy.

5.9 Bichromatic Superradiant Pump-Probe Spectroscopy

Motivated by the fact that the guided atom beam is rotating around the circular

waveguide, we must reconsider a crucial assumption in the initial consideration of SPPS,

namely that the incident laser beam is stationary in time. More generally, the probe

pulse may have a different wavevector from the pump laser beam. This may come about

from two distinct laser sources of differing color or, more relevantly for the experiments

described herein, from a single pump-probe laser source of wavevector ko illuminating an

atom beam propagating at a rotation rate Ω in the circular atom waveguide. In this case

the second probe pulse comes a time τ after the initial pump pulse, the long axis of the

atom laser beam will have rotated by an angle Ωτ . Both possibilities are illustrated in

Figure 5.9.
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Figure 5.9: Two possible scenarios for bichromatic superradiance pump-probe spec-
troscopy: (a) The wavevectors of the pump and probe differ, or (b) the incidence angle of
the pump and probe differ.

Returning to Equations (5.17) and (5.18), we can retain the necessary generality by
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letting q1 = kf −k1, the recoil wavevector for the pump pulse, and q2 = kf −k2, the recoil

wavevector for the probe pulse, differ. As �q1 exceeds σP by a factor of ∼ 7, we can also

assume the time evolution of the original wavefunction to be negligible on the timescale

of τ ,4 meaning ψ(r, τ) → ψ(r). Under the validity of this assumption, the superradiant

scattering rate thus becomes

ΓSR ∝
∣∣∣∣∫ ei(q2−q1)·rψ∗

(
r − �q1

m
τ

)
ψ(r) d3r

∣∣∣∣2 , (5.21)

Introducing b ≡ �q1τ/2m and Δq = q2 − q1, we obtain

ΓSR ∝
∣∣∣∣∫ eiΔq·(r−b) ψ∗ (r − b) ψ(r + b) d3r

∣∣∣∣2 . (5.22)

This equation may be informed further by the inclusion of the momentum-space wavefunc-

tion ψ̃(p) =
(

1
2π�

)3/2 ∫
ψ(r) exp (−ip · r/�) d3r:

ΓSR ∝
∣∣∣∣∣
∫

eiΔq·(r−b)

[(
1

2π�

)3/2 ∫
ψ̃(p1)e

ip1·(r−b)/� d3p1

]

×
[(

1
2π�

)3/2 ∫
ψ̃(p2)e

ip2·(r+b)/� d3p2

]
d3r

∣∣∣∣∣
2

. (5.23)

Further, we define p = (p1 + p2) /2 and p′ = p2 − p1. With some algebra, we obtain

ΓSR ∝
∣∣∣∣∫ eiΔq·(r−b) e2ip·b/�

[∫
eip′·r/� ψ̃∗

(
p − p′

2

)
ψ̃

(
p +

p′

2

)
d3p′

]
d3p d3r

∣∣∣∣2 .

(5.24)

The argument inside the brackets is of course the Wigner function W(r,p), yielding

ΓSR ∝
∣∣∣∣∫∫

eiΔq·(r−b) e2ip·b/�W (r,p) d3p d3r
∣∣∣∣2 . (5.25)

This equation may appear obscure, but one final change of variables illustrates its meaning.

We perform an extended canonical transformation to generalized coordinates, i.e. scaling

the position and momentum variables by some ro and po, respectively:

r̃ = cos ϑ
r
ro

+ sinϑ
p
po

, (5.26a)

p̃ = − sin ϑ
r
ro

+ cos ϑ
p
po

. (5.26b)

4A full treatment would merely keep the time dependence ψ(r, t) and the final results would be largely
unaffected (though somewhat obscured).



Section 5.9. Bichromatic Superradiant Pump-Probe Spectroscopy 95

This substitution takes Equation (5.25) to

ΓSR ∝
∣∣∣∣∫∫

ei(Δqro cos ϑ+(2pob/�) sin ϑ)·r̃ ei(−Δqro sin ϑ+(2pob/�) cos ϑ)·p̃ W (r,p) d3p̃ d3r̃
∣∣∣∣2 ,

(5.27)

which has not manifestly improved the situation upon first glance. Recall, however, that

Δq = (q2 − q1) is a parameter under an experimentalist’s control in bichromatic SPPS.

For instance, it is possible to tune q2 such that the following condition is satisfied:

Δqro cos ϑ +
2pob

�
sin ϑ = 0 . (5.28)

For this to be valid Δq and b must be collinear (with respective magnitudes Δq and b).

This collinear criterion specifies that q2, while its magnitude may vary, must be collinear

with q1. This puts a strong restriction on experimental implementations of bichromatic

SPPS, indeed such a strong restriction that the implementation in a rotating frame would

seem severely hindered. This issue will be revisited, but for now we proceed on the as-

sumption that this criterion can be satisfied.

The phase space angle ϑ is then set by

ϑ = tan−1

(
�Δq ro

2pob

)
= tan−1

(
mΔq ro

poq1τ

)
. (5.29)

In this regime, Equation (5.27) becomes

ΓSR ∝
∣∣∣∣∫ ei[−Δqro sin ϑ+(poq1τ/m) cos ϑ]·p̃

(∫
W (r,p) d3r̃

)
d3p̃

∣∣∣∣2 . (5.30)

Finally, we note that as Δq and q1 are collinear, we have picked out this axis as “preferred”

in that the integrations of W(r,p) on the two orthogonal axes contribute nothing to the

signal. This may be seen through the recognition that the canonical commutation relation

[ri, pj ] = i�δij enforces the separability of the Wigner function in cartesian coordinates

W(r,p) = W(r1, p1)W(r2, p2)W(r3, p3) , (5.31)

with each obeying
∫ ∫ W(ri, pi) dridpi = 1. Thus, without loss of generality, we may

take axis common to q1 and Δq to define the r1-axis and integrate out the remaining
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dimensions. With this, we obtain

ΓSR ∝
∣∣∣∣∫ ei[−Δqro sin ϑ+(poq1τ/m) cos ϑ]p̃

(∫
W (r1, p1) dr̃1

)
dp̃1

∣∣∣∣2 . (5.32)

This equation represents the main result of bichromatic SPPS, and thereby deserves close

scrutiny. First, we note that the parenthetical expression represents an off-axis projection

of the Wigner function, the necessary element of tomographic phase space imaging, and

thus the superradiant scattering signal now depends directly on this function. Second,

we note that the remaining integral is the fourier tranform of the off-axis projection.

Recalling the projection-slice theorem from Section 5.5, this corresponds to a slice in the

fourier transform space of the original function W(r1, p1). Thus, with full experimental

control over q1, q2, and τ , complete tomography of the six-dimensional r− p phase space

is accessible.

5.9.1 Bichromatic SPPS with Two Light Sources

The notion of “full experimental control” is obviously the rub. For q2 to be aligned

with q1 and still achieve tomography, the wavelength of the second light pulse must be

different from the first (again, see Figure 5.9). This is experimentally challenging and gener-

ally disadvantageous because of the fact that atoms do not Rayleigh scatter all wavelengths

equally. (The consequences of differing Rayleigh scattering rates for the pump/probe pulses

has not been considered in this analysis.) However, with the use of a second laser a closer

examination of Equation (5.29) shows that for a single positive Δq, only 0 ≤ ϑ < π/2

is accessed by mapping scattering rate signals from 0 ≤ τ < ∞. Swapping the first and

second laser pulses has the effect of sending Δq → −Δq, completing the complete set of

−π/2 < ϑ < π/2 projection angles necessary for full tomography.

5.9.2 Bichromatic SPPS in a rotating frame

As depicted in Figure 5.9(b), an alternative mechanism to implement phase space

tomography is utilizing a single probe laser and probing the Wigner function of a rotating

system. This necessitates a revision of Equation (5.32) (though the result will ultimately

be retained in the proper limit). In this sub-section we consider the general case of an



Section 5.9. Bichromatic Superradiant Pump-Probe Spectroscopy 97

atomic beam rotating in a circular 1D waveguide, with the goal being a general result

which can then be compared to our experimental parameters in the final section of this

chapter.

We begin by considering an elongated beam such as that propagating around a circular

waveguide. In the lab frame, the beam is rotating at an angular velocity Ω. We further

restrict the system to the two-dimensional plane of the circular waveguide, i.e. the beam

motion and pump-probe wavevectors have no z-components. Three length scales must

immediately be compared, namely the rms longitudinal width of the beam, σX , the rms

transverse width of the beam, σY , and the radius of the ring, ρo. The following regime is

specifically considered:

σY � σX � ρo . (5.33)

The first criterion makes end-fire superradiance with the output mode(s), kf = ±|ki|X̂,

most likely. The second criterion means that the beam subtends a small angular spread

Δφ ≈ σX/ρo, as we will the assign the average angular position to the beam.

As depicted in Figure 5.9(b), the system is illuminated with a pump-probe sequence

by a single laser of wavevector k, with pulses separated by time τ . In this separation the

probe pulse will have rotated by an angle Ωτ with respect to the pump pulse’s angle of

incidence φ, measured off the x-axis. Thus, the following equations are valid:

k1 = k
[
cos φX̂ + sinφŶ

]
(5.34a)

k2 = k
[
cos (φ + Ωτ) X̂ + sin (φ + Ωτ) Ŷ

)
(5.34b)

kf = −kX̂ (5.34c)

q1 = k1 − kf

= k
[
(1 + cos φ)X̂ + sinφŶ

]
(5.34d)

q2 = k2 − kf

≈ k
[
(1 + cos φ − Ωτ sin φ)X̂ + (sinφ + Ωτ cos φ)Ŷ

]
(5.34e)

Δq = q2 − q1 (5.34f)

≈ kΩτ
(
− sin φX̂ + cos φŶ

)
. (5.34g)

Where “≈” symbols are used, the assumption that Ωτ � 1 has been made, and as is
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typically the case experimentally. These geometric constructions are depicted in Figure

5.10:
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Figure 5.10: Bichromatic SPPS in a circular waveguide.

Returning to Equation (5.25), the generalized phase matching equation, we recast it

in two dimensions as:

ΓSR ∝
∣∣∣∣∫∫

eiΔq·(r− �q1τ
2m

) eip·q1τ/m W (r,p) d2p d2r
∣∣∣∣2 . (5.35)

This may be simplified to

ΓSR ∝
∣∣∣∣∫∫

e−ikΩτ sin φX+i kτ
m

(1+cos φ)P W(X,P ) dX dP

∣∣∣∣2
×

∣∣∣∣∫∫
e−ikΩτ cos φY +i kτ

m
sin φPY W(Y, PY ) dY dPY

∣∣∣∣2 . (5.36)

The separability of the two axes is highly advantageous, as we desire a probe solely of the

Wigner function of the X-axis and can look at the signal in two pieces, ΓSR ∝ ΓX,SRΓY,SR

as delineated in Equation (5.36). Further, as described in Section 5.2, the transverse state

of the beam in a waveguide is dependent upon the longitudinal state of the beam. The

rotating system ensures that Δq will not be collinear with q1, so we accept that attempting

tomography on one axis will necessarily be “contaminated” by the (quantifiable) effect of

the pump-probe sequence on the perpendicular axis or axes.

Proceeding, we look to the X − P integral term in Equation (5.36), and perform the

same phase space transformation as conducted in Equation (5.26):

X̃ =
X

σX
cos ϑ +

P

σP
sinϑ , (5.37a)
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P̃ = − X

σX
sin ϑ +

P

σP
cos ϑ . (5.37b)

Instead of substituting arbitrary spatial and momentum scaling factors, the rms spatial

and momentum widths (σX and σP ) are chosen as natural normalization factors. With

these, the longitudinal component of Equation (5.36) becomes

ΓX,SR =
∣∣∣∣∫∫

exp
[
ikτ

(
−ΩσX sin φ cos ϑ +

σP

m
(1 + cos φ) sinϑ

)
X̃

]
(5.38)

× exp
[
ikτ

(
ΩσX sin φ sin ϑ +

σP

m
(1 + cos φ) cos ϑ

)
P̃

]
W(X, P ) dX̃dP̃

∣∣∣2 .

As before, we define ϑ by the satisfaction of the following condition

−ΩσX sin φ cos ϑ +
σP

m
(1 + cosφ) sin ϑ = 0 , (5.39)

which has the solution

ϑ = tan−1

(
mΩσX

σP

sin φ

1 + cos φ

)
, (5.40)

or, equivalently,

ϑ = tan−1

(
mΩσX

σP
tan

φ

2

)
. (5.41)

A crucial difference exists between this rotating case and the preceding example of “linear”

bichromatic SPPS, namely that this definition of ϑ has no dependence on τ . This surprising

fact is a consequence of the linear-in-time angular variation of q2, which ultimately cancels

with the linear-in-time evolution of the wavefront spacing. Instead of temporal dependence,

the phase space angle ϑ is tuned most easily by a variation of φ, though Ω is potentially

an experimental control knob as well.

Regardless of the method of varying ϑ, the X-component of the superradiant scattering

rate is now given by

ΓX,SR =
∣∣∣∣∫ exp

[
ikτ

(
ΩσX sin φ sinϑ +

σP

m
(1 + cosφ) cos ϑ

)
P̃

] (∫
W(X,P ) dX̃

)
dP̃

∣∣∣∣2 ,

(5.42)

with the desired tomographic projection
∫ W(X, P ) dX̃ evident in the equation. For com-

pleteness, we present the transverse component of the superradiant signal is

ΓY,SR =
∣∣∣∣∫∫

e−ikΩτ cos φY +i kτ
m

sin φP W(Y, PY ) dY dPY

∣∣∣∣2 , (5.43)



Section 5.9. Bichromatic Superradiant Pump-Probe Spectroscopy 100

with the product ΓSR = ΓX,SRΓY,SR setting the functional dependence of the superradiant

signal. That φ sets the X − P phase space angle ϑ yet also contributes to the signal

through ΓY,SR means it is incumbent upon the experimentalist to account for the effect

of the transverse dimension on the predicted signal. Put another way, ΓSR can only yield

tomography on W(X,P ) when the functional behavior of ΓY,SR is fully accounted for, as

otherwise the signal is polluted by the transverse contribution.

As a test case, we can imagine enacting bichromatic SPPS on the posited Wigner

function in Equation (5.7). Evaluating the line integral with this distribution, we obtain∫
W(X, P ) dX̃ =

1√
2π (1 − η sin 2ϑ)

e− eP
2/2(1−η sin 2ϑ) , (5.44)

which is a Gaussian distribution on P̃ of rms width
√

1 − η sin 2ϑ. Continuing with the

evaluation of ΓX,SR, we have:

ΓX,SR =
∣∣∣∣∫ exp

[
ikτ

(
ΩσX sin φ sinϑ +

σP

m
(1 + cosφ) cos ϑ

)
P̃

] (∫
W(X,P ) dX̃

)
dP̃

∣∣∣∣2
=

∣∣∣∣∣
∫

eikτ(ΩσX sin φ sin ϑ+
σP
m

(1+cos φ) cos ϑ) eP
(

e− eP 2/2(1−η sin 2ϑ)√
2π (1 − η sin 2ϑ)

)
dP̃

∣∣∣∣∣
2

= exp
[
−m2k2

σ2
P

(
1 − η sin 2ϑ

cos2 ϑ

)
(1 + cosφ)2 τ2

]
. (5.45)

Recognizing |q1| = k(1+cos φ) and the parameters in the parenthetical are positive for all

ϑ and φ, Equation (5.45) becomes simply

ΓX,SR = exp
(
−τ2

τ2
c

)
, (5.46)

with τc defined as the e−1-decay time,

τc =
m

σP |q1|
cos ϑ√

1 − η sin 2ϑ
. (5.47)

The maximal coherence times will occur at ϑ = π/4, the projection along the narrowed

axis, yielding

τc

∣∣
ϑ=π/4

=
m√

2σP |q1|
1√

1 − η
, (5.48)

which corresponds exactly to the monochromatic SPPS signal when η = 0. Thus, a

measurement of the maximal coherence time yields η by

η = 1 −
(

m

σP |q1|τc,max

)2

, (5.49)
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and the bounding phase space area is A = Amax

√
1 − η2. These two equations show that

enacting SPPS in the ultracold atom storage ring should (a) result in coherence times much

longer than the monochromatic SPPS result would predict and (b) provide the probe we

desire to measured the phase space area A.

As previously mentioned, the transverse component ΓY,SR can potentially detract

from this measurement of η, so a similar algebraic exercise involving Equation (5.43) can

illuminate exactly this contribution to the signal. Under the same Gaussian approximation

that correctly predicted the transverse ground state decay, we may envision an uncorrelated

Gaussian Wigner function with spatial rms width σY . Equation (5.45) then becomes

ΓY,SR = e−(k2Ω2σ2
Y cos2 φ) τ2 × e−(�2k2 sin2 φ/m2σ2

Y ) τ2
(5.50)

= exp

(
− τ2

τ2
c,Y

)
. (5.51)

where the transverse decay time τc,Y is given by

τc,Y =
(

k2Ω2σ2
Y cos2 φ +

�
2k2 sin2 φ

m2σ2
Y

)−1/2

. (5.52)

It will depend upon the experimental parameters whether this term will “hide” the long

coherence times that Equation (5.47) would afford from the longitudinal term.

5.10 Bichromatic SPPS in the Ultracold Atom Storage Ring

With a theoretical understanding of the issues involved in the bichromatic SPPS signal

in a rotating reference frame, we implemented this scheme in the circular waveguide. The

angular velocity was Ω = 2π × 8.4Hz, and the earliest time at which the atoms will be

approximately aligned with the laser beam occurs after ≈ 61 ms of propagation time in the

ring. At this stage, the atom beam has an rms width of σX ≈ 120 μm, subtending an angle

of Δφ ≈ 5.5o. This immediately highlights a problematic feature of this incarnation of

bichromatic SPPS, namely that the angular spread of the beam potentially compromises

the assignment of a single angle φ to the system. 2D models which numerically evaluate the

azimuthal and transverse phase matching integrals for a curved beam give some credence

to the supposition that this is not a problem for this limited extent.
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Considering the light pulses themselves, the pump and probe beams were obtained

with an SRS pulse generator driving an RF switch (Mini-Circuits ZFSWHZ-1-20) which, in

turn, initiated and extinguished the deflection of a beam from an acousto-optic modulator.

The pump and probe beams were typically 50μs in duration, with the variable delay τ

between them. In the duration of the pulses, the atomic beam will rotate by an angle 0.15o,

another effect which detracts from the ideal implementation introduced in the preceding

section. In fact, this rotation and the associated rotational dephasing was likely responsible

for the angular variations of ΓSR in Figure 5.8, as the beam rotated by an angle 0.49o during

the 150μs pulse time.

Experimentally, a systematic measurement of the coherence times at various angles

around the ring was even more dramatic than the angular gain picture in Figure 5.8. The

sum of the numerous measurements

That the peak is at an angle close, but not equal to zero, makes one suspicious of

a systematic error in angular measurement. Unlike superradiance, momentum transfer

from Kapitza-Dirac scattering is dependent only on the orientation of the light beams. As

the superradiance beam was identical in alignment to the Kapitza-Dirac beam (minus the

retroreflection), the axis of scattering seen in Figure 4.14 was the reference for 0o. The

conservative 2o error estimate is thus based on the uncertainty on the atom beam axis,

representing at least 1σ-confidence.

The very long coherence times of τc ∼ 1 ms are immediate evidence of a highly corre-

lated system, as they exceed the monochromatic SPPS decoherence time m/σP |q1| = 35 μs

by a factor of 40. All is not immediately clear, however, as the experimental parameters

and an inversion of Equation (5.41) would predict an angle φc = 31o for these large co-

herence times to occur, while the data would indicate φc = 4(2)o. This discrepancy is

not understood at this time, though we suspect that it may be necessary to adapt our 1D

treatment of superradiance to beams with small Fresnel number, i.e., with length greatly

exceeding the Rayleigh range defined by the probe wavelength and the transverse width

of the atom beam. Our method may be probing only short portions of the beam, the mo-

mentum width of which is enhanced by their small extent, rather than probing the beam

as a whole.
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Figure 5.11: Measured coherence times are compared to theoretical predictions for a co-
herent Gaussian beam (solid line) and an incoherent, uncorrelated ensemble (dotted line).
The theoretical curve in fact predicts the maximum coherence time at φ = 31o (see text),
but has been shifted for comparison to data.

A brief consideration of the transverse contribution to this signal shows that this

may be the factor which ultimately limits the observed coherence times. Incorporating

experimental values into Equation (5.52) shows the dominant transverse loss to be τc,Y ≈
(kΩσY cos φ)−1. Utilizing the lower bound from the 1D model of Figure 5.2, the transverse

width should be σY ≈ 2.4
√

�/2mωY . This gives a limiting transverse decay time of

τc,Y ≈ 1ms, right in line with the maximum observed coherence time.

Taking the observed maximum coherence time of τc = 1.1(1) ms, we infer the cor-

relation parameter to be η = 1 − [
4.9(6) × 10−4

]
. The atom beam is thus constrained

to inhabit a phase space area of no more than A = 9(1)�.5 The constraining Wigner

distribution, inside which lies the true distribution, is plotted in Figure 5.12:

This upper bound on the phase space area is presented in lieu of a true reconstructed
5This is equivalent to placing a lower bound of L = (�|q|/m) τc = 13(1) μm [123] on the longitudinal

coherence length of the propagating cloud.
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Figure 5.12: Wigner distribution implied by coherence times of 1.1 ms. The phase space
area is bounded by 9�, where an area of 1� is shown for reference. In this distribution of
≈ 9 quantum states reside 3 × 105 atoms.

Wigner distribution due to current limitations in data quality (seen in the scatter of Fig.

??a), though a reconstruction even from the thirteen data points in Fig. ??b would already

yield a distribution of phase space area less than 9�. This small phase space area further

implies a macroscopic phase space density of N/A ≥ 3.3 × 104, meaning the beam is still

highly degenerate and, if the transverse decay is truly limiting the measurement, possibly

fully quantum generate. Thus, our observations should be construed as placing quantitative

lower bounds on the coherence of the propagating atom beam while remaining consistent

with its complete coherence.

Finally, we note that this effect persisted for multiple orbits about the ring. Figure

5.13 shows the maximal coherence times after 1, 2, and 3 orbits about the ring. All show

the same ≈ 1ms coherence times, implying that the macroscopic phase space occupation

is not compromised even after > 300 ms of propagation time. Of particular note is the

inset of Figure 5.13(c), which shows that only a small portion of the cloud is undergoing

superradiance. This is because at this stage the cloud is subtending a large angular spread

of XXX degrees. Because of this expansion, we were unable to make measurements for

orbits of greater than three, though we observed nothing which would suggest that the

quantum degeneracy is compromised at later propagation times.
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Figure 5.13: Long coherence times after multiple trips around the ring. Insets show typical
density profiles n(X) for the respective data series.


