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Chapter 4

Bose-Einstein Condensation in a

Circular Geometry

This chapter discusses quantum degenerate gases in a circular waveguide; the work in

this chapter was presented in the publication:

• S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, Bose-

Einstein condensation in a circular waveguide, Phys. Rev. Lett. 95, 143201 (2005).

Included in Appendix G.

As discussed in the preceding chapter, the primary difference between the millitrap

and its larger counterparts are the comparatively large field curvatures arising from the

millimeter length scales of the electromagnets. Beyond the described advantages for Ioffe-

Pritchard traps, these field curvatures can be exploited in other trapping geometries as

well. Specifically, we consider how to utilize the coaxial curvature and anti-bias coils to

create a balanced, circular magnetic waveguide for ultracold atoms.

4.1 The Magnetic Quadrupole Ring

To explain the origin of the magnetic quadrupole ring (Q-ring), we look back to the

Ioffe-Pritchard field in Equation (3.1) and envision eliminating the transverse gradient field

B′
ρ → 0. Bc now has a local field saddle point at the origin, and the field decreases for



Section 4.2. Corrections to the Cylindrically Symmetric Q-ring 51

z = 0, ρ � 0 according to

Bc = Boẑ +
B′′

z

2

[(
z2 − ρ2

2

)
ẑ − zρρ̂

]
. (4.1)

This field Bc vanishes in the x − y plane at a radius of ρo = 2
√

Bo/B′′
z . While the

magnitude of the field expands linearly from this radius, the quadrupolar field differs from

that of the spherical quadrupole considered in chapter 2. The magnitude of the gradient

can be shown to be B′ =
√

BoB′′
z , but it is the form of the field which distinguishes it

from the spherical quadrupole. More precisely, about a point at (z = 0, ρ = ρo), it is the

case that

∂Bc

∂z
· ẑ = 0 ,

∂Bc

∂ρ
· ρ̂ = 0

∂Bc

∂ρ
· ẑ = −B′ ,

∂Bc

∂z
· ρ̂ = −B′ , (4.2)

and ∂Bc/∂θ = 0 trivially from cylindrical symmetry. This should be contrasted with the

spherical quadrupole field, which has a field profile of BSQ = B′
SQ(x, y,−2z). Graphically,

the Q-ring and its field lines are depicted in Figure 4.1.

Bo

ρo

x

z

y

ρρoρρ

Figure 4.1: Quadrupolar Ring Diagram.

Assuming the z-axis is aligned with the direction of the gravitational acceleration g,

the locus of field zeros will be a local magnetic field minimum if B′ > |mg/μ|. Thus, in its

ideal form, the Q-ring is a perfectly flat and circular magnetic quadrupole trap.

4.2 Corrections to the Cylindrically Symmetric Q-ring

Of course, ideal cylindrical symmetry is difficult to achieve. In this section, we explore

scenarios where this symmetry is broken in both controlled and uncontrolled manners. The
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consequences of a departure from a perfectly flat ring are significant for ultracold atoms

because of the minuscule energy scales involved. Thus, we consider field modifications

from various perturbative corrections, as well as the energetic modification for a particle,

of magnetic moment μ, confined in the waveguide.

4.2.1 Bias Fields

Suppose a uniform bias field Bs = Bsŝ is applied to the Q-ring field in Equation (4.1),

where ŝ is an arbitrary unit vector. We immediately see that z-component of Bs is merely

absorbed into an offset of the bias field of Bc, i.e. Bo → Bo + Bs · ẑ. This changes the

radius ρo but maintains the cylindrical symmetry which gives the circular locus of field

zeros.

Therefore, we need only consider bias fields in the x-y plane of the ring, with two

relevant parameters being the magnitude Bs and the angle θs off the heretofore arbitrary

x-axis. The field of the Q-ring thus becomes:

Bc = Boẑ +
B′′

z

2

(
z2 − ρ2

2

)
ẑ + [Bs cos(θ − θs) − zρ] ρ̂ − Bs sin(θ − θs)θ̂ . (4.3)

Some further algebra reveals that the field near the unperturbed ring behaves as

Bc = −B′ρẑ +
[
Bs cos(θ − θs) − B′z

]
ρ̂ − Bs sin(θ − θs)θ̂ . (4.4)

Unlike the perfect ring field of Equation (4.1), this field vanishes at only two points −
(Bs/B′, 0, θs) and (−Bs/B′, 0, θs + π) − in (z, ρ, θ) coordinates. This tilts and stretches

the ring in the z − θs plane by an angle φtilt = tan−1
(

Bs
2Bo

)
. This deformation does not

correspond to a pure rotation, such as would result from just tilting the entire trapping

assembly. The circular field has been deformed to maintain the ρo circular projection on

the x − y plane (depicted in Figure 4.2).

The modification to the potential around the ring is two-fold. First, a particle will

experience a magnetic contribution to the energy as μBs| sin(θ − θs)|. Second, the tipping

of the ring will cause a gravitational contribution to the energy shift if the field minimum

at θ is lifted/lowered off z = 0. Together, the potential felt by a magnetic particle in the

ring would, to lowest order, be given by

U(z, θ) = mgz + μ

√
[Bs cos(θ − θs) − B′z]2 + B2

s sin2(θ − θs) . (4.5)
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Figure 4.2: Q-ring under transverse bias field.

As previously stated, it must be the case that B′′
z � |mg/μ| to effect magnetic trapping

against gravity. This condition guarantees that the potential energy gained by the vertical

displacement at θs, ΔUgrav = mg(Bs/B′), is less than the magnetic potential energy at

θs ± π/2, ΔUmag = μBs. This is best seen in a contour plot of Equation (4.5) on z and θ,

shown in Figure 4.3:
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Figure 4.3: Gravi-magnetic potential contour plot.

As expected, θs+π is the energetic minimum of the ring, vertically displaced below the

ring. A second local energy minimum occurs at θs, but displaced above the unperturbed

z = 0 ring by Bs/B′. Finally, we are interested in the energetic variation of the potential

around the ring, U(θ), which is defined to be the minimal value of the potential at a given

cylindrical angle θ. This is most readily obtained by setting the derivative of (4.5) with

respect to z to zero and solving, but some care must be taken. The magnetic potential

energy must be everywhere positive for a magnetically-trappable particle which remains

adiabatic in the ring. With this consideration, U(θ) can be shown to have the form

U(θ) = μBs

[(√
1 + f2

2 + f2

)
| sin(θ − θs)| + f1 cos(θ − θs)

]
, (4.6)
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where f1 ≡ mg/μB′ and f2 ≡ mg/
√

(μB′)2 + (mg)2. The presence of the absolute value

of sin(θ − θs) is of course representative of the fact that the magnetic potential energy is

manifestly positive about the ring. That this potential contains high-order harmonics (all

even, as a matter of fact) has important implications for the motion of propagating atoms,

a detailed consideration of which may be found in our paper on betatron resonances [53].

4.2.2 Gravity

Even in the absence of external bias fields, gravity can play a role if the symmetry axis

of the electromagnetic coils is not aligned with the gravitational acceleration, g. If the coil

axis is kept as the z-axis, then the g can be given as g = −g(cos φ, sin φ cos θg, sinφ sin θg),

where φ is the angle between g and ẑ, and θg is angle formed between the x− y projection

of g and the x − y plane. The potential variation around the ring can then be written as

U(z, ρ, θ) = μB′√z2 + (ρ − ρo)2 + mgz cos φ + mgρ sin φ cos(θ − θg) , (4.7)

At a given θ, this equation is trivially minimized with z = 0, ρ = ρo. The energetic

variations about the waveguide path, however, can vary substantially

U(θ) = mgρo sin φ cos(θ − θg) , (4.8)

with φ → π/2 and a sizeable ρo being the most obvious scenario. Unlike Equation (4.6),

Equation (4.8) has only a first-order harmonic term in θ. This fact disallows any re-

balancing of a gravitationally misaligned Q-ring using only an external bias field. Rather,

a combination of bias and curvature fields is needed.

4.2.3 Inhomogeneous Fields

Moving beyond simple bias fields, an arbitrary inhomogeneous vector field Bext(x, y, z)

may be applied to the ring. As a simple bias field already added a non-trivial | sin θ| mod-

ification to the potential energy variations about the ring, we can expect sizable inhomo-

geneous external fields to further complicate the energetic structure of the ring. A severe

case of this is depicted in Figure 4.4:



Section 4.2. Corrections to the Cylindrically Symmetric Q-ring 55

x

z

y

B

Figure 4.4: The Q-ring in the presence of inhomogeneous magnetic fields.

We may consider these fields generally in a fourier expansion about the locus of the

unperturbed ring as

B(θ) =
∞∑
l=0

Bl sin(lθ − θl) . (4.9)

This is not immediately useful, as the fields may expand, stretch, and displace the shape of

the ring. Further, the field moments Bl and phases φl are unknown, as is their relationship

to the relevant magnetic ring quantities, Bo, B′, B′′
z . This does suggest, however, that we

might similarly examine the deformation of the ring and the potential function about the

ring minima in harmonic terms:

rring →
∞∑
l=0

(
δzl sin(lθ − φz,l)ẑ + δρl sin(lθ − φρ,l)ρ̂

)
(4.10a)

U(θ) →
∞∑
l=0

Ul

2
(
1 + sin(lθ − φl)

)
, (4.10b)

where the energetic moments are measured off the U = 0 flat ring. The magnitude of the

δzl, δρl, and Ul moments can be related back to the various orders of spatial derivatives

of Bext(x, y, z), but ultimately the central meaning of Equation (4.10) lies in the relation

of the higher-order harmonic structure of the ring to the field inhomogeneities. As noted

in Subsection 4.2.1, these harmonics are important for the motion of atomic beams about

the ring, with the connection explored extensively in Ref. [53].
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4.3 Loading Atoms into the Q-Ring

The first observation of the Q-ring came as a bit of a surprise, although it was ac-

complished in precisely the manner discussed in Section 4.1. Atoms were trapped in the

Ioffe-Pritchard configuration and the gradient current controlling B′
ρ was progressively re-

duced to zero. As this was carried out, the atoms were pulled from the IP trap center and

began filling in the Q-ring.

This is hardly the ideal manner to load atoms into the Q-ring, and while the atoms

were delivered in a manner identical to that discussed in the previous chapter, the best

“handshaking” between the external quadrupole trap and the Q-ring was to heavily bias the

Q-ring along −ŷ, the entry axis for the atoms coming from the loading region. The atoms

are transferred to the tilted Q-ring just as they were to the millitrap spherical quadrupole

trap, a procedure which is depicted in Figure 4.5. More quantitatively, 2.5 × 107 atoms,

pre-cooled to 60μK were confined in the 200 G/cm field from the external quadrupole

transfer coils. Within 1 second, the spherical quadrupole field was converted to a tilted

Q-ring trap produced with B′′
z = 5300 G/cm2, Bo = 22 G, and a side field of magnitude

Bs = 9.2G. This process left 2 × 107 atoms trapped in the tilted Q-ring.

0 ms 100 ms 200 ms 300 ms 400 ms

external quadrupole to Q-ring handoff

600 ms 800 ms

1000 ms 1200 ms 1400 ms 1600 ms 1800 ms 2000 ms 2200 ms

balancing the Q-ring

balancing the Q-ring hold in flat ring

Figure 4.5: Time sequence of loading atoms into the Q-ring. In the first 500ms, the atoms
bound in the external quadrupole coils are aligned with the left edge of the Q-ring. The
millitrap current is engaged (in a 9 G tilted Q-ring setting) as the external quadrupole trap
is ramped off. Reorienting the Q-ring is then accomplished by bias field shifts, and in the
case shown the ring is slowly balanced over the course of 1 second. In the balanced ring,
the Majorana loss rate is increased (see text) and the population fades at an accelerated
pace.
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The bias field which tips the ring may itself be extinguished to balance the Q-ring,

a sequence also shown in Figure 4.5. As the atoms fill the flattened Q-ring, a noticeable

increase in the loss rate is observed. The origin of this increase, of course, comes from

the fact that the Q-ring is an unbiased magnetic trap, susceptible to the same Majorana

spin-flip losses which plague spherical quadrupole traps. We note here that the normal

experimental operation only made use of the first 500 ms of Figure 4.5, i.e. the Q-ring was

never actually flattened in practice. A method to bias the Q-ring and maintain the circular

structure is discussed later, and this technique was employed directly in the tilted Q-ring

which suffers less from Majorana losses for reasons which we will now explore.

4.4 Majorana Losses in the Q-Ring

Majorana losses are a well-known phenomenon in ultracold atomic physics precluding

the use of DC current spherical quadrupole traps to achieve BEC [21]. The central idea is

contained in a recognition of the fact that a magnetically-trapped spin state |F = 1, mF =

−1〉 is Larmor precessing in its local magnetic field at a rate ωL = 1
2μB|B(x, y, z)|. Near

the center of a spherical quadrupole trap the field vanishes, which means that the Larmor

precession frequency of atoms near the origin can be quite small. To remain adiabatic and

in a trappable state, the time rate of change of atomic orientiation must be substantially

less than ωL. In the case at hand of a spin in a magnetic field, this can be expressed as

∂

∂t

|μ̂ · B|
|μ| |B| �

μ|B|
�

. (4.11)

If this condition is violated then the system is open to “spin flips,” in that the particles will

have non-zero amplitude to be in other spin states which are untrapped. To estimate the

amount of loss that a system of thermal atoms would experience in a spherical quadrupole

trap of gradient B′, we look to the critical radius rc at which the two expressions in

Equation 4.11 are equal:
v

rc
=

μBB′rc

�
, (4.12)
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where v is the velocity of the atom. Within factors of unity, we can say that for a thermal

gas of average velocity v ≈ √
kBT/m the critical radius is

rc ≈
√

�

μB′

√
2kBT

m
. (4.13)

We also note that the thermal cloud occupies a volume of V ≈ π(kBT/μBB′)3. Together

these elements translate to a Majorana loss rate ΓM by considering the thermal flux of

atoms through the surface boundary of Ac = 4πr2
c , which can be shown to be

ΓM ≈ Ac

V

√
2kBT

m

≈ 6
�

m

(
μBB′

kBT

)2

. (4.14)

If we extend this analysis to the Q-ring, we recognize that the critical radius rc does not

change, but instead of enclosing an ellipsoid it bounds a torus of radius ρo. Thus, the

surface boundary is given by Ac = 2πρorc, the volume becomes V = 2π2ρo(kBT/2μB′)2,

and the Majorana loss rate is

ΓM ≈ �
1/2

πm3/4

(μB′)3/2

(kBT )5/4
. (4.15)

The absence of any ρ dependence is initially surprising, but is merely a reflection of the

fact that in a torus the surface area to volume ratio is constant with radius.

Regarding specifically our Q-ring, we attempted to quantify these losses at various

Q-ring tilts. For a ring of Bo = 22G, B′′
z = 5300G/cm2, a variable bias field Bs along

the y-axis was applied and the atom loss rate for a T = 60μK cloud measured, shown in

Figure 4.6.

For these experimental values, the expression in Equation (4.15) would predict a

loss rate of 6 /s, far in excess of the maximal 0.3 /s. This is almost certainly due to

residual fields, perhaps even sizeable inhomogeneous fields, which mitigate some of the

Majorana damage that the flat ring prediction of Equation (4.15) would predict. This

foreshadows a result presented later in this chapter for the energetic variations in the ring,

but whatever the cause the Q-ring, like its spherical quadrupole counterpart, is incapable

of accommodating a quantum degenerate sample. We now turn to a method which will

eliminate these losses in the ring, facilitating Bose condensation in the ring.
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Figure 4.6: Variation of Majorana loss rate with Q-ring tip. The Majorana loss rate is
measured as function of bias field, showing the increased loss rate in the balanced config-
uration versus tipped configuration. Absorption images are associated with the observed
loss rates in the data series. With this method, we were able to diagnose not only the
Q-ring but the permanent magnetic field inside our vacuum chamber to be ≈ −3.7Gŷ.

4.5 The Time-Orbiting Ring Trap

Just as the Majorana losses from a spherical quadrupole trap can be eliminated by the

orbiting field of the TOP trap, we look to orbiting fields to reduce the deleterious effect of

the field zero. To make the Q-ring equivalent of a TOP trap, we employ a Time-Orbiting

Ring Trap (TORT) [85] which consists of the following field

Br = Br

(
cos(ωrt), sin(ωrt), 0

)
, (4.16)

and is most readily accomplished by the application of an oscillating axial bias field Br,1 =

Br(cos ωrt, 0, 0) and spherical quadrupole field Br,2 = Br
ρo

sin ωrt (−z, ρ, 0), all expressed

in (z, ρ, θ) coordinates. This field must be added to the arbitrarily biased Q-ring field in
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Equation (4.3). In this case, the field about the unperturbed ring is

Bc =
(

Br cos ωrt−B′ρ
)

ẑ+
(

Br sin ωrt+Bs cos(θ−θs)−B′z
)

ρ̂−Bs sin(θ−θs)θ̂ . (4.17)

As in Section 3.5.3, we take the time-averaged field to second-order in |B′r/Br| about the

minimal azimuthal path and obtain the field magnitude

|Bc| = Beff +
B′ 2

2Beff

(
1 − 1

2
B2

r

B2
eff

)(
ρ2 + z2

)
, (4.18)

where Beff =
√

B2
r + B2

s sin2(θ − θs). It is worth noting that the base transverse trapping

frequency from this field profile, ωT =
√

μ
m

B′ 2
2Br

, is everywhere reduced by the application

of Bs except at θ − θs = 0, π where it is unchanged.

If we consider a ring which is also tipped slightly (φ � 1) at angle θg with respect to

gravity, then to lowest order the potential about the ring can be shown to be

U(θ) = μ
√

B2
r + B2

s sin(θ − θs) + mgh cos(θ − θg) + mg
Bs

B′ cos(θ − θs) , (4.19)

where h = ρo sin φ, the height of the tilt in the ring. It is worth noting here that the rotating

field Br can, in the appropriate limit, “smooth out” the absolute value asymmetry of the

Bs| sin(θ−θs)| which doomed the balancing of the Q-ring in Equation (4.6). For Br � Bs,

the TORT may be completely flattened against slight gravitational misalignments with

only energetic variations of μ
(

Bs
2Br

)
Bs| sin(θ − θs)|, a significant improvement over the

Bs| sin(θ − θs)| of the Q-ring.

4.6 Topping Off the Q-ring

The time-varying fields needed to convert our Q ring to the TORT traps were obtained

by suitably modulating the currents in the four coils used to generate the Q-ring potential.

A rotating field frequency of 5 kHz was found to yield the best conditions, easily satisfying

the requirement to be much larger than the transverse motional frequencies (< 100Hz)

and also much smaller than the Larmor precession frequency (> 3MHz). To first switch

on the TORT, a rotating field magnitude of Brot = 18G was used.

As shown in Figure 4.7, the trap lifetime was dramatically increased by application

of the TORT trap. In the first few seconds after switching on the TORT, we observed a
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Figure 4.7: Elimination of Majorana losses in the TORT. The Q-ring loss rate data from
Figure 4.6 (closed circles) are compared to the long lifetime in the TORT (solid circles).
The TORT exhibits a vacuum limited lifetime of 90 seconds, irrespective of the orientation
of the ring.

fast loss of atoms and a simultaneous drop in their temperature. We ascribe this loss and

cooling to the evaporation of atoms from the trapped cloud to the finite depth of the trap.

(This was affectionately referred to as the “torus of death.”) As the temperature dropped,

the evaporation rate diminished and the lifetime of trapped atoms became vacuum limited

at 90 s, a value observed both for balanced and for tilted TORT traps.

4.7 BEC in the TORT

The long lifetime in the biased TORT makes possible the evaporation of the atoms

to quantum degeneracy. Applying a Bs ∼ 9G bias field the TORT is “tipped” and the

potential is given by that in Equation (4.19). To proceed to the BEC phase transition, we

begin by utilizing the finite depth of the TORT as torus of death evaporation was applied by

ramping down the rotating field strength Brot over 40 s to 4.8G. The oscillation frequencies

in this trap were measured as 2π × (87, 74.5, 35)Hz, with the transverse asymmetry a

consequence of the applied bias field. In the second stage, RF evaporation was applied for
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20 s, yielding clouds of up to 6×105 atoms at the Bose-Einstein condensation temperature,

and pure BECs of up to 3 × 105 atoms.

A natural goal would be the Bose condensation in not just the tipped TORT but the

fully balanced TORT. To get an idea of the prospects of accomplishing this in our current

configuration, we can estimate the transition temperature with the current experimental

values of N ∼ 3 × 105 atoms, ωT = 2π × 85Hz, and ρo = 1.25mm. BEC occurs for the

phase space density Γ = Nλ3
dB/V ∼ 1, so with the thermal volume of the ring given by

V = (2πρo) ×
(
πσ2

T

)
= 2π2ρo

(
kBT

mω2
T

)
. (4.20)

With the thermal deBroglie wavelength λdB =
√

2π�2/mkBT , we obtain the critical tem-

perature (within factors of unity)

Tc =
1

kB

[
N2

(
�

2

mρ2

)
(�ωT )2

]1/5

≈ 40nK . (4.21)

This is a very small temperature indeed, but hardly out of the realm of possibility when

the transition temperatures for most BEC experiments are in the 100’s of nK. A crucial

distinction must be made, however, between comparing this temperature and that of har-

monic traps. In previous sections of this chapter, we have discussed the energetic variations

around the ring. The formula in Equation (4.21) relies on a perfectly flat ring, and this

is unlikely to be the case. Surely we can tolerate potential variations no more than the

transition temperature of the flat ring, which translate to a ring balanced to 500μG around

the circumference. This is a very flat ring and, as we will see, it is much flatter than our

current implementation is capable of producing.

4.8 Motion in the Circular Waveguide

With the prospect of condensing the atoms in the current incarnation of the TORT

looking grim, we “settled” on launching the atoms into motion about the circular waveg-

uide. Our successful implementation of this led to the oft-used phrase The Ultracold Atom

Storage Ring, somewhat in homage to the experts in experimental particle physics who

have been studying the motion of particles in circular waveguides for over 65 years [86].
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Using the motion of the atoms to probe the energetic structure of the ring led to even more

connections to accelerator physics than we initially suspected, and is a prerequisite for any

interferometry scheme to be implemented in the ring. In this Section, the basic elements of

motion in the circular waveguide are explored, while the more detailed information about

the atom beam motion is discussed in the subsequent chapter and Refs. [53, 55].

4.8.1 Azimuthal Oscillatory Motion

After condensing the atoms in the Bs = 9G biased TORT, the bias field may be

shifted in magnitude and/or orientation. If the bias field is shifted slowly with respect to

the atomic motion set by the trapping frequencies, then the cloud remains adiabatic and

follows the ground state of the shifting trap minimum. If the bias field is reoriented rapidly,

then the atoms will experience a net azimuthal force given by −1
ρ

∂U
∂θ and be accelerated by

the potential gradient. Assuming that the force is uniform across the spatial extent of the

ensemble1, the stationary atom cloud becomes a propagating atom beam which undergoes

motion about the ring according to the potential U(θ, t).

In a simple case, we can consider rapidly, i.e. on a timescale faster than the 2π/ωθ =

29ms, changing Bs from 9 G in the −ŷ-direction to Bs = 9 G in the x̂-direction. The

atom cloud thus looks like a displaced oscillator in the modified U(θ), and the atoms will

oscillate about the new minimum as shown in Figure 4.8(a).

In the presence of stray fields and gravitational misalignment, it is much easier to

create an unbalanced biased ring than a flat, balanced ring. Oscillatory motion about a

potential minimum in the ring is thus the norm and, insofar as motional oscillations of

this sort are not terribly useful, much trial and error was required to avoid this scenario

and set the atoms into unterminated propagation. Using the “shifted minimum” which

accelerates the atoms was quite useful however, and made possible the following subsection

which explores the range of motion where the atom beam propagates freely about the ring.
1The validity of this assumption will be discussed in chapter 5.
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Figure 4.8: Atomic beam motion in the waveguide. (a) Shown is the time sequence of an
unsuccessful launch sequence. Absorption images are collected after 2 ms time-of-flight re-
lease from the waveguide potential, and then post-processed to show an annular strip from
1.10 mm < ρ < 1.35mm. The atoms are not accelerated enough to overcome the residual
variations in U(θ). (b) A better acceleration and balancing of the TORT allows a success-
ful launch of the atoms into unterminated motion about the ring. The trap settings for the
launch herein were Brot = 12.6G (ωT 	 2π × 50Hz), Bo = 20G, B′′

z |z=0 = 5300G/cm2,
ρo = 1.25mm, with a final angular (linear) velocity of 2π × 6.4 rad/s (50.6mm/s).

4.8.2 Unterminated Motion in the Waveguide

Guided by the amplitude and velocity of the oscillatory motion described in the pre-

ceding subsection, we discovered a “launching” regime whereby unterminated motion about

the waveguide was possible. Optimal settings were accomplished by reorienting the side-

ways bias field Bs, inducing the trapped atoms to accelerate toward the newly positioned

tilted TORT trap minimum (advanced by an azimuthal angle of about θ = π/4) while si-

multaneously reducing the magnitude of Bs to Bs ∼ 0. Much trial and error was required,

but a narrow window of final transverse bias fields Bs allowed a ring balanced enough

such that the kinetic energy imparted during the acceleration stage overcame the residual

potential variations in the flattened ring.

The final value of Brot was a free parameter from 4.8 − 13G, allowing a range of

possible transverse trapping frequencies ωT 	 2π × (50 − 90) Hz and maximum potential

height of kB × (40 − 100)μK for the waveguide. Under successful launches, the atoms

were allowed to propagate freely around the guide for various guiding times before being
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observed by absorption imaging. Final angular velocities were possible over a range of

Ω 	 2π × (6 − 19) Hz. A time sequence of an Ω = 11Hz launch is shown in Figure 4.8(b).

4.8.3 Diagnosing the Azimuthal Potential Variations

The next chapter discusses in detail the atomic beam in this free propagation state,

but for the purposes here we can consider the unterminated motion categorically good

from the perspective of making the Ultracold Atom Storage ring useful for applications

such as Sagnac interferometry. While obtaining a relatively flat ring was a requirement

to inject atoms into unterminated motion, the motion of the atoms about the ring can be

used to balance the azimuthal potential even further. We can infer U(θ) by measuring

the azimuthal variations in the kinetic energy of a beam propagating in the static ring

potential. For this, we measured the center-of-mass position of the cloud vs. propagation

time, and determined the velocity and energy from differences in this position vs. time.

Figure 4.9 shows, for slight variations in a bias field along the y-axis, the measured kinetic

energy as a function of azimuthal position.

Assuming the kinetic energy variations are due primarily to longitudinal potential

energy variations, Figure 4.9(b) shows the “flattest” waveguide potential we were able

to make. The data may be fit to the presumed azimuthal potential in Equation (4.19),

shown as the solid curve in Figure 4.9(b). Further efforts were unsuccessful at reducing the

potential energy variations below that shown, and thereby 5μK was taken as the “flattest”

achievable ring. This is much higher than the tilted TORT BEC transition temperature of

∼ 100 nK, and higher still than the full-ring transition temperature of Tc ∼ 40 nK. With

two orders of magnitude in ring flatness to bridge, we abandoned hope of condensing atoms

into the full ring, leaving this task to the very capable next generation of experimentalists2.

4.8.4 Expansion of the Atomic Beam

When the beam is released from the azimuthal confinement, the atoms will expand

longitudinally as the mean field energy is rapidly converted into kinetic energy. This

behavior is discussed in more detail in the following chapter, but briefly we may consider
2Tony Öttl, Ryan Olf, and Ed Marti are already hard at work.
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Figure 4.9: Azimuthal energy map of the circular waveguide as measured by atomic beam
motion. (a) The tilt of the waveguide is controlled by a bias field along the y-axis, and the
optimal setting of By = 0.36G is seen in the small variations of the kinetic energy of the
beam as it orbits the ring. (b) A magnification of the By = 0.36 G potential map shows
that the kinetic energy, and thereby U(θ), exhibits at least 5μK of variation around the
ring.

that the energy per particle in the Thomas-Fermi approximation is E/N = 5
7μ [20]. This

will be converted to a velocity spread across the cloud of σv =
√

10μ
7m . In the trap described

herein, the chemical potential for 3×105 atoms is μ = �×2π×860Hz, yielding a predicted

rms longitudinal velocity spread of 1.7mm/s.

This is expansion can be observed and quantified as the atom beam propagates around

the ring, essentially providing unlimited time-of-flight until the atom beam begins to wrap

around itself. Figure 4.10 shows the expanding beam after successive orbits around the

ring, and the observed expansion rate of 1.8mm/s is in good agreement with the expected

value.
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Figure 4.10: Mean-field driven expansion into the waveguide. As discussed in text, the
mean-field energy released upon cessation of the longitudinal trap results in a 1.8mm/s
rms velocity width of the beam. Images shown were captured after successive laps around
the ring at angular velocity Ω = 2π × 11 Hz. Dotted lines follow the uniformly expanding
rms width.

4.9 Prospects for Sagnac Interferometry

One of the most exciting potential applications of the circular atom waveguide would

be its use as a sensitive rotation sensor. The use of atom interferometry for a gyroscopic

measurement has already proven a short-term sensitivity better than the best ring laser

gyroscopes [87]. The principle of operation is based on the Sagnac effect [88], where an

interferometric signal based on splitting a wave into counter-propagating beams which

traverse a beam path that encloses an area A. The beams recombine and the relative

phase is measured. If this measurement is conducted in a rotating frame Ω, then the

effective path length is increased (decreased) for the beam traveling in the same (opposite)

direction as the rotation. The relative phase between the waves at recombination is

δφ =
8πΩA

λv
. (4.22)

This was derived for light, but is valid for matter waves of λ = h/p, which gives the matter

Sagnac phase shift to be

δφ =
4mΩA

�
. (4.23)

The sensitive atom gyroscope of Kasevich et al. [87] was implemented in free space. As ul-

tracold atom techniques have become more refined, the use of atom waveguides to engineer

an area-enclosing beam path has garnered much interest and experimental investigation
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in recent years [89, 90, 91].

Achieving Sagnac interferometry in the circular waveguide described in this chapter

is an attractive experimental avenue, especially due to the possibility of employing optical

atom beamsplitters (discussed in the next section) which are useful in this context because

of the sub-recoil velocities associated with Bose condensates. To get an idea of the potential

sensitivity of a Sagnac interferometer in this storage ring, we note that the phase sensitivity

will be limited by the atomic shot noise,
√

N . Given the N = 3×105 atoms in the ring and

the ∼ 100 ms orbiting time, our waveguide could potentially have a measurement sensitivity

of ΔΩ = �/4mA
√

N ∼ 10−8 rad/s from a 1 s long (i.e. 10 lap) measurement. While this

figure is nearly 20 times that of existing atom-based gyroscopes [87], improvements such

as launching the atoms at higher velocities, increasing the TORT radius, and increasing

the atom number may ultimately yield a useful, compact sensing device.

4.10 Bi-directional Propagation in the Circular Waveguide

Any interferometric measurement scheme, with either light or material particles, fol-

lows a basic structure: source(s) → beamsplitter → phase accumulation → beamsplitter

recombination3 → intensity detection. For viable Sagnac interferometry with atoms in the

circular waveguide, all these elements must be demonstrated. With the 3× 105 atom BEC

as the “source,” the next step is establishing an atomic beamsplitter in the ring. Ideally, the

beamsplitter should take the at rest |p = 0〉 atomic population and coherently transfer all of

the atoms into a superposition of opposing momentum states (|p = +p′〉±|p = −p′〉)/√2.4

The atoms would then propagate about the ring, pass each other on the opposite side,

and then recombine at the beamsplitter location. The identical beamsplitting action is

reapplied, and the phase-sensitive interference signal is read out.
3To effect the recombination step a “reflection” is sometimes required. With atoms, this typically is

accomplished by a π-pulse (as compared to the π/2-pulse which serves as the 50/50 beamsplitter).
4For atoms confined to the ring, this may be recast in terms of orbital angular momentum states

|L = 0〉 → (|L = +mρ2
oΩ〉 ± |L = −mρ2

oΩ〉)/√2.
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Figure 4.11: Diagram of possible Sagnac interferometry in scheme in a circular waveguide.
Counter-propagating optical beams coherently transfer atoms into opposing orbits about
the waveguide. The atom pulses (labeled “1” and “2”) pass each other on the opposite
side and recombine at the origin. The optical beamsplitters are reapplied and the accrued
phase difference may be read out, for example, in atomic population differences.

4.10.1 Coherent Atomic Beamsplitters via Light Scattering

Previous attempts to accomplish magnetic beamsplitting, under even more favorable

circumstances, proved problematic due to uncontrolled beam filamentation [58, 92]. We

look instead to the well-established technique of momentum transfer via light scattering to

act as the necessary beamsplitting element, and its proposed use in the circular waveguide

is depicted in Figure 4.11. At MIT during the 1980’s, fundamental light scattering exper-

iments were conducted which demonstrated Bragg scattering of atoms [93] and Kapitza-

Dirac scattering of atoms [94] with off-resonant laser light. The former technique has been

used extensively in recent years with Bose condensates [95], both as a spectroscopic tool

[96] and as a means of momentum transfer . Bragg scattering could work in this context

by overlapping two co-propagating laser beams with a small, coherent frequency difference

and then intersecting two such dual-frequency beams at the atoms [97].

A variant of Kapitza-Dirac scattering is a simpler means of doing this. The multiple

pulses of light mimic the frequency structure of Bragg scattering beams to give efficient

momentum transfer to | ± p〉 momentum states, and it has been used in recent interferom-

etry experiments with ultracold atoms in a manner similar to that presented here [98, 99].

In its original presentation, KD scattering was introduced as the deflection of electrons
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from a standing wave of light [100]. In the modern context of KD scattering, atoms are

diffracted by a standing wave of off-resonant light for a time τ , with the restriction that

τ � 1/ωrec to guarantee that atomic motion is negligible relative to the wavelength of the

scattering light. This is the Raman-Nath approximation, and allows the kinetic energy

term in the Hamiltonian to be neglected.

To explore this regime to the desired task at hand, we follow the derivation of Ref.

[101]. We begin by envisioning an ensemble of atoms illuminated with a laser field of

wavevector k, atomic transition detuning δ = ω − ωa, polarization ε̂, and magnitude Eo.

The field is perfectly retroreflected to yield a standing wave field:

E(z, t) = Eo sin(kx − ωt)ε̂ + Eo sin(kx + ωt)ε̂

= 2Eo sin(kx) cos(ωt)ε̂ . (4.24)

The field has a single-photon Rabi frequency of ΩR = eEoε̂ · 〈e|r|g〉/� between the ground

state |g〉 and a single, dominant excited state |e〉. Finally, the laser field is envisioned

to have an envelope of f(t), which sets the time τ that the laser field is “on” by τ =∫
f2(t) dt. Assuming the far-detuning limit |δ| � Γ, where Γ is the linewidth of the

|e〉 → |g〉 transition, the interaction Hamiltonian can then be written [101]:

U(z, t) =
�Ω2

R

2δ
(1 + cos 2kx)f2(t) . (4.25)

Under the validity of the Raman-Nath approximation, an initial “at rest” atomic wave-

function |g, p = 0〉 will evolve to a final atomic wavefunction |ψ〉 of

|ψ〉 = |g, 0〉 exp
(
− i

�

∫
U(z, t) dt

)

= |g, 0〉 exp
[
−i

Ω2
R

2δ
τ(1 + cos 2kz)

]
. (4.26)

The presence of the cos 2kz term in the exponential relates this expression to the well-

known Bessel functions of the first order [102], defined by eiα cos β =
∞∑

j=−∞
inJn(α)einα.

Thus, Equation (4.26) becomes

|ψ〉 = e−i
Ω2

R
2δ

τ
∞∑

j=−∞
inJn

(
Ω2

Rτ

2δ

) [
ei2nkz|g, 0〉

]
. (4.27)
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Noting that eiqx|p〉 = |p + �q〉, Equation (4.27) becomes

|ψ〉 = e−i
Ω2

R
2δ

τ
∞∑

j=−∞
inJn

(
Ω2

Rτ

2δ

)
|g, 2n�k〉 , (4.28)

and the utility of this system becomes evident. After the Kapitza-Dirac scattering “event,”

the formerly at rest atomic wavefunction |g, 0〉 is now in a superposition of final momentum

states |g, 2n�k〉 with probability amplitude J2
n

(
Ω2

Rτ
2δ

)
. This does not immediately have the

desired beamsplitting character, but does phase coherently populate opposing momentum

states.

More advanced techniques, exploiting the relative phase accumulation ei2n2
�k2t/m of

each populated momentum state under free evolution, can even effect near unity trans-

fer of atomic ensembles to specific opposing momentum states, i.e. |g, 0〉 → (|g, 2n�k〉 +

i|g,−2n�k〉)/√2, exactly the desired beamsplitter functionality [98, 103]. With a reliable

KD beamsplitter, the Sagnac experiment in the ring could be carried out just as depicted

in Figure 4.11.
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Figure 4.12: Kapitza-Dirac Scattering in the Ring. The KD pulse (a) As described in text,
probabilities of populating the nth momentum order is J2

n

(
Ω2

Rτ
2δ

)
. 30 ms TOF imaging

shows the scattering into higher momentum orders as the KD pulse time is increased.
(The skewed appearance of the clouds is due to imperfect alignment of the KD beam with
the trapping axes.) (b) Number counting of spatially separated momentum populations
agrees well with the expected Bessel functions (solid curves).
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4.10.2 Kapitza-Dirac Scattering in the Ring

We begin by demonstrating “normal” KD scattering, accomplished by illuminating the

trapped atoms and then observing the populations of the separated wavepackets. Figure

4.12 shows the expected Bessel function population of momentum orders under time-of-

flight imaging.

With the demonstrated ability to populate high-order momentum states, we attempted

to send wavepackets in opposing directions about the ring. The balancing act is a fine one

indeed, as the recoil energy for the first and second orders are E2�k = 710 nK and 2.85 μK,

respectively, both less than the 5μK azimuthal energy profile measured in Figure 4.9. For

this reason, the BEC needs to originate at the top of this potential curve before the KD

pulse outcouples the momentum states to crest over the potential maxima.

Figure 4.13 shows a time-sequence of bidirectional propagation, as multiple momentum

orders are set into motion. The technique successfully established bidirectional propagating

in all but the ±2�k pulses, with the 4�k exhibiting the highest contrast (and only visible

full orbit recombination). Ultimately, the observation was compromised by the numerous

momentum states occupying the ring, the spread of the wavepackets over the relatively

long orbiting times, and perhaps collisions. The latter factor is difficult to quantify as it is

not known if the pulses are in the same transverse state (i.e. ground state vs. oscillating

coherent state). If 105 atoms at ±2�k pulses were to collide while in the transverse ground

state after a half orbit, the collisional rate would be of the order 200Hz. This would predict

approximately 4 collisions per atom on a single pass, which would bring both beams to

an effective halt in the 5μK ring. As considered, he collisional probability per pass is

independent of velocity, and the fact that the 4�k pulses pass each either renders this

analysis moot or speaks a transverse excitation which vastly reduces this collision rate.

It should be clear from Figures 4.12 and 4.14 that “normal” KD scattering does not at

all act as the desired beamsplitting element because of the inability to split the population

into specific ±2n�k momentum orders with high efficiency. Wu et al. [103] report a

modified KD scattering technique which can, in principle, transfer nearly the entire p = 0

population to a specific p = ±2n�k order with very high efficiency5. We attempted to
5Ref. [103] reports maximum theoretical fidelities of 99.99% for n = 1, 99.1% for n = 2, 96.6% for n = 3,
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Figure 4.13: Bidirectional propagation in the ring via Kapitza-Dirac scattering. After
a KD pulse which populates numerous momentum orders, we may observe their motion
about the ring. All momentum orders n ≥ 2 had enough kinetic energy to overcome the
potential variations U(θ). The dotted lines guide the eye with the ±4�k pulses which can
be seen crossing on the “far side” at t = 125 ms and finally recombining near the origin.
That the pulses did not meet up at the origin implies some small net velocity at the start
of the launch. Note the apparent potential valley from 3π

2 � θ � π and the potential
maximum at θ ≈ π

2 , exactly the azimuthal potential structure seen in Figure 4.9.

implement this technique, which is basically a two-pulse KD sequence with four parameters,

the Rabi frequency ΩR, the first pulse time τ1, a wait time τw, and a second pulse time τ2.

The principle which allows this is a multipath interference effect between the amplitudes

Cn = 1√
2

(cn + c−n), where cn is the amplitude of the momentum state |p = 2n�k〉. Ideally,

the pulse sequence inverts the population between the zero-momentum state and some non-

zero momentum order n′, i.e. C0 = 1, Cn�=0 = 0 → Cn′ = 1, Cn�=n′ = 0. The Raman-Nath

and 91.7% for n = 4
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regime equations discussed earlier, coupled with the free evolution phases e−i2n2
�k2t/m

allow a large enough parameter space such that proper values of ΩR, τ1, τw, and τ2 yield

mostly constructive interference for the Cn′ and destructive interference for Cn�=n′ .

In practice, while this prescription did not yield the optimal efficiencies, it was effi-

cacious in vastly improving the momentum transfer to specific diffraction orders. Figure

4.14 shows images of this procedure enacted for the first- and second-orders.
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Figure 4.14: Resonant Kapitza-Dirac scattering into specific momentum modes. Using two
pulse techniques [103], majority populations are driven into (a) ±2�k and (b) ±4�k, as
seen in 25 ms time-of-flight. (c) The same pulse in (b) is applied and atoms are allowed to
propagate in the ring with enough energy to overcome the azimuthal potential variations.
The sizeable remainder of 0 and ±2�k populations, as well as the unbalanced ±4�k popu-
lations, is typical for these experiments and shows the limitations of the resonant transfer
in this implementation.

Unfortunately, the multiple pulse method did not prove to be robust in our experi-

ments, as wide variances in transfer efficiency were observed shot-to-shot. Other techniques

were attempted such as modulating the intensity KD pulse at the n = 2 Bragg resonance,

but we observed similarly sporadic and inefficient experimental results. The fact that the

initial beamsplitter was unreliable gave little hope that we would be able to demonstrate

the second recombining pulse necessary for a Sagnac interferometer in this first iteration of

the ultracold atom storage ring. We look forward to advances on this front in other more

experiments in circular waveguides, perhaps even the second generation of this particular

implementation.


