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Abstract

First Steps toward Precision Measurements using Multicomponent Bose-Einstein

Condensates of 87Rb

by

James Michael Higbie

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dan M. Stamper-Kurn, Chair

Experimental and theoretical progress toward the application of multicomponent

Bose-Einstein condensates of 87Rb to precision metrology are discussed. The building

of a laser-cooling and trapping experimental apparatus is described. Experimental

work on magnetization-sensitive imaging of spin-1 spinor condensates and their ap-

plication to magnetometry is discussed, followed by a theoretical discussion of the

periodically dressed condensate, with reference to enhancing the sensitivity of fre-

quency and time measurements.

Professor Dan M. Stamper-Kurn
Dissertation Committee Chair
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Chapter 1

Introduction

One indication that a field of physics has reached full maturity is that it becomes

well enough understood to be useful as a tool for understanding other physics. This

sort of technological leapfrogging occurs constantly and on many levels in experimen-

tal work, but one of the most impressive examples is in atomic spectroscopy. Attempts

to explain atomic spectra were at the center of the development of quantum mechan-

ics. By the middle of the twentieth century, however, understanding of the structure

of few-electron atoms and the technical ability to manipulate and probe them had

progressed to the point that atoms were being used both to measure time at ever-

greater levels of accuracy, reaching a symbolic milestone when, in 1967, the second

was redefined in terms of the hyperfine frequency splitting of cesium, and to probe

new physics, as in the evidence for quantum field theory provided by measurements

of the Lamb shift [1]. The use of precise atomic spectroscopic methods to explore

new physics has continued to flourish over the intervening decades and through the

present, with work on the electron electric dipole moment [2–6], on possible variation

of α or other physical constants [7–11], and on possible violation of Lorentz symmetry

[12–16] or of the spin-statistics theorem [17].

As researchers learned to probe atoms more and more precisely, the realization

was not long in coming [18, 19] that the motional states of atoms could be manipu-

lated with laser beams and magnetic fields, and over the two decades between 1975

and 1995 the field of laser cooling grew from a theoretical suggestion into a crucial

enabling technology in the creation of dilute-gas Bose-Einstein condensates (BECs)
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[20, 21]. An important motivation for the development of laser cooling and Bose con-

densation was not only to spawn a new subfield in the study of quantum fluids, but

also to provide a source of atoms with a very narrow velocity distribution which would

allow cold atoms to repay their great debt to atomic spectroscopy. This motivation

is apparent, for instance, in the often-repeated characterization of a Bose condensate

as resembling an atom laser, which carries with it the implication that the BEC may,

like the laser, prove to be a fruitful general-purpose tool in other areas of physics. It

is certainly true that laser cooling has found important applications to spectroscopy

in atomic fountain clocks [22, 23] and cold-atom precision measurements of the the

atomic recoil frequency [24, 25]. Dilute-gas Bose condensates, however, while they

have opened the way to many interesting and important experiments, have not yet

proven of value to atomic spectroscopy or precision measurement, despite the fact

that in their extremely small velocity distributions and relatively long available inter-

action times, BECs would appear in many respects to be an ideal source. This failure

to date may be largely attributed to the small number of Bose-condensed atoms typ-

ically available per unit time, and to the systematic effects associated with ultracold

collisions in a dense sample, which afflict even the comparatively rarefied atomic gases

in an atomic fountain [26, 27].

The problem of insufficient “brightness” of BEC atom sources appears likely to

be significantly ameliorated over coming years by technological improvements. Al-

ready, the cycle time of BEC experiments has been reduced from over a minute, in

a “traditional” magnetic-trap-based apparatus, to a few seconds, by the use of all-

optical techniques [28–30]. Moreover, techniques such as laser ablation and cryogenic

pre-cooling [31] may substantially improve the initial conditions of BEC experiments,

leading to higher condensate numbers. Various ways have been suggested to circum-

vent the problem of systematic frequency shifts from collisional interactions, such as

preparing atoms in a carefully chosen mixture of states with opposite shifts [32], using

the density dependence of cavity-pulling to cancel that of the collisional shift [33],

employing fermions (whose S-wave cross section vanishes at low temperature) [34],

and immobilizing atoms at the sites of an optical lattice [35, 36].

An alternative possibility for exploiting the desirable properties of Bose conden-

sates for precision measurements without suffering from the effects of cold collisions is
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to exploit symmetry properties of the system. Such an approach has worked very well,

for instance, in a small number of condensed matter systems such as the quantum

Hall system, in which gauge invariance ensures the quantization of conductivity [37],

or in superconducting quantum-interference devices (SQUIDs), in which the Meissner

effect and single-valuedness of the wave function enforce flux quantization [38]. This

approach is likewise analogous to the use of decoherence-free subspaces for quantum

computation, in which the state-space is specifically chosen or engineered to be pro-

tected by symmetry from decoherence [39]. It is this sort of immunity from collisional

perturbations that is invoked in chapter 4 with regard to using spinor condensates

for magnetometry. In chapter 5 on the theory of the periodically dressed condensate,

on the other hand, the problem of dealing with collisional interactions is turned on

its head, and an attempt is made not to mitigate but to exploit these interactions to

enhance the statistical sensitivity of a frequency or time measurement. This latter

project is admittedly purely theoretical and of unknown practicality at present, but is

offered as an illustration of the claim that with creativity and by exploiting the extra

degrees of freedom offered by multicomponent condensates, it may still be possible

to fulfil the promise of Bose condensation for improving precision measurements.

1.0.1 A Brief History of the Experiment

The work described in this thesis was much of it highly collaborative, so that

several of the people involved may reasonably lay claim to many of the experimental

accomplishments, while in other cases the primary responsibility or originating idea

belonged clearly to an individual. It is not my intention in what follows to make any

finely calibrated judgements about the degree to which credit should be apportioned,

but merely to outline in broad terms what I consider to have been my contributions,

both as part of an experimental team and as an individual researcher.

I joined the Stamper-Kurn group in January, 2001, which at the time consisted

of Dan (the group’s leader and eponym) and Lorraine Sadler, herself a member of

one week’s standing. While waiting for a laboratory to be made available to us, we

busied ourselves with trying to organize, design, purchase, and build our way to a

functioning Bose-Einstein-condensation machine. Given the size of the group, we were
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all involved in each other’s work, but in the rough division of labor that emerged,

I was responsible for designing and building the many electromagnets required for

the experiment. This meant designing and building first the Zeeman slower, and

then the magneto-optical/magnetic trap coils, as well as the power-switching, safety-

interlock, and analog-control isolation electronics necessary to operate them. As we

became more conscious of the expected fluxes and background pressures of rubidium

in the vacuum system, we realized that it was desirable to have cold surfaces in

the vacuum system to pump rubidium, and I accordingly built some Peltier-cooler

stacks and cold plates for the purpose of controlling this background pressure. Before

long, the Zeeman slower and the diode lasers that Dan, along with our new post-doc

Veronique Savalli and graduate student Kevin Moore, had been building and locking

to a rubidium frequency reference, came together, and Veronique quickly saw evidence

of Zeeman-slowing in the atomic beam. Heartened by this success, we disassembled

the skeleton vacuum chamber in which this first experiment occurred and replaced it

with the full vacuum chamber, now incorporating the magnetic trap, including the

interlock and the dedicated water-cooling system I had built.

This began a focused effort by Lorraine and me, with frequent help from Dan, to

observe ultracold atoms in a magneto-optical trap (MOT). This stage of the exper-

iment’s progress took longer than expected, as a result both of some incorrect laser

frequencies and of the initial lack of a systematic means of aligning the rather long

Zeeman slower, but eventually the long-awaited MOT materialized, followed in short

order by magnetically trapped atoms and the beginnings of radio-frequency evapo-

ration. After eliminating some stray light and shuttering the atomic beam, we had

magnetic-trap lifetimes in excess of 50 seconds, and believed ourselves in a favorable

position to reach runaway evaporation in the near future. Unfortunately, it soon

became apparent that the trap lifetime was strongly dependent on the magnitude

of the bias field, limiting our ability to compress the atomic cloud and achieve the

collision rates necessary for efficient evaporation. Finding the radio-frequency (RF)

noise responsible for this number loss became a top priority, and involved eliminating

DC-DC converters wherever possible, turning off ion gauges, and attempting to filter

the output of the large switching magnet power supplies with capacitor banks and

huge home-built inductors. At the same time, we worked at getting the best possible
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initial conditions for evaporation. This meant getting powerful MOT laser beams,

and so I built a tapered amplifier assembly to increase the MOT power from 40 mW

without fiber coupling to about 120 mW at the output of a single-mode optical fiber,

with all the accompanying advantages of stability and isolation from upstream mis-

alignment. We also worked at matching the size and temperature of the atoms from

the MOT to the curvature of the magnetic trap (loosely called “mode-matching”,

in an optics analogy). Among my particular contributions at this period were the

discovery that lowering the magnetic-field gradient could dramatically compress the

cloud (an effect that was well known in the literature, but not in our lab), the im-

plementation and optimization of a two-step evaporation procedure that prevented

the atoms from overheating during compression, and the compensation of the stray

magnetic field of the slower that was giving the MOT a transient kick during loading

(although this latter turned out to be a transient problem.) The combination of a

colder and larger initial atom cloud with reduced spin-flip rates from RF noise led to

the production of our first Bose-Einstein condensates (BECs) in January, 2004.

Although it represented a large amount of time and work, the ability to produce

BECs routinely was really just the starting point for the experiments we wished to

perform. While progress setting up an optical trap for spinor condensates contin-

ued on the side, with help from Matt Pasienski and Craig Hetherington, Lorraine

and I, now joined by Ananth Chikkatur, began some simple experiments on super-

radiant Raman scattering in a BEC, viewed from a nonlinear-optics standpoint, and

ultimately aiming to observe an oscillation between superradiant optical pumping

into an optically dark state and Larmor precession out of that dark state. These

experiments, while interesting, were later judged a distraction from the core mis-

sion of the experiment, to study spinor condensates, and were postponed indefinitely.

Progress towards putting condensates in an optical-dipole trap (ODT) went forward,

and atoms were soon trapped, but heating rates in the optical trap were too high to

maintain BEC. Following several efforts to shorten the ODT path length, improve the

beam shape, and stabilize the optical power, I implemented a beam path entirely on

one optical breadboard, which itself was clamped between pads of vibration-damping

Sorbothane R©. After these improvements, we were able to transfer condensates from

the magnetic trap to the ODT, but the resulting condensates were small and mo-
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tionally excited. I had remained unconvinced by assertions that adiabatic transfer,

as opposed to a sudden switch-off of the magnetic trap, was too difficult to be worth

trying, and pushed forward with the attempt to maintain the location of the cloud

as the magnetic-trap fields ramped down by adjusting the ramp trajectories. In the

end, this approach worked very well for transferring thermal clouds, which could then

be quickly evaporated into BECs in the tight, highly collisional optical trap.

With spinor condensates available to be studied, we needed only the imaging

light, and so I put together a laser and lock circuitry at the D1 frequency of 87Rb ,

using a mount built by our diploma student Stefan Schmidt, and we figured out how

to align our phase dot and saw our first phase-contrast images soon thereafter. We

quickly learned to manipulate the atomic spins with RF sweeps and pulses and set

about learning to control the magnetic fields down to the 10 mG level, where we now

planned to observe Larmor precession and see spontaneous ferromagnetism of the

spinor condensate. After a few false positives, resulting from low-frequency RF noise,

and some false negatives, probably due to small systematic differences between the

calibration and observation procedures, we successfully observed Larmor precession

and used our ability to image it to characterize the coherence-time of the thermal

cloud and the condensate and to observe “magnon” excitations of the condensate

excited by magnetic gradients [40]. After this exciting period, a small and intermit-

tent vacuum leak and a failure of our CCD camera together cost us several months

of progress. With a replacement camera suitable for absorption imaging but not for

imaging Larmor precession, we undertook an interesting project outside of our main

line of research, namely to use the enhanced absorption present in superradiant scat-

tering from a BEC to image the condensate, obtaining information both about the

coherence of the atomic sample and about the subtleties of spatially dependent su-

perradiance. In order to enhance the signal further, I set up a chopper wheel in front

of the camera, for use as a fast shutter, and implemented the necessary timing and

logic to synchronize imaging with the chopper-wheel frequency. This development

was superceded when our original camera, with its high-speed “kinetics” imaging,

was finally back in order, allowing us to resolve the process of superradiance spatially

and temporally. Although fascinating and qualitatively informative, this imaging

technique turned out to be difficult to make quantitative. As Lorraine analyzed the
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superradiance data, I, with the help of our newest postdoc Mukund Vengalatore,

de-mothballed the spinor experiment, quickly getting back spinor condensates in the

ODT and the fine control of magnetic bias fields, before attempting the spontaneous

magnetization experiment that had been cut short before. The experiment worked

beautifully, and we were soon staring at two-dimensional images of condensates bro-

ken up into Larmor-precessing patches. Partly as a result of a MOT lens that had

been moved for unrelated reasons, widening the ODT and making the condensates

more optically resolvable, the quality of the images was high enough that Dan pro-

posed analyzing them pixel by pixel to obtain phase and amplitude as a function of

position in the condensate. This approach proved very productive, allowing detailed

information about the spatial structure of spontaneous magnetization, and pointing

toward topological defects, such as domain walls and spin vortices.

I worked on the analysis of the data as regarded spontaneous magnetization,

while Lorraine moved forward in another front of the analysis, searching for vortices

in these images. As the write-up of these results progressed, I then began work on

the project, suggested by our earlier Larmor-precession work, of attempting to diag-

nose the spinor-condensate system as a precise, high-resolution magnetometer, using

a fictitious optically-generated magnetic field. This project yielded preliminary re-

sults quite quickly, but measurements were limited by technical fluctuations in the

magnetic-field inhomogeneities from shot to shot and within each shot. In order to

be able to control the aspect ratio of the optical trap and give us a handle on spin

instabilities, I designed and set up a cylindrical “zoom” lens configuration that would

allow us to vary the aspect ratio over a wide range without making the beam astig-

matic. Mukund and I succeeded in applying the spin-echo technique to eliminate

some magnetic-field fluctuations, and then while I began writing my dissertation,

Mukund refined the technique and, with Lorraine’s help, worked on several attempts

to eliminate residual oscillation of the atomic sample in the optical trap. In a break

from thesis-writing, I implemented one of the ideas for eliminating this motion, creat-

ing a small optical-lattice potential by retroreflecting a portion of the ODT, but the

optical platforms in question were insufficiently stable, and the lattice served merely

to heat the cloud severely. Further work on spinor-condensate magnetometry, using
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a blue-detuned laser to damp oscillations by means of a “speed-bump” potential, has

been carried forward by Mukund in my absence.

Alongside these experimental endeavors, I was engaged also in a theoretical

project, the so-called periodically dressed condensate, with the hope that it would be

experimentally realizable. Although this has not happened during my time in grad-

uate school, I have hope that the experiments may yet be attempted. This project

began as an intuitive idea of Dan’s, on which I did some calculations as part of a

final project for a condensed-matter physics class. The calculations, combined with

further calculations by both Dan and me, were subsequently published [41]. I later

did some related calculations, subsequently cast in a simpler form by Dan, exploring

the possible use of the periodically dressed condensate as a model two-well system

with the potential to create macroscopic entanglement [42].

1.0.2 Outline

The thesis reflects my graduate-school efforts in that considerable time and space

are allotted to the experimental apparatus in chapter 2. Chapter 3 lays out the

principal experimental innovation of this work, high-speed magnetization-sensitive

phase-contrast imaging, and the observations of degenerate and nondegenerate spinor

gases that it has enabled. In chapter 4, an exposition is made of attempts to use

Larmor-precession imaging of spinor condensates for high-resolution magnetometry,

along with principal advantages and limits to the technique. Finally, in chapter 5,

the idea of the periodically dressed condensate, its predicted phenomenology, and a

proposed application to metrology are discussed.
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Chapter 2

Apparatus

This chapter describes the experimental apparatus that was constructed for pro-

ducing, manipulating, and probing Bose-Einstein condensates. Many such machines

have now been constructed, each with its own peculiar advantages and disadvantages,

but with relatively little convergence on an optimal design. Particular attention will

therefore be given to those aspects of the present design whose qualities, desirable,

undesirable, or merely noteworthy, may modestly contribute to such convergence.

Naturally, this chapter will also dwell at greater length on those portions of the exper-

imental apparatus to which the present author has contributed most, as adumbrated

in section 1.0.1.

The broad outlines of this apparatus are shown in figure 2.1. It consists of an

atomic beam propagating from a rubidium oven to the main chamber (where conden-

sates are ultimately formed), by way of a long deceleration region or Zeeman slower.

Atoms exiting the Zeeman slower enter a magneto-optical trap (MOT), which in sev-

eral steps cools and compresses the atoms until they are ready to be caught in a purely

magnetic trap, suitable for forced radio-frequency (RF) evaporation close to the BEC

transition. The final condensate formation is accomplished either in the magnetic

trap or, for the bulk of the work described here, in an optical trap to which the atoms

are transferred at a few times the critical temperature. Each of these experimental

elements will be described below.
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MOT/Magnetic Trap
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 Slower Window
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          Titanium 

Sublimation Pump

Figure 2.1. Over-all scheme of experimental apparatus (not to scale). An atomic beam
propagates from left to right, originating at the oven. The beam may be shuttered
in the oven chamber, or it may traverse the Zeeman-slower tube and attain the main
chamber. Here a magneto-optical trap, magnetic trap, and optical trap are employed
to create and study Bose condensates. Ultra-high vacuum in the main chamber is
maintained by a titanium-sublimation pump, an ion pump (not pictured), and a cold
plate.

2.1 Oven

The oven consists conceptually of a reservoir of liquid rubidium in equilibrium with

its vapor and a small aperture from which the rubidium vapor can ballistically escape.

In practice, the reservoir consists of a short section of 2.75 in.-flanged stainless steel

ConFlat tubing in the form of an elbow, joined to the vacuum apparatus by another

3 in. long, 1
2
in. diameter stainless steel vacuum nipple. The latter contains a piece of

steel mesh, loosely-wound into a several-layer cylinder, which in turn is held in place

by a smaller concentric steel tube. The end face of this innermost tube closest to the

reservoir contains the aforementioned aperture or nozzle, whose diameter is 5 mm.

The flux of atoms from the oven is controlled by adjusting the temperature. This

is a very effective control because of the fact that the vapor pressure of rubidium

is a strong function of temperature, while the mean thermal velocity has a weak

temperature dependence. Precise values of the vapor pressure may be found, for

instance, in [43]. For many purposes, it is sufficient to remember a few points: at

−40◦C, the equilibrium pressure is around 10−11 torr; at 0◦C, it is in the neighborhood

of 10−8 torr; and at 100◦C it approaches 10−4 torr. Very roughly, the vapor pressure

increases by one order of magnitude every 20◦C, though the change per degree is

smaller at higher temperatures.
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Rubidium
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Figure 2.2. A diagram of the oven, showing the reservoir of liquid rubidium in equi-
librium with an atomic vapor. Atoms traveling at the correct angle effuse through
the nozzle and into the atomic beam, while those at larger angle strike the retaining
tube or mesh and are wicked back to the hot (nozzle) end of the mesh, where they
re-evaporate.

The Maxwell-Boltzmann phase-space distribution for a vapor of atoms at temper-

ature kBT ≡ τ and number density n is

dN

d3vd3x
= n

( m

2πτ

)3/2

exp

(

−mv2

2τ

)

. (2.1)

If the direction of propagation of the atomic beam is chosen to be ẑ, and the area of

the oven aperture is A, then the number per time per velocity traversing the aperture

is the well-known beam distribution

dN

d3v dt
= nAvz

( m

2πτ

)3/2

exp

(

−mv2

2τ

)

. (2.2)

A straightforward integration shows that the total number per time leaving the aper-

ture is nAv̄/4, where v̄ ≡
√

8τ/πm is the mean magnitude of the velocity.

For typical parameters at 100◦C of n = 6 × 1012 cm−3, v̄ = 3× 104 cm/s, and an

aperture area of A = 0.2 cm2, this translates to a total effusion rate of 1016s−1. A

reasonable charge of ten grams of rubidium, containing 7 × 1022 atoms, would thus

last around 80 days if all rubidium emitted from the oven were permanently lost.

Only emitted atoms possessing sufficiently small transverse velocity, however, will

successfully be admitted into the atomic beam. The accepted fraction resulting from
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this solid-angle constraint is approximately the ratio of the 3/4-inch square (∼ 4 cm2)

open area at the far end of the beam (200 cm away from the oven) to the 2π×(200 cm)2

hemispherical surface area at that distance, numerically equal to 1.6×10−5 steradians.

As a result, the vast majority of atoms emitted from the oven are wasted, as far as

condensate production is concerned. These considerations make it very desirable to

incorporate some form of recirculation into the oven design, to prolong the period of

operation between refills of the oven. This is the purpose of the steel mesh in the tube

following the oven aperture. The portion of the steel mesh nearest the aperture is kept

hotter than the remainder, with the intended effect that rubidium striking the mesh

will be drawn toward the hot end, where it will evaporate, entraining other rubidium

atoms into the depleted region and sustaining a wicking process which replenishes the

reservoir.

In practice, the oven has operated approximately 60 to 70 hours per week over

a period of as much as 10 months, or for a total of ∼ 3000 hrs. before requiring

additional ampoules of rubidium. Compared to the non-recirculating estimate above,

this suggests successful recirculation, although an alternative explanation would be

that the emitted flux is lower than predicted. Given that different portions of the

oven are maintained at different temperatures, it is necessary, absent a direct mea-

surement, to make an assumption about the temperature characterizing the vapor.

The most natural assumption is that the lowest temperature region at the bottom of

the oven will collect the bulk of the liquid rubidium, and that the temperature of this

reservoir will set the vapor pressure. If the other walls of the oven are substantially

hotter, however, the kinetic temperature of the vapor may be higher, though a large

temperature difference would be required to change the flux dramatically. Additional

information about the oven emission may be obtained from measurements on the

atomic beam, as described below.

2.1.1 Characterization of Atomic Beam

To characterize the performance of the oven, one would in principle like to know

the differential flux as a function of velocity, which would suggest a Doppler-sensitive

measurement. Near the output of the oven, however, where such measurements can
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be readily performed with reasonable signal-to-noise ratio, the current chamber offers

only transverse (and therefore Doppler-insensitive) optical access to the atomic beam.

This allows one to examine the absorption of a resonant laser beam transverse to the

atomic beam, which can be related to the density and thereby to the flux, if the

particular beam velocity distribution (equation (2.2)) is assumed.

The density of the beam on the far side of the oven aperture may be calculated

from the relations
dN

dV ′ dv
=

dN

r2dΩ vdtdv
=

v

r2

dN

d3v dt
, (2.3)

where use has been made of the fact that the solid angle dΩ of the velocity distribution

at the aperture is the same as the solid angle that enters into the real-space volume

element dV ′ far from the aperture. An integration with respect to velocity determines

the density as a function of position:

n(r, θ) =
dN

dV ′ =
novenA

4πr2
cos θ. (2.4)

The optical density of a resonant probe beam passing through this region is

O.D. =

∫

n(r, θ)σavgdx, (2.5)

where n(r, θ) is the total density irrespective of spin and x = r sin θ. Although

the atomic beam at this point is relatively collimated, its transverse velocity spread

corresponds to a Doppler shift of ≈ 20 MHz, which is larger than the 6 MHz natural

linewidth of rubidium, so that more properly the optical density is calculated as a

convolution of the Doppler spread with the Lorentzian natural line shape of the atom,

i.e., in terms of the Voigt profile:

O.D. =

∫

dxdv
dN

dV ′ dv

∣

∣

∣

∣

v,θ

σavg(v, θ)

=
nA

z

( m

2πτ

)3/2

σavg

∫

dv dθ v2e−mv
2/2τ 1

1 + 4k2v2 sin2 θ/γ2
. (2.6)

For γ ≪ 2kv, the θ integral may be approximated by using the small-angle approx-

imation sin θ ≈ θ and taking the limits of integration to ±∞, since the effective

collimation angle imposed by the resonance condition is narrower than the true col-

limation angle, while still small compared to 1 rad. With this approximation, the

integral can be performed, with the result

O.D. =
nAσavg

2πz

γ

v̄k
, (2.7)
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which is the answer that would be obtained by assuming a collimation angle of

sin θcol = γ/v̄k and integrating the density profile (2.4). For the measurements de-

scribed here, the linewidth of the laser is of order 1 MHz, so that broadening due to

the laser linewidth is small.

The on-resonant cross section, averaged over the spin states of the atomic sample,

is given by

σavg = σ0
1

Ng

∑

g

|cge|2, (2.8)

where cge are Clebsch-Gordon coefficients, σ0 = 6πk−2
0 is the resonant two-level-atom

cross section, Ng is the total number of ground states, resonant or not, and the sum

runs over transitions for which resonant light of the correct polarization is present.

The temperature of the oven is large compared to the ground-state hyperfine splitting

in 87Rb (6.8 GHz ∼ 0.33 K), so that the Zeeman states in these levels are equally

populated, resulting in a spin distribution which is isotropic, with no preferred spin

axis. Thus the square amplitude summed over all states must be independent of

the probe polarization. For the case where the excited manifold F ′ decays only to

a single ground state manifold F , the average cross section is easily computed from

considerations of symmetry, since

∑

g

|cge|2 =
1

3

∑

pol.

∑

g

|cge|2 =
Ne

3
, (2.9)

where Ne is the number of excited states in the F ′ manifold and where in the last

step we have used the fact that all excited states decay at the same rate, so that the

sum of the squares of the cegs from any excited state is unity. Thus for 87Rb , probing

on the F = 2 → F ′ = 3 transition, σavg = 7
24
σ0. It is also useful to probe 85Rb,

since its greater natural abundance increases the signal size, and since none of the

oven chemistry should distinguish among isotopes. For 85Rb on the F = 3→ F ′ = 4

transition σavg = 1
4
σ0.

We have performed measurements of the density in the atomic beam at the output

of the oven. Because the atomic beam is already fairly collimated at this point, its

transverse Doppler width is substantially smaller than that of the background vapor of

rubidium in the oven chamber, as noted above. Moreover, it may be shuttered at will,

allowing a ready distinction between the absorption due to the beam and that due
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to the background gas. To avoid saturation or optical-pumping effects, we perform

the absorption measurements at low intensity, verifying that raising or lowering the

power by a factor of two does not affect the measured absorption.

For experimental parameters θcol = 0.5 cm/10 cm, z = 20 cm, A = 0.2 cm2, prob-

ing the F = 2 → F ′ = 3 D2 transition of 87Rb , and incorporating the fractional

isotopic abundance of 27.8% for 87Rb, this translates to

O.D. =

(

noven

1.7× 1014 cm−3

)

. (2.10)

At the expected density for 100◦C of noven = 6× 1012 cm−3, this implies about 3.5%

absorption.

This value is in reasonable agreement with certain measured absorption values

from a freshly loaded oven. At other times, however an absorption of 12.8% (August

26, 2004) or 13.3% (November 11, 2003) was recorded, both at an oven temperature

of 96◦C. This would appear to indicate that on these occasions, the vapor pressure

in the oven was substantially higher or the collimation of the beam greater than has

been assumed. The temperatures are measured by inserting thermocouples into the

“sniffer” ports of the vacuum flanges. While inferior to a proper thermocouple well,

these ports allow the thermocouple to penetrate to within a short distance of the

inner surface of the oven, so that a large discrepancy in temperature is not expected.

The measured values appear to droop over time, with a value of 1% or less indicating

that the oven should be replenished. The observed droop, as contrasted to the ideal

all-or-nothing behavior, is presumably an indication that the oven has a tendency to

clog with rubidium, reducing its effective aperture, as has sometimes been observed

when refilling it. On other refills, however, an exhausted oven was found with its

output unobstructed, rendering generalization difficult.

2.2 Zeeman Slower

As noted above, the atoms emitted by the oven possess an average forward velocity

of around 300 m/s, much larger than the ∼ 20 m/s capture velocity of the MOT.

Consequently, only the very low end of the velocity distribution will be captured

unless the atoms are decelerated before arrival at the MOT. In order to produce
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such a deceleration, we employ a Zeeman-tuned slower, which operates as follows.

A circularly polarized laser beam of about 20 mW tuned 530 MHz to the red of the

cycling F = 2, mF = −2 to F ′ = 3, mF = −3 transition propagates anti-parallel to the

atomic beam; atoms with sufficiently large velocity are Doppler-shifted into resonance

with the laser and scatter many laser photons. In order to maximize the initial number

of atoms in the F = 2 level and to give any atoms that are inadvertently pumped to

the F = 1 level during deceleration an exit pathway, a second laser detuned 257 MHz

to the red of the F = 1 → F ′ = 2 transition co-propagates with the slowing laser.

This is referred to as the slower-repump laser. The reason for its specific detuning,

which has been chosen by a empirical optimization, is unclear. For each atom-photon

scattering event, the incoming photon has a small but nonzero momentum opposed

to that of the atom, while the outgoing (or spontaneously emitted) photon may

have an arbitrary momentum. As a result, the net effect of the scattering event is

to reduce the forward momentum of the atom by ~k and also to impart a random

step in momentum of size ~k. After scattering many photons, the atoms will have

decelerated, with the result that their Doppler shift no longer puts them in resonance

with the slowing laser. The atoms may be kept near resonance as they decelerate if

the Doppler shift is compensated by a Zeeman shift:

ω0 ≈ ωL + kv + µB/~, (2.11)

where µ is the difference in magnetic moments between the excited and ground states,

equal to −µB in the present case, ω0 is the zero-field resonance frequency, and ωL is

the laser frequency. For uniform deceleration, v2 = v2
0 − 2az, then, the desired field

profile is of the form

B =
~kv0

µ

√

1− 2az/v2
0. (2.12)

This simple picture captures the essence of the functioning of the Zeeman slower.

More precisely, one may calculate the average momentum imparted to an atom

that scatters a σ− photon. The kinematics of the atom-photon scattering event

are easily analyzed in the center-of-momentum frame, where before scattering the

atom carries momentum ~kẑ and the photon an equal and opposite momentum

−~kẑ. After the collision, momentum conservation requires that the momenta still

be equal and opposite, while energy conservation requires that the momenta have
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the same magnitude ~k as before. The outgoing momenta can thus be written as

±k (cos θẑ + sin θ cosφx̂ + sin θ sinφŷ). In the lab frame, the atom has incoming mo-

mentum p ẑ, so that the non-relativistic velocity difference between the lab and center-

of-mass frames is (p− ~k)ẑ/m, and the outgoing atom momentum in the lab frame

is

(~k cos θ − ~k + p)ẑ + ~k sin θ cosφx̂ + ~k sin θ sinφŷ,

so that the change in the atomic momentum is

∆p = ~k ((cos θ − 1)ẑ + sin θ cos φx̂ + sin θ sinφŷ) .

The angle θ was defined in the center-of-mass frame, while the spontaneous-

emission pattern of the atom is most naturally analyzed in the rest frame of the

atom. Because the momentum of the atom, of order 10−18 g-cm/s, is so much larger

than that of the photon, which is of order 10−22 g-cm/s, however, the center of mass

frame differs from the atom’s rest frame only by a velocity of ∼ 1 cm/s. For this

velocity, the fractional change in the axial component of the photon wave vector is

less than 10−10, which implies that negligible error is made in treating the photon

recoil angle as unchanged from one frame to the other. In the normal functioning of

the Zeeman slower, both the optical excitation and subsequent decay occur on a σ−

transition. The two linear polarizations for a photon spontaneously emitted at polar

angle θ and azimuthal angle φ can be written

ǫ̂1 = − sin φx̂ + cosφŷ

ǫ̂2 = cos θ cosφx̂ + cos θ sin φŷ− sin θẑ. (2.13)

The allowed polarization for decay is ǫ̂− = (x̂− iŷ)/
√

2, which allows us to compute

the overlap as a function of the decay angle

ǫ̂∗− · ǫ̂1 = −ieiφ

ǫ̂∗− · ǫ̂2 = cos θeiφ. (2.14)

The sum of the squares of these amplitudes gives the emission pattern

P =
3

16π
(1 + cos2 θ), (2.15)
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where the normalization factor is chosen so that
∫

dΩP = 1. Performing an emission-

weighted average over θ, then, yields

〈∆p〉 =
3

16π

∫

dΩ(1 + cos2 θ)∆p = −~k

. (2.16)

This shows that the simple argument given earlier is correct. On average exactly ~k

of momentum is removed from the decelerating atom. It is also of interest to compute

the mean squared transverse momentum:

〈∆p2
⊥〉 =

3

16π

∫

dΩ(1 + cos2 θ)~2k2 sin2 θ =
3

5
~

2k2, (2.17)

from which it is readily observed that the r.m.s. transverse momentum acquired after

scattering N photons is

∆pr.m.s.
⊥ =

√

3N

5
~k. (2.18)

This is only slightly smaller than the value of
√

2N
3

~k which one would calculate if the

spontaneous emission were isotropic. This transverse heating is a matter of concern if

it allows atoms to escape from the capturable solid angle of the beam. The transverse

distance along one dimension diffused by an atom in its random momentum-space

walk is

x =

N
∑

j=1

j
∑

i=1

ǫi∆v∆t, (2.19)

where N is the number of photons scattered, ∆v = ~k/m
√

3/10, and ∆t ≈ 2/Γ,

while ǫi is a random variable whose average is 0 and whose r.m.s. value is 1. Thus

〈x2〉 =
1

2
(∆v∆t)2N3, (2.20)

assuming N ≫ 1. The r.m.s. excursion of an atom from the beam center, using

numbers of N = 5 × 104, ∆v = 0.32 cm/s, and ∆t = 53 ns, is about 1.3 mm, which

is rather insignificant. As a result, any loss due to transverse heating must result

primarily from ballistic expansion of the slowed gas upon exiting the slower. From

equation (2.18), the r.m.s. transverse velocity along one dimension is ≈ 70 cm/s, while

the exit velocity of the slower is ≈ 20 m/s, so that the resulting loss in collimation

is substantial, but presumably not detrimental since it remains smaller than the

acceptance angle of the MOT as viewed from the exit of the slower (≈ 1 cm/10 cm).
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Figure 2.3. Zeeman slower diagram, showing angles and distances employed in the
text. Ldead is the distance from the oven to the start of the slower, L is the length of
the Zeeman slower, θ is the angle of an atomic trajectory with respect to the axis of
the atomic beam or Zeeman slower. zprobe is the distance from the oven at which the
atomic beam is characterized in section 2.1.1.

It is apparent, however, that lowering the exit velocity from the slower below about

10 cm/s would quickly begin to erode the capturable flux. This, in conjunction with

the capture efficiency of the MOT as a function of velocity, is a likely explanation of

the observed optimum flux around a final slower velocity of 20 m/s.

2.2.1 Deceleration and Optimal Length

A saturated two-level atom (which the |F = 2, mF = ±2〉 −→ |F ′ = 3, m′
F = ±3〉

transitions of 87Rb well approximate) has on average half its population in the excited

state, and consequently scatters photons at a rate γ/2, where γ = 2π × 6 MHz is the

natural linewidth. This implies a maximum deceleration (averaged over many photon

scattering events) of

amax =
γ

2

~k

m
. (2.21)

For a deceleration length L, this defines a maximum velocity vmax that can be brought

to rest via 1
2
mv2

max = mamaxL, i.e.,

vmax =
√

2amaxL. (2.22)

Given the beam distribution, equation (2.2), it is straightforward to calculate the
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number of slowable atoms per unit time

dNslowed

dt
=

∫

dΩ

∫ vmax

0

v2dv noven Av cos θ
( m

2πτ

)3/2

e−mv
2/2τ

=
novenAv̄

4
sin2 θ

(

1− e−mv2max/2τ − mv2
max

2τ
e−mv

2
max/2τ

)

, (2.23)

where θ is the maximum angle from the atomic-beam axis that an atom can take

without being lost from the slower [44] and v̄ is defined below equation (2.2). For a

fixed final-aperture radius r, this angle is given approximately by θ = r/(L+ Ldead).

Ldead is the length of the “dead space”, shown in figure 2.3 i.e., the region after

the oven but before the Zeeman slower. Such a space is typically necessary for the

maintenance of good vacuum in the main chamber: since the differential pressure

across the Zeeman slower cannot be greatly larger than 1000, vacuum pumps are

needed to keep the oven chamber at around 10−8 torr. The flux of slow atoms delivered

to the experiment is shown in figure 2.4 for an oven temperature of 100◦C (density

6× 1012 cm−3) and Ldead = 55 cm. If the assumption is made that the slower actually

decelerates at the maximum deceleration, then it is found that the ideal length is

quite short, approximately 60 cm. If, however, the more conservative assumption is

made that deceleration occurs at a fraction (say half) of amax, then the ideal length

is approximately 90 cm, and the length dependence becomes much softer. The actual

length of the Zeeman slower employed for these experiments is 150 cm, considerably in

excess of the ideal length. The longer length is helpful for maintaining good vacuum

in the main chamber, although other means for attaining the same end (for instance,

limiting the conductance with an aperture or tube) without sacrificing flux would no

doubt be more efficacious. The slow flux indicated in figure 2.4 for a 150 cm slower

is around 4 × 1010 slow atoms per second. Measured short-time loading rates for

the MOT have been around 2.5× 109/sec, indicating that between imperfect slowing

efficiency and imperfect MOT capture efficiency, only 10% of the expected number

of atoms are caught.

2.2.2 Coil Layout

In the design of the Zeeman slower, it is desirable (1) to minimize the number of

independent current supplies required, (2) to ensure that the heat generated may be
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Figure 2.4. Slow flux vs. Zeeman slower length for a = amax and a = 1
2
amax. The

parameters for these plots are as follows: the dead space before the slower is Ldead =
55 cm, the total oven density noven = 6 × 1012 cm−3, of which 27.8% is 87Rb . The
oven aperture is 0.2 cm2, and the mean velocity is v̄ = 3×104. The radius of the clear
aperture at the output of the slower is r = 1 cm. The dotted vertical line indicates
the actual 150 cm length of the Zeeman slower that was built.

21



B

x

x
1

x
2

x
3

. . .

Figure 2.5. Illustration of a representative sample of the Zeeman slower coil, showing
that a steady diminution in the turn spacing can produce a local gradient in the axial
field. The turns, spaced according to equation (2.25), gradually become more tightly
spaced As the turn density increases, so does the solenoid field, in an approximately
linear fashion. The field along the axis is plotted in the background.

readily dissipated, and (3) to allow some margin of error in the maximal obtainable

deceleration. The arrangement of coils to produce a field which will lead to near-

uniform deceleration may be accomplished in several ways. The Zeeman slower wound

for this experiment was designed by means of a simple approximation. The field in

a solenoid of N/L turns per length carrying a current µ0 is B = µ0IN/L. Although

derived for an infinite solenoid, this result depends only on the number of turns per

length, which can be thought of as a locally-varying quantity producing a local field.

This field is, however, smeared out over a distance corresponding to the radius of

the coil. Consequently, by tailoring the local number of turns per length, one may

produce nearly any slow variation in B. A linear gradient of the axial field, for

instance, is obtained by approximating the discrete number of turns per length as a

continuous variable and solving the differential equation (see figure 2.5)

µ0I
dN

dx
= B′x, (2.24)

which has the solution (reinterpreted in terms of the original discrete variables)

xN =

√

µ0IN

B′ . (2.25)
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The approximation leading to this result is, of course, only valid provided the number

of turns per length does not fall below ∼ 1/R. Moreover, in any given layer of

the winding, the spacing between turns cannot be less than the wire size. In the

present instance, the wire used was 1/8” square cross-sectioned copper tubing. These

constraints applied to dx = 1
2

√

µ0I
B′N

may be summarized as dwire < dx < R. For

reasonable parameters of I = 10A and B′ = 5G/cm, this implies 0.15 < N < 7.

Since xN ≈ 4 cm, the total change in field over the length of the gradient is 20G.

Clearly, then to decelerate nearly to rest an atom initially at 3× 104 cm/s, i.e., with

a Doppler shift of 380MHz, requires of order 10 such sections of gradient-producing

coils in sequence to achieve a field of 380MHz←→ 270G. When each layer reaches its

maximum field, i.e., becomes close-packed, with wire spacing equal to wire size, it may

continue the length of the Zeeman slower in the close-packed configuration, providing

a uniform bias field on which subsequent gradient layers may build as well as offering

a stable mechanical foundation for later windings. In practice, non-uniform precise

spacings are difficult to achieve, and the calculated positions serve as guidelines; one

tries, for instance, to make the number of turns per length vary smoothly from a

minimum to a maximum value over a certain length.

The final design employs two currents, optimized empirically at 12 A and 44 A.

The lower current is adequate for the slowly varying field along the largest portion of

the slower, but to achieve a reasonable approximation of the near-vertical tangent of

the ideal field, small windings at high current are desirable. In the actual experimental

setup, a single power supply runs 12 A in series through both sets of coils, while a

second supply runs 32 A through the latter set only. Figure 2.6 shows a comparison

of measured fields to the ideal profile. The agreement is good, especially considering

the fact that the Zeeman slower cools the atoms as well as slowing them, and that

this velocity-narrowing force provides some immunity to deviations of the field profile

from ideal.

The Zeeman slower coils were wound on a 1.5 in.-diameter, 60 in. long stainless-

steel ConFlat vacuum nipple. A large lathe operating on very low speed was em-

ployed to facilitate winding and provide sufficient torque to pull the windings tight.

For protection of the knife edges and easy gripping by the lathe, additional short

half nipples were firmly bolted to either end. One of these was held in the lathe
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chuck, while the other was held in place but allowed to rotate by three lubricated

symmetric radial supports on the tailstock of the lathe. The steel tube was covered

with adhesive-coated polyimide tape to reduce the possibility of short circuits to the

vacuum chamber. The wire used for the coils was square 1/8 in. tubing (1/32 in. wall

thickness), insulated with polyimide. One end of the coil was typically anchored by

means of a hose clamp, and the rest then slowly wound, making small adjustments

to the number of turns per length. The newly wound coils were temporarily held

in place by the use of several tight layers of polyimide tape around their circumfer-

ence. Once a complete layer was wound, the assembly was removed from the lathe

and DuralcoTM4525 high-temperature electrically resistant epoxy (manufactured by

Cotronics Corporation) was liberally applied to the coil. When the epoxy had hard-

ened, encasing the coil and holding it in place, a new layer could be wound on top.

The extraction of leads to the separate coils, some from under as many as 10 other

coils, requires special attention. The leads on the oven end of the Zeeman slower

were easy to gain access to, but those at the far end of the slower all exit at the same

axial position. An attempt was made to have these latter leads exit in a pinwheel

pattern, but in practice the windings on the upper layers could not be continued flush

with the lower layers without slipping off. This resulted in some degradation of the

ideal profile, which had to be compensated by the high-current coils wound later. A

next-generation design would probably incorporate a plate against which the coils

could be wound flush, and which could optionally be removed once they were epoxied

in place. Current was supplied to the coils via 14 A.W.G. wire that was soldered to

the copper tubing. As a result of the high thermal conductivity of the tubing, it was

difficult to obtain good solder joints without overheating the insulation on the tubing.

A more satisfactory approach for a future Zeeman slower would be the use of barrel

connectors. Alternatively, since the actual heat generated in the Zeeman slower is

small enough to allow air cooling (although for maintenance of good vacuum, water

cooling is employed on the bottom layer), a potentially attractive alternative is to use

more turns of higher-gauge wire, allowing more precise control over the field profile

via the number of turns per length. This would, of course, require higher-voltage,

lower-current power supplies than on the present apparatus.

The Zeeman slower has been tested experimentally by probing at 60◦ with a near-
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resonant retroreflected laser beam and recording fluorescence as a function of the

detuning of the probe. Because of the finite angle between the slower axis and the

probe beam, this probing method was sensitive via the Doppler effect to the velocity

distribution of the atoms. More particularly, this meant that the counterpropagating

beam was not resonant when the forward beam was (and vice versa), but merely

provided a convenient frequency marker for zero velocity, to wit, the symmetry point

of the observed fluorescence-detuning curve. In order to improve the signal-to-noise

ratio, the probe was chopped at a few hundred Hz, and the current from the photode-

tector was fed into the current input of a lock-in amplifier clocked at the chopping

frequency. In the absence of slowing light or slower current, a broad peak in the

detected signal versus detuning was observed. For the correct choice of current and

detuning of the slower laser, however, a substantial portion of the peak was seen to

move closer to the zero-velocity point. From the known sweep range of the probe fre-

quency and the probe angle the frequency could be converted to velocity. The peak

output velocity of the slower was around 20 m/s. Peaks at smaller velocities could be

generated, but with diminishing signal height. The largest velocity that appeared to

be slowed when comparison was made between the unslowed and slowed distributions

was approximately 300 m/s, although this was difficult to determine precisely.

A more practical test of the Zeeman slower is its ability to enhance the loading

rate of the MOT. In this regard, as noted in section 2.2.1, the present slower falls

short of the theoretical prediction, delivering approximately 2.5 × 109 cold atoms

per second, whereas a capturable flux roughly 10 times as large might have been

expected. This difference may result merely from the combination of several small

factors, such as the uniformity of the Zeeman-slower laser beam, its overlap with the

slower repump beam, their common overlap with the atomic beam, and the transverse

velocity spread of the slowed beam, among others. Another possibility is that the

slower only slows efficiently down to a particular velocity, which could be comparable

to or marginally higher than the capture velocity of the MOT, compromising the

ability of each to perform optimally at any one final velocity. It is worth noting,

however, that the number of atoms that can be held in a MOT scales weakly with

the loading rate when the optical density of the MOT becomes substantial, and that

the condensate numbers of ∼ 2 × 106 obtained in the present apparatus are on the
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Figure 2.6. Measured slower fields compared to ideal slower field profile. Fields were
measured by means of a Hall probe, mounted in a hole on the axis of plastic cylinder,
and positioned by means of a long steel rod that had been epoxied to the cylinder.
The solid curve shows the ideal field profile. Crosses show the total field due to both
high- and low-current coils. Filled circles show the field from high-current coils only.

high end among contemporary 87Rb BEC experiments, so that diminishing returns

may be expected in efforts to increase the condensate size by increasing the MOT

loading rate. Nevertheless, a higher loading rate is always a good thing, provided it

does not increase the loss rate proportionally, and with sufficient optical access and

laser power, the MOT beams can be made larger to accommodate a larger number of

atoms. Thus, future efforts with a more compact Zeeman slower and less dead space

between the oven and the beginning of the slower certainly remain worthwhile.

2.3 Diode Lasers and Tapered Amplifier

The laser system used for these experiments (see figure 2.7) consisted of three

external-cavity diode lasers (ECDLs), one near the D2 F = 2 lines, one near the D2

F = 1 lines, and one near the D1 F = 1, as well as a free-running 825 nm diode

laser, a slave laser injection locked to the D2 F = 2 master, and a tapered amplifier

injected in turn by this slave.

The ECDLs which we have built and employed for this apparatus are of a stan-
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Figure 2.7. Optics layout for laser cooling, consisting of two stabilized lasers, and
an amplified injection-locked laser for the MOT. An imaging laser on the D1 line is
unpictured. The master laser also serves as the Zeeman-slowing laser, while the other
laser is resonant with the F = 1 hyperfine levels and provides repumping light to
both Zeeman slower and MOT.

dard configuration, consisting of a commercially available (Thorlabs) diode housing

with collimating lens and strain-relief cable (supplemented by a simple home-built

protection diode network) screwed in place on the stationary portion of a commercial

mirror mount. Most of the diodes used in the neighborhood of 780 nm have been the

Sanyo DL-7140-201S, although the substantially less expensive Sharp GH0781JA2C

diode has also been used with satisfactory results. To the movable plate of the mirror

mount is affixed a small shelf which carries the grating, clamped in place. The grating

employed is typically a UV grating with 1800 lines per inch, which for the correct

orientation (polarization) of the diode should diffract around 10−20% of the incident

light. Between the fine-threaded screw of the mirror mount and the opposing point

on the movable plate is placed a piezoelectric actuator (“piezo”). The actuator is

glued to the plate on one end and on the other to a small metal disk which makes

contact with and distributes the force from the end of the screw. The piezo is sub-

ject to a considerable buckling force from the spring-loaded mirror mount if it is not

mounted precisely in line with the screw. Given the pivotal importance of the piezo

for the grating stability of the laser, a next-generation ECDL design would probably
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Figure 2.8. External cavity diode laser diagram, showing diode mounted in collimat-
ing tube, collimating lens, and grating. Horizontal and vertical adjustments of the
grating allow coarse angular control over the diffracted spot from the grating, while
in the horizontal direction a piezoelectric transducer provides fine control.

attempt to guard against shear or buckling of the piezo, perhaps by encasing it in a

small hollow cylinder.

The entire mirror mount is then attached to a metal plate, which sits atop a

thermoelectric cooler for temperature stabilization, and the whole assembly is housed

in a metal box to shield against RF noise and against air currents. As a side note,

the use of thermistors as temperature-sensing elements has generally been favored

over that of AD590 sensors, because of their observed superior immunity to radio-

frequency interference. Optimum temperature stabilization is achieved by placing

the temperature sensor as close as possible to the cold surface of the TEC. This

avoids heat propagation delays which tend to destabilize the feedback circuit. Of

course, placing the sensor close to the laser diode is also desirable; together, these

considerations make the use of a compact mount desirable. We have also successfully

employed two-stage temperature stabilization, in which the entire mount is cooled (or

heated) by a TEC, while fine tuning of the diode temperature is achieved by placing

a resistive heater wire and a second sensor on the diode collimation tube itself.

The standard alignment procedure for these diodes is first to adjust the collimating

lens to make the emitted beam as parallel as possible. Then, with the diode housing

in its final location and heat-sink compound reapplied as necessary, the grating is

adjusted to send the first-order diffraction spot back into the laser diode. It may
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be desirable, prior to this step, to adjust the temperature of the diode mount to

bring the wavelength as close as possible to the desired wavelength, but depending

on the difficulty of reading the wavelength this may be done later, at the expense of

additional iterations. It is often useful to perform the initial adjustment of the grating

coarsely by manually rotating the grating to be certain that the correct diffraction

spot is being sent back. A finer adjustment is accomplished by clamping the grating

in place and looking now at the forward-reflected beam with the diode current near

its full operating value. When the diffraction spot is very closely aligned to the

output of the diode, its reflection from the collimating lens or from the diode itself

shows up as a secondary spot in the forward direction which can be adjusted using

the screws on the mirror-mount that holds the grating. In the ideal case, this spot

can be scanned from one side of the output beam to the other in both the vertical

and horizontal directions. Optical feedback is observed when this spot appears to

be drawn in to the larger output beam and to disappear. In practice, however, it

sometimes occurs that the spot can be scanned only on one side of the beam. In

these cases, one can verify that optical feedback is occurring by tuning the grating

horizontally with the mirror-mount adjustment and seeing whether the wavelength

tunes in a punctuated but nearly monotonic fashion with the grating angle. Another

useful method of optimizing the optical feedback and the vertical tilt of the grating,

particularly if the diffraction spot is close to being aligned, is to scan the current

around the lasing threshold while monitoring the output power. A relatively sharp

kink in the output power should be observed at threshold. When optical feedback is

present, this kink should move to lower power and should exhibit extreme, flickery

sensitivity to the grating alignment. Once optical feedback is achieved, the laser may

typically be tuned by 7 nm or more with a combination of temperature and grating

adjustments, although if the wavelength is pulled this far intermediate optimizations

of optical feedback (e.g., of the vertical tilt of the grating) are likely to be necessary.

The laser is then stabilized by applying an electronic feedback signal to the cur-

rent and to the piezo. This two-branch feedback is intended to reduce frequency

noise below a cut-off frequency of several tens of kilohertz. The error signal for ap-

plying feedback is derived from a saturated absorption cell; both pump and probe are

frequency-modulated by means of a double-passed acousto-optic modulator (AOM).
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Figure 2.9. Tapered amplifier mount (not to scale), showing input lens (left) and
output lens (right), whose axial positions are adjustable by set screws pushing against
the elastic aluminum arms of the flexure mount. The output lens collimates the
more diverging dimension of the astigmatic output beam. A cylindrical lens forms a
Keplerian telescope with the output aspheric lens, collimating the other dimension.

In typical operation, the AOM induces many sidebands of approximately equal power,

so that the final demodulated error signal contains contributions from many slightly

different paths. Although this is expected to introduce additional noise, the method

appears rather robust and stable, and is easy and inexpensive to implement.

The tapered amplifier consists of a home-built mount for a commercial amplifier

chip (from the company Eagleyard). The chip is contained in a 2.75 mm C-mount

package, and is specified at a maximum power of 500 mW. It is placed against a thin

layer of indium foil and screwed into a metal mount so that the active region of the

chip protrudes slightly above the top of the mount, allowing the injection beam to

be coupled in. This coupling is accomplished by means of two aspheric microscope

objective lenses, one on the input and one on the output. Each is mounted in a steel

tube which slides securely into a small-tolerance bore traversing an aluminum block

and is held in place by a set screw. These blocks are glued (using Torr Seal R©) onto

two independent arms of a flexure mount with the aspheric lenses projecting inward

toward the tapered amplifier chip. Additional setscrews in the arms of the flexure
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mounts allow fine positioning of the lenses along the optic axis. This entire assembly

is mounted on top of a Peltier cooler, used to stabilize the temperature, and three

Melcor spacers, which all reside on a large aluminum block. This final block, about

4 in. high, is clamped via standard baseplates to the optical table. Current is delivered

by a Lightwave Electronics current driver across a protection board consisting of one

reverse diode and several forward diodes in parallel (the number chosen to make the

total diode drop exceed the operating voltage, ∼ 2.5 V, of the tapered amplifier chip).

An insulating feedthrough in the mount facilitates access to the cathode wire of the

chip; its anode is in electrical contact with the C-mount body, so that a lead may be

attached to the mount as convenient. The use of indium foil rather than the previously

employed heat-sink compound, to maximize thermal contact, thus improves electrical

contact as well, which otherwise would be guaranteed only by the mounting screw. It

is not always easy, moreover, to ensure that heat-sink compound is applied in exactly

the quantity and at exactly the points where it is desired in the tight confines of the

tapered amplifier mount.

The tapered amplifier mount as implemented has functioned well for approxi-

mately three years, yielding ≈ 300 mW output power for 25 mW input at an operat-

ing current of 1100 mA, although several chip replacements have been necessary. The

thermo-mechanical stability of the mount when subjected to a change in heat load

(e.g., when the amplifier current is turned on in the morning) is imperfect, requiring

several small adjustments of the input coupling over the first half hour of operation

to maintain good efficiency and occasional (every ∼ 2 hours) such adjustments there-

after. This is presumed to result from gradual heating of the large aluminum base,

which serves both as structural support and as heat sink for the Peltier cooler. A

next-generation design might seek to stabilize the temperature of the base in addition

to that of the amplifier chip, or perhaps more simply to separate the rôles of heat sink

and support. For operation above room temperature, it is furthermore quite possible

that no heat sink is needed.

When aligning the tapered amplifier after chip replacement, the input lens block

is positioned first by means of a cylindrical lens holder or other clamp mounted on

a triaxial translation stage. Running the amplifier at a ∼ 600mA, so that amplified

spontaneous emission (ASE) is clearly visible in both the forward and backward
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directions with an infrared viewer, one attempts to position the lens so that the

backward-emitted ASE is nearly collimated and centered on the objective. If the

vertical position of the lens is not correct, it is necessary to mill, sand, or shim the

block to the correct height at this stage. The backward ASE typically takes the

form of three spots, the middle of which should be aligned and approximately mode-

matched to the injection beam. The shaping of the injection beam is accomplished

with spherical optics (and the aspheric objective lens), since the aspect ratio of the

input to the tapered amplifier chip is small. It is important also that the injection

beam be of the correct linear polarization to obtain amplification. Amplification

should be apparent on an infrared up-conversion card even with only a few mW

input power. After reasonable but not exhaustive optimization, which would in any

event have to be repeated, the input lens block is epoxied in place, and the lens-

holder clamp is removed when the epoxy has hardened. The same procedure is then

followed for the output lens block, which is positioned to make the highly astigmatic

amplified output beam (which differs in shape and collimation from the output ASE)

approximately parallel in the vertical (i.e., rapidly diverging) direction. In the less

diverging horizontal direction, this lens will serve to focus the beam, whose size will at

some point beyond the focus then equal the vertical size. A cylindrical lens placed at

this point, with its focal length chosen to collimate the horizontal direction, will then

produce a non-astigmatic beam of near-unit aspect ratio. Fiber-coupling efficiencies

as high as 70% have been obtained with beams shaped in this manner.

2.4 Cold Plates

Given the high vapor pressure of rubidium at room temperature and the relatively

large flux of unslowable atoms from the oven (that is, atoms emitted at large angle

to the beam and those of the other isotope), it is desirable for the maintenance

of ultra-high vacuum to provide cold surfaces upon which excess rubidium may be

accumulated. In the present chamber, one such surface has been provided in the

oven chamber surrounding the atomic beam shutter and one in the main chamber,

positioned to catch atoms re-emitted after striking the slower window (see figure 2.1).

To maintain temperatures of −20◦ C to −40◦ C with minimal human intervention, a
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system of thermo-electric cooler (TEC) stacks was implemented. A TEC operates on

the Peltier effect, according to which the flow of electric current through a conductor

induces a corresponding heat flow. The ratio of the heat current to the electric

current, denoted Π, has units of volts and depends on the material. By running a

current through a wire consisting of alternating regions of large Π, in which current

flows in one spatial direction, with regions of small Π, in which it flows in the opposite

direction, a relatively modest current of a few Amperes can produce substantial heat

flows of tens of Watts. This arrangement may be thought of as the operation of many

small, individual Peltier devices electrically in series and thermally in parallel, and it

is the basis of most commercial TECs.

The temperature difference obtainable with an arrangement of TECs is limited by

the competition between the Peltier effect and the inevitable Ohmic heating. Indeed,

the integral form of the heat continuity equation, written for a nearly isolated block

of thermal conductor on the cold side (temperature T0) of a TEC whose hot side is

connected to an ideal heat sink at temperature T1, is

K(T1 − T0) = ΠI − 1

2
RI2 − Q̇, (2.26)

where I is the TEC current, R its electrical resistance, K its thermal conductance,

and Q̇ the heat load to the block. In general, Q̇ will depend on T0, but if the heat

load is small or independent of T0, the temperature difference is easily seen to reach

a maximum at

Imax =
Π

R
, (2.27)

corresponding to a temperature difference of

T1 − T0 =
Π2

2KR
− Q̇

K
. (2.28)

For reasonable TEC parameters of Π ∼ 6V, R ∼ 0.5 Ω, and K ∼ 1W/◦C, this

corresponds to a maximum temperature difference of approximately 40◦C at zero

heat load, or T0 ∼ −20◦C if the heat sink is at room temperature. To achieve

larger temperature differences, and thus lower vapor pressures of rubidium, one might

consider combining several TECs in series and/or in parallel. The general calculation

of what temperatures may be obtained by such a combination is analogous to that for

a single TEC, but has proven to be of some practical utility and will be reproduced

here in outline for reference.
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Figure 2.10. Diagram of TEC Stack. Peltier coolers of electrical resistance Rn and
thermal conductance Kn carry currents In, maintaining a temperature difference of
Tn − Tn−1 across their plates. Stacking TECs allows larger temperature differences,
but upper layers must contend with a large heat load from lower layers.

Consider now a system of alternating layers of TECs and thermally conductive

blocks, as shown in figure 2.10. The heat flow equation for the n-th block is

∆n −∆n−1 = ΠnIn − Πn−1In−1 −
1

2
RnI

2
n −

1

2
Rn−1I

2
n−1, n > 1 (2.29)

∆1 = Π1I1 −
1

2
R1I

2
1 − Q̇, (2.30)

where ∆n ≡ Kn(Tn−Tn−1) and the quantities In,Rn, Kn and Πn refer respectively to

the electrical current, resistance, thermal conductance, and Peltier coefficient of the

n-th TEC. This system of equations is easily solved for ∆n as

∆n = ∆1 +
n
∑

i=2

(∆i −∆i−1) = ΠnIn −
1

2
RnI

2
n −

n−1
∑

i=1

RiI
2
i − Q̇, (2.31)

from which the total temperature difference is obtained

TN − T0 =

N
∑

n=1

(

∆n

Kn

)

(2.32)

=
N
∑

n=1

ΠnIn
Kn

−
N
∑

n=1

1

Kn

(

−1

2
I2
nRn +

n
∑

i=1

RiI
2
i

)

− Q̇
N
∑

n=1

1

Kn

.

Equating partial derivatives with respect to the N currents to zero yields

Imax
j =

Πj

Rj

(

1 + 2
N
∑

n=j+1

Kj

Kn

)−1

. (2.33)
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from which by straightforward algebra the maximum temperature difference is

TN − T0 =
1

2

N
∑

j=1

Π2
j

RjKj

(

1 + 2
N
∑

n=j+1

Kj

Kn

)−1

− Q̇
N
∑

j=1

1

Kj

. (2.34)

For practical purposes, it is often convenient to cascade several of the same type

of TEC, rather than to choose different components for each layer. In the special case

that each layer n consists of a number wn of identical TECs, each having specifications

Π, K, and R as defined above, the maximum temperature difference may be simply

parametrized as

Tn − T0 = α
Π2

2KR
− β Q̇

K
, (2.35)

where, noting that wn TECs have resistance wnR, Peltier coefficient wnΠ, and thermal

conductance wnK, we identify

α =

N
∑

n=1

(

1 + 2

N
∑

j=n+1

wn
wj

)−1

, β =

N
∑

n=1

1

wn
. (2.36)

Values of α and β for various TEC configurations are shown in table 2.1. To maximize

the temperature drop, it is clearly advantageous to choose configurations for which α

is large and β is small. For situations in which Q̇ is small, maximizing α will be the

primary concern, while minimizing β is of greatest importance when the heat to be

dissipated is substantial. As noted earlier, the foregoing analysis requires modification

when the heat load itself depends on the cold temperature, as would be the case for

thermal leakage in a vacuum feedthrough, for instance. In this case, Q̇ = Kleak(TN −
T0), assuming that the heat load is due to leakage conductance to a point at the

same (e.g., ambient) temperature as the heat sink. Referring to equation (2.32), it is

apparent that the calculations for the optimal currents are unmodified, but that the

total temperature difference is reduced by the factor 1 +Kleak

∑N
n=1

1
Kn

.

In practice, the configuration we have typically employed is the two-layer w1 = 1,

w2 = 2 stack pictured in figure 2.10, for which Imax
1 = Imax/2 and Imax

2 = Imax in

terms of the single-TEC optimum of equation (2.27). A copper block matching the

size of the single TEC is machined and endowed with a blind hole closely matched to

the diameter of the copper thermal (or high-current) feedthrough. The feedthrough

is usually slip-fitted to the block with heat-sink compound in the interstitial space,
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although the two pieces could be brazed together if provision were made to avoid

overheating of the feedthrough. The TEC of the first layer is then placed on the

other side of the copper block, followed by a second copper block approximately

the size of two TECs side by side, followed by the two TECs themselves. Finally

another larger water-cooled copper plate is placed on the hot side of the second layer

of TECs. Heat-sink compound is applied between each thermal junction. The water

cooling is effected by running tap water at a few tens of p.s.i. through copper tubes

that have been brazed to the top copper plate in a meandering pattern. In order

to hold the entire TEC assembly together without thermally short-circuiting the hot

and cold surfaces, a system of thermally insulating clamps is sandwiched around

the TEC stack. In one case, this consisted of Plexiglas plates joined by long steel

bolts, while in another specially machined and threaded Delrin rods were used to

provide compressional force between the plates of the TEC stack. To achieve the

largest temperature differences, it is of course also important to insulate the entire

cold area well. The TEC stacks on the present apparatus use flexible polyurethane

foam sheets, cut and layered to enclose the stack as tightly as possible. Even with

good insulation, however, the TEC assembly ices up over time, making it desirable to

use TECs that have been sealed against moisture. Conduction by the ice is probably

responsible for the gradual rise in the minimum temperature attainable from around

−40◦C for a newly optimized system to −20◦C or −15◦C for an assembly entirely

encased in ice. To avoid such a decline in performance, a promising approach would

be to enclose the assembly in a airtight plastic box with gasketed feedthroughs for

the cooling water, electrical connections, and the thermal vacuum feedthrough. Most

of these components are readily commercially available. The initial moisture content

of the box could be extracted with desiccant packets. In conjunction with a titanium

sublimation pump, however, a cold-plate temperature of −20◦C has been adequate

to achieve trapping lifetimes over 100 seconds, which is more than sufficient to allow

creation of large BECs. The cold plate in the main chamber is tubular in form,

surrounding the path of the atomic beam on the far side of the MOT region and

designed to capture atoms (85Rb and unslowed 87Rb ) which have struck the window

by which the Zeeman-slowing laser enters. Although the total area of the cold plate

is only ∼ 30 cm2, it occupies a large solid angle for atoms reflected from this window,
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No./Layer Coefficients
w1 w2 w3 w4 α β
1 0 0 0 1 1
2 0 0 0 1 0.5
1 1 0 0 1.33 2
1 2 0 0 1.5 1.5
2 1 0 0 1.2 1.5
1 1 1 0 1.5 3
1 3 0 0 1.6 1.33
2 2 0 0 1.33 1
1 1 2 0 1.75 2.5
1 1 1 1 1.68 4
4 0 0 0 1 0.25
2 3 0 0 1.43 0.833
2 4 0 0 1.5 0.75
1 2 3 0 1.8 1.83

Table 2.1. α and β for different numbers wn of identical TECs in layer n.

so that at low temperature it should absorb with high probability a large fraction of

the unslowed atomic beam.

2.5 Magneto-Optical Trap

The Magneto-Optical Trap (MOT) used in this work was of a standard config-

uration, consisting of six independent ∼ 1 in.-diameter laser beams, each of around

15mW, tuned 20MHz below the F = 2 to F ′ = 3 D2 transition of 87Rb . These laser

beams provide the trapping and cooling force, in conjunction with a quadrupolar

gradient of 15G/cm obtained by passing a current of 50A through one curvature and

one antibias coil of the magnetic trap (see section 2.6 and figure 2.15 below). The

atoms are maintained in the F = 2 hyperfine level by a repumping laser resonant

with the F = 1→ F ′ = 2 transition. Approximately 8 mW total MOT repump laser

power is combined with the four horizontal MOT beams, giving atoms off-resonantly

scattered on the F = 2 → F ′ = 1, 2 transitions into the F = 1 level a rapid optical-

pumping pathway back to the F = 2 level, on which the cooling and trapping MOT

laser operates.

37



In the neighborhood of 5 × 109 atoms are typically collected in a loading time

of around 10 s. They are then compressed, roughly along the lines suggested by

Lewandowski et al.[45], in a two-step process. In the first step, lasting 10 ms, the

magnetic gradient is reduced to 7.5 G/cm and the MOT repump laser power from

8 mW to 130µW. Further compression is achieved in a second stage, lasting 70 ms, in

which the MOT repump power is reduced further to 55µW and the MOT detuning

increased to ∼ −40 MHz at the same magnetic gradient. The shim fields provided by

Helmholtz coils are adjusted at this stage to position the compressed MOT (CMOT)

at the center of the magnetic trap. Then the magnetic gradient is switched off al-

together and the MOT beams are reduced in power to ≈ 60 mW total and detuned

to approximately −60 MHz and, while the repump power remains at 55µW. This

“optical molasses” step, lasting 7.5 ms, brings the temperature of the cloud to around

60 − 70µK. Lower temperatures have been attained, but at the expense of smaller

atom numbers or lower densities. Finally the repump beam is extinguished com-

pletely for 1 ms, followed 2ms later by the MOT. In this short period, nearly 100%

of the atoms are optically pumped into the F = 1 hyperfine level. After 2 ms further

delay, the magnetic trap is turned on in the uncompressed configuration, as described

below.

Optimization of the MOT is accomplished in various ways. Initial alignment is

performed by placing a centered iris in the MOT beams. On each of the horizon-

tal axes, one of the counterpropagating pairs is chosen at random and walked into

alignment with the vacuum viewports on either side, i.e., the beam is horizontally

centered on the viewports and approximately 1/4 in. above center in the vertical

direction. The opposing beam is then walked into alignment with the already aligned

beam. The procedure for the vertical beams is similar, but more difficult because

of the poor visibility and larger size of the viewports on which the beam should be

centered. Various techniques have been employed to circumvent this difficulty. One

method involves use of the small two-dimensional MOT that is formed with both

vertical beams blocked. If fluorescence from this 2d MOT can be imaged, then the

bottom-up MOT beam can be aligned to the location on the camera where the 2d

MOT appears. Similarly, if some number of atoms can be captured in the magnetic

trap and then imaged, this should provide an approximate idea of the position of the
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trap center, which is close to the position of the MOT zero. Still another way of

aligning the bottom-up beam is to use its unbalanced radiation pressure to destroy

the 2d MOT, with the bottom-down beam blocked. In any of these scenarios, the top-

down MOT beam can then be walked to align it to the bottom-up beam. The longer

path length between the bottom window and the trap ensures that the propagation

direction of the bottom-up beam will be approximately vertical, even if its position

on the bottom window is slightly displaced below the chamber. An alternative pro-

cedure is to place on the top and bottom viewports cardboard cutouts with holes in

the center and around the circumference at the locations of the vacuum bolts. Then

walking the two beams until they are aligned to the two center holes and to each other

should result in correct alignment. The circular polarizations of the six beams are

set so that the two beams along the MOT axis are of one helicity, while those on the

other four axes are of the opposite helicity. In practice, we have observed functioning

(albeit inferior) of the MOT with rather poor polarization, requiring almost perfectly

incorrect polarization to extinguish trapping altogether, so that the complete absence

of a MOT may usually be attributed to other causes.

In order to optimize an already functioning MOT, we have found it useful to moni-

tor the fluorescence from the MOT. In particular, to optimize the number and density

of the compressed MOT, an experimental cycle has been implemented, consisting of

2 s loading, followed by the usual CMOT stages. Then full-power near-resonant op-

tical molasses (i.e., with no field gradient) is applied; fluorescence from the atoms

is collected by a lens at an auxiliary viewport and imaged onto an iris immediately

preceding a photodiode. The signal peaks rapidly when the optical molasses is turned

on, and then diminishes on a timescale of hundreds of milliseconds. The initial height

of the peak is taken as an indication of the number of atoms in the CMOT. It is this

quantity that we attempt to maximize, while secondarily remaining cognizant of the

rate of decay of the signal, which is a rough indication of temperature or of the degree

to which the MOT beams are balanced. Typical signals have been 700 mV, measured

through a 9/64 in.-diameter iris on a ThorLabs DET 110 photodiode, terminated by

the 1 MΩ resistance of an oscilloscope, with light gathered by a ∼ 0.14 numerical-

aperture, near-unit-magnification imaging system. For the specified responsivity of

the photodiode, 0.5mA/mW, this corresponds to about 1.4µW optical power. For
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reference, saturated fluorescence from 109 atoms corresponds to about 23µW within

the 5 millisteradian solid angle of the imaging system, so that this value is quite rea-

sonable, considering that the laser is detuned resonance and that the iris transmits

only light from the central portion of the CMOT. The diffusion of atoms in this optical

molasses is also monitored on a security camera, which detects fluorescence at 780 nm

quite well. The atoms in a well aligned MOT should diffuse uniformly and slowly

outward as the fluorescence fades, without swirls or rapid motion in any direction.

The basic adjustments once the beams are in apparent alignment are the half-wave

plates which control the relative intensities of the six beams. Slight tweaking of the

Zeeman-slower laser alignment is frequently beneficial, as is tweaking of the MOT

repump beam alignment. A more thorough optimization would include the gradient,

the MOT beam power and detuning, the MOT repump power, and the Zeeman-slower

currents during each of the stages (loading, CMOT, and molasses) when each is rel-

evant. In the experience of the author, it is seldom necessary or desirable to adjust

the alignment of any of the MOT beams to improve the fluorescence signal if they ap-

pear satisfactorily aligned to start with. Historically, when frequent unavailing MOT

realignments have occurred in the laboratory, it has been an indication of another

problem, such as oven failure.

2.6 Magnetic Trap

2.6.1 Theory of Magnetic Trapping

Magnetic traps, though now so routinely used in ultracold atomic physics as to

be taken for granted, are nonetheless truly remarkable. They constitute what, de-

scribed in the abstract, one might reasonably suppose to be a ludicrous idealization:

a frictionless, temperature-less container which can defy gravity and hold atoms at a

fraction of a microkelvin for upwards of a hundred seconds. The principles and tech-

nology of magnetic traps for neutral atoms have been extensively discussed [46–50].

The essential idea is that an atomic spin will adiabatically follow a time-varying

magnetic field (or a spatially varying field through which the atom moves), provided

the rate of change of the Larmor frequency ωL ≡ µB/~ is small compared to its
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Figure 2.11. Zeeman splitting. States whose energies rise with increasing field (at low
field) are magnetically trappable; these are F = 1, mF = −1;F = 2, mF = 1; andF =
2, mF = 2. The spinor work of chapter 3 is performed in an optical trap, which allows
simultaneous trapping of the three F=1 states.
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square, i.e.,
dωL
dt
∼ v · ∇ωL ≪ ω2

L. (2.37)

As a consequence, the adiabatic potential energy of an atom may be computed at

each point by taking the quantization axis along the local field direction. The adi-

abatic approximation then consists in neglecting the “gauge” terms which appear

when derivatives of the spatially-dependent change of basis are taken [51]. Thus the

potential energy of an atom with spin F and spin projection mF is

U(r) = µBgFmF |B(r)|, (2.38)

where gF is the Landé factor. Adiabaticity, then, implies that the potential energy

depends only on the magnitude of the field and the (unchanging) magnetic quantum

number mF . A magnetostatic trap is by definition a local minimum of the potential

energy, which according to equation (2.38) must correspond to maximum or minimum

of |B|, accordingly as gFmF is negative or positive.

A crucial further observation due to Wing [52] and generalized by Ketterle et

al. [53] is that the magnitude of the magnetic field cannot have a maximum in free

space, somewhat analogous to Earnshaw’s theorem for the electrostatic potential.

This may be seen quite simply from Maxwell’s equations. Indeed, in free space B is

divergenceless and curl-free, which implies that each of its vector components obeys

Laplace’s equation, ∇2Bi = 0 for i = {x, y, z}. Thus each Bi is a harmonic function,

and consequently its value at a point is equal to its average on a small sphere S

surrounding the point, B = 〈B〉S. As a result,

〈B2〉S ≥ 〈B〉2S = B2. (2.39)

Since B2 at each point is less than its average at the surrounding points (at arbitrary

radius), it cannot have a maximum. Fortunately, however, in contrast to Earnshaw’s

theorem, the inequality (2.39) permits B2 (and hence |B|) to have a minimum. Ac-

cording to relation (2.38), then, only atoms in spin states for which gFmF > 0, (known

as weak-field-seeking states), are magnetically trappable. For 87Rb , the Landé fac-

tors are g2 = 1
2

and g1 = −1
2
, from which the only magnetically trappable states are

F = 1, mF = −1, F = 2, mF = 1, and F = 2, mF = 2, as shown in figure 2.11.

A distinction is commonly drawn between magnetostatic traps whose minimum

field is zero, referred to as magnetic quadrupole traps, and those which possess a
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nonvanishing bias field. Of the latter, the simplest and most common type is known

as the Ioffe-Pritchard trap, after its inventors [54, 55]. In the neighborhood of a field

zero, even very slow atoms will fail to satisfy the adiabaticity condition of equation

(2.37), and indeed for a quadrupole trap the tendency of cold atoms to cluster at

the trap minimum more than offsets their lower velocity [56], resulting in an increas-

ing rate of nonadiabatic spin flips with diminishing temperature. For this reason,

quadrupole traps, although relatively simple to construct, are at present seldom used

to confine ultracold atoms. A variant which has enjoyed much greater success is

the Time-Orbiting Potential (TOP), in which a small, rapidly rotating bias field is

superimposed on the quadrupole field, resulting in an average potential which varies

harmonically about a nonzero minimum. The Ioffe-Pritchard trap configuration, how-

ever, circumvents the spin-flip problem almost completely without departing from the

realm of magnetostatics, since its field is never zero in the trapping region. The form

of the Ioffe-Pritchard field in the neighborhood of the trap bottom is given by

B(x, y, z) =
(

B′x− 1
2
B′′zx

)

x̂−
(

B′y + 1
2
B′′zy

)

ŷ

+
(

B0 + 1
2
B′′(z2 − x2+y2

2
)
)

ẑ, (2.40)

where ẑ is the symmetry axis of the trap. It is easy to see that for x = y = 0, the

field has a quadratic nonzero minimum at z = 0:

|B(x = 0, y = 0, z)| = B0 +
1

2
B′′z2. (2.41)

The fact that this field configuration is confining in the transverse x̂ and ŷ directions

may be appreciated by taking its square magnitude at z = 0

|B(x, y, z = 0)| =

√

(

B0 −
B′′

4
(x2 + y2)

)2

+ (B′)2(x2 + y2) (2.42)

≈ B0 +
1

2
B′′
ρ(x

2 + y2),

where we have retained terms of quadratic order and defined the radial curvature:

B′′
ρ ≡

B′2

B0
− 1

2
B′′. (2.43)

The ability to tailor the radial curvature by changing B0 is of considerable practical

importance (see figure 2.16 and discussion below). Although one might object that
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Curvature Coils

Figure 2.12. Spatial layout of magnetic-trap coils. Long rounded rectangular coils
approximate Ioffe bars, yielding a transverse gradient. Square curvature coils provide
bias field and axial confinement, while antibias coils produce opposing field to allow
independent control of bias and curvature. Coils are wound from square copper
tubing and mounted in vacuum by tie-wires to alumina plates (not shown) between
each neighboring curvature/antibias coil pair.

the constructive approach outlined above produces a form (equation (2.40)) that is

not unique, since any curl-free, divergenceless field may be added to it, in fact the

conditions that ẑ be the symmetry axis and that z = 0 be the location of the minimum,

which we may impose without loss of generality, dictate that any such additional fields

will lead merely to a redefinition of the parameters in equation (2.40).

2.6.2 Trap Design and Construction

The inverse problem of determining coils which will produce the Ioffe-Pritchard

fields of equation (2.40) is underdetermined, and has been solved in many ways, from

the classic design of Ioffe [54, 57] to the more modern cloverleaf [50] and baseball

[58] traps and the convertible QUIC trap [59]. The design employed in the present

experiment is essentially of the classic Ioffe type. As shown in figure 2.12, it consists of

two long (15 cm×3 cm) nine-turn rounded rectangular coils at ±1.5 cm distance from

the trap center. These coils produce a two-dimensional quadrupole field, i.e., a radial
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gradient. Surrounding these gradient coils are a pair of 5.5 cm-edge rounded-square

six-turn curvature coils at approximately ±3.5 cm axial distance from the trap center

and a larger pair of 9 cm-diameter eight-turn circular “antibias” coils at ±4.8 cm

distance. These four axial coils are wired together so that the bias field at the center

of the trap is in the same direction for the two curvature coils, but in the opposite

direction for both of the two antibias coils. More specifically, the trap is designed

so that the net bias field produced when a current is run through these four coils in

series is close to zero, in which case magnetic field noise will be suppressed by the

ratio of the actual bias field to the bias field due to either pair of coils separately. The

gradient coils in this design are the innermost of the three pairs of coils and are so

placed to maximize the transverse confinement in the trap. Indeed, the peak density

of a classical gas of N atoms in a harmonic trap at temperature τ = kBT is

n = N
( m

2πτ

)3/2

ω̄3, (2.44)

where ω̄ = (ωxωyωz)
1/3. Adiabatic compression of a harmonic trap preserves the

ratio ω̄/τ , so that the density increases as ω̄3/2 in such a compression. The velocity

increases as
√
τ ∼ ω̄1/2, so that the net increase in the collision rate Γ ≡ nσcv scales

as ω̄2. In terms of the trap parameters, this means that the collision rate scales, for

large aspect ratio, as

Γ ∼ B′4/3B′′1/3

B0
2/3

. (2.45)

The scaling of gradient with distance is I/R2, while curvature scales as I/R3, where

it is assumed that the coils are positioned to optimize the gradient and curvature

respectively. This optimum occurs at a distance on the order of the size R of the coil.

Consequently, the collision rate scales as R
−8/3
grad. and as R−1

curv., and it is relatively more

beneficial, as far as the collision rate is concerned, to place the gradient coils closest to

the atoms. This analysis neglects, of course, the possibility that tighter confinement

may be required in the axial direction for a particular experiment. The relatively low

(∼ 6 Hz) axial frequency of the present trap makes experiments on one-dimensional

condensates more feasible, but renders damping of “sloshing” motion in the trap more

difficult.

It was decided to place the magnetic trap inside the vacuum system, in view of the

fact that for a conventional steel vacuum system the minimum fractional solid angle
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occupied by blind vacuum hardware, as opposed to viewports, decreases as the size of

the vacuum system increases. The magnitude of the attainable magnetic-field curva-

tures, however, decreases rapidly as the magnetic trap is made larger. Therefore, one

might reason that the magnetic trap should be brought close to the atoms and the

vacuum system made distant from them, for largest trap curvatures and best optical

access. This logic, of course, is not watertight; it hardly applies, for instance, to a

glass cell, nor does it take into account the practical difficulties of running large cur-

rents and high-pressure cooling water into a vacuum system operating at 10−11 torr.

Nevertheless, this was the path chosen for the magnetic trap on the present appara-

tus. As a result, all materials as well as handling and cleaning procedures were of

necessity compatible with ultra-high vacuum (UHV). Moreover, in order to minimize

eddy currents during switch-off of the magnetic trap for the most rapid extinction of

magnetic fields, considerable effort was made to avoid the use of conductive metallic

materials in regions of high magnetic field.

The coils were wound from 1/8 in.-square oxygen-free high conductivity copper

tubing (1/32 in. wall thickness) insulated with Kapton R©. To aid in the winding pro-

cess, spools of the appropriate dimensions with removable end caps were machined

from aluminum. Axial grooves were placed at regular intervals along the spool cir-

cumference, allowing thin Kapton-coated copper wires to be prepositioned under the

tightly wound coils. For the rectangular coils, well deburred screw-tightened alu-

minum clamps were positioned along the edges to allow the springy copper tubing to

be bent cleanly to the prescribed shape and held securely in place as winding pro-

gressed. The completed coils were than held together by the several tightly-twisted

copper wires which had previously been laid underneath. Use of copper binding wire

was chosen as an alternative to epoxy because of its vacuum compatibility. The now-

monolithic coil was then gently pried and slid off the spool, with its end cap now

removed, taking care not to tear the insulation. These coils were carefully wrapped

in aluminum foil with only their leads exposed, and 1/4 in. VCR glands suitable for

maintaining UHV were brazed onto the leads via round-to-square 1/4 in.-to-1/8 in.

copper adapters, custom fabricated by the UC Berkeley Physics machine shop.

The separate coils were affixed to two alumina mounting plates, precisely machined

by Andrew Mei of the Lawrence Berkeley National Laboratory machine shop, with
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each plate holding a curvature coil on one side and an antibias coil on the other side.

A ∼ 1 in.-square central hole was machined in the plates allowing optical access down

the axis of the trap, with four rectangular cut-outs at the corners of this square hole

accommodating the four Ioffe bars (i.e., the two sides of each of the two gradient

coils). The alumina plates fit snugly over the gradient coils, while the curvature

coils were pressed against the outer corners of the gradient coils, so that the entire

assembly with the exception of the antibias coils was at this stage self-supporting.

Additional thin Kapton-coated wires were then put in place binding each coil to the

alumina mounting plates, and four 316 stainless steel 1/4”− 20 threaded rods were

bolted into holes in the corners of the plates, joining them into a rigid structure.

Finally, four alumina right-angle elbows pierced on each face by 1/4 in.-diameter

holes and secured to each of the bottom corners of the alumina plates, allowed the

magnetic-trap mount to be bolted to a ring-shaped stainless-steel mounting shelf

that had been welded into the 6 in. tube of the main vacuum chamber. The leads

from the six coils were brought down to three 41
2
in.-flanged ports at a lower level

on the vacuum chamber, where the VCR glands mated (via a VCR gasket of steel

or copper) with matching VCR glands brazed to the ends of 1/4 in. copper tube

vacuum feedthroughs. Each feedthrough flange contained four independent insulated

feedthroughs. The total resistance of connecting lugs, feedthroughs, and VCR fittings

was measured at around 3 mΩ. In order to allow room for brazing the fittings VCR

gaskets of steel had been employed in the earliest iteration of assembling the trap, but

it later seemed that copper provided superior reliability, or at least greater immunity

to imperfect attachment and tightening. In order to avoid blockage of optical access

when the current feedthroughs were pushed into place, the leads were deliberately

kept quite short, with the unfortunate side effect that very little working space was

available to attach the VCR gaskets and tighten the VCR nuts. In later revision of

the design, longer leads were left on the coils, and stainless-steel vacuum bellows were

inserted between the vacuum chamber and the feedthrough flanges. With the bellows

retracted, the VCR nuts could then be tightened with relative ease, and the bellows

could subsequently be allowed to extend over the tightened connections. When the

vacuum system was evacuated, the bellows naturally tend to retract, so that care

must be taken to secure them at the desired length prior to pump-down.
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The magnetic trap fields were measured at a current of 20 A before closing the

vacuum system, with all coils in their final positions. The measurement was performed

with a Hall probe, which had an approximate sensitivity of 0.5 G and required frequent

re-zeroing. The current of 20 A was chosen because at the time the measurement was

taken cooling water was not available. The results of a measurement of the axial fields

are shown in figure 2.13. The theoretical curve (solid line) is based on the expressions

Bz =
µ0IN

2

R2

(R2 + z2)3/2
(2.46)

for the axial field of a circular coil of radius R, N turns, carrying current I, and

Bz =
µ0IN

π

2a2

a2 + z2

1

(2a2 + z2)1/2
(2.47)

for the axial field of a square coil of edge 2a, N turns, and current I. The positions of

the coils and their sizes have been taken as free parameters in the theoretical curve.

The curve fit yields values within a few millimeters of the design parameters, the

largest deviation being in the radius of the antibias coils, which is required to be

6 mm smaller than the design value of 4.5 cm for good agreement. Such variation

in the positions is not implausible, given the degree of stress to which the trap was

subjected in mounting it within the vacuum chamber. The data suggest what was

later confirmed by observation of trapped atoms, that the central minimum dips past

zero, although the signal-to-noise ratio of figure 2.13 is insufficient to prove this. This

slight zero-crossing is in fact desirable, since it implies that any nonzero bias field

may be obtained by injecting a small current into the antibias coils.

A more rigorous characterization of the magnetic trap has been obtained, as sug-

gested above, by using the trapped atoms themselves. Measurements of the minimum

bias field, obtained by sweeping a RF field through resonance with the trapped atoms

and observing trap loss, have yielded the approximate formula for the bias field

B0 =

(

555 kHz

A

)

ICurv. −
(

1.7 kHz

A

)

IMain −
(

14 kHz

A

)

IGrad, (2.48)

where ICurv.,IMain, and IGrad. are the curvature, main, and gradient currents respec-

tively. As used here and elsewhere, the main current is that portion of the current

which flows through both curvature and antibias coils, while the curvature current

is the portion of the current in the curvature coils which is not in common with the

antibias coils.
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Oscillation frequencies of magnetically trapped atoms have also allowed the precise

characterization of the magnetic trap. For measurements of the transverse frequency,

pulsing on a transverse bias field to displace the transverse minimum of the trap is

effective in initiating oscillations, while for measuring axial oscillations a brief kick

from a magnetic gradient (e.g., the MOT gradient) is efficacious. Measurements of

this sort, where the atom cloud is given a brief impulse and allowed to evolve for a

variable period of time, have yielded frequencies of 143 Hz× 5.7 Hz at a bias field of

2.11 G, yielding an inferred transverse gradients of 225 G/cm and an inferred axial

curvature of 38 G/cm2 at currents IGrad. = 150 A, IMain = 400 A, ICurv ≈ 0. More

precise frequency measurements have also been taken in a decompressed magnetic

trap, i.e., at lower gradient current. The frequencies for this trap were determined

to be 5.00 ± 0.01 Hz and 48.6 ± 0.35 Hz at currents of IGrad. = 100 A and IMain =

300 A, and a bias field of 7 G, implying an axial curvature of 29 G/cm2, a transverse

curvature of 2920 G/cm2, and a transverse gradient of 144 G/cm. The values of the

axial curvature and transverse gradient obtained from these measurements are well

fit by straight lines passing through the origin, whose slopes give the formula for the

axial curvature and frequency and the radial gradient.

B′′
z =

(

9.54± .13
)

G/cm2

(

IMain

100A

)

νz = 0.9 Hz

√

B′′
z

G/cm2
= 2.77 Hz

√

IMain

100A

B′
ρ =

(

145± .8
)

G/cm

(

IGrad.

100A

)

. (2.49)

The radial frequency is determined from νρ = 0.9 Hz
√

B′′
ρ/(G/ cm2), where B′′

ρ is

given by (2.43).

2.6.3 Uncompressed and Compressed Operation

The cold, compressed cloud of atoms delivered by the MOT is in gravitational

free-fall once the atoms are optically pumped to the F = 1 level and the lasers are ex-

tinguished. Thus the magnetic trap must be turned on quickly, before the atoms have

had time to accelerate appreciably. If the trap curvatures or frequencies are chosen

so that the atomic phase-space distribution matches the equilibrium distribution in
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Figure 2.13. Axial magnetic-trap field measurement. The measurement was obtained
by a Hall-probe while running a current of 20 A in series through the curvature and
antibias coils. The magnitude (absolute value) displays a quadratic minimum of close
to 0 G in the neighborhood of 0 cm.
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Figure 2.14. Transverse trap gradient measurement (solid circles) vs. transverse
displacement, performed with a Hall probe in the unevacuated vacuum chamber at a
current of 30 A. The solid line is a fit to the data, yielding a value of 144.3±0.3 G/cm.
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the trap as nearly as possible, then heating of the atomic cloud in the transfer will be

minimized. For a cloud at temperature T whose real-space distribution is Gaussian

with 1/e radius r0, this matching condition is

B′′ =
2kBT

µr2
0

, (2.50)

where µ = 1
2
µB. For r0 = 3 mm and T = 75µK, this implies a relatively small

trap curvature of 50 G/cm2 (equivalent to a trap frequency of 6.5 Hz) in all direc-

tions. On the other hand, for efficient evaporation one would like to have much

higher curvatures to increase the density and rethermalization rate. Fortunately, the

Ioffe-Pritchard trap provides a very convenient way to accommodate both these re-

quirements. Referring to the expression for the transverse curvature in expression

(2.43), it is clear that this curvature can be dramatically modified by changing the

value of the bias field, as illustrated in figure 2.16. The near-isotropic trap con-

figuration desired for loading the trap is provided by turning on a large bias field

(∼ 320 G), while larger curvatures are achieved by ramping the bias field to fields of a

few Gauss, at which curvatures of 15000 G/cm2 are readily obtained. In normal oper-

ation, the uncompressed magnetic trap is turned on with frequencies of approximately

(7.6× 10× 10) Hz, while the fully compressed trap has frequencies 5.7× 140× 140 Hz

at a bias field of approximately 2 G, suitable for efficient evaporation, as described in

section 2.6.6.

2.6.4 Switching Currents Off

It is desirable to be able to take the trapping fields rapidly to zero for the purpose

of free-expansion (“time-of-flight”) imaging of atomic clouds. In order for the shut-

off of the trap to be rapid with respect to the largest commonly employed magnetic

trapping frequency of ν⊥ ≈ 150 Hz, one wishes the extinction-time of the trap current

to be much less than a quarter period, or small compared to 1 ms. For a coil of

R ∼ 3 cm radius and N = 8 turns with a wire radius of r ∼ 0.15 cm, one estimates

an inductance

L ≈ µ0RN
2 log(R/r) ≈ 7µH. (2.51)

Estimates for lead inductance give values of a few µH, so that a more conservative

estimate would be ∼ 10µH.
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Figure 2.15. Magnetic trap circuit. A single (“Main”) current-regulated supply runs
current in series through curvature and antibias coils. Additional current may be
added to the curvature coils only by the curvature and curvature-fine supplies, allow-
ing coarse and precise control of the bias field, respectively. The MOT supply exploits
the approximate anti-Helmholtz configuration of one curvature/ anti-bias pair to pro-
duce a magnetic gradient. The magnetic-trap gradient supply is on a separate circuit.
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resistors R have values of around 5 Ω.
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In order to shut off the current as rapidly as possible, one wishes to sustain a

large negative voltage across the trap coils. If one, for instance, wished to extinguish

a 300A current in 10µs in a coil with L ∼ 10µH, a reverse voltage of 300 V would

be required. Such a large negative voltage is generated automatically by an inductor

when its current is interrupted and is generally limited only by component break-

down. The integrated-gate bipolar transistors (IGBTs) used as switches, however,

can only sustain from 500 V to 1000 V; therefore some means of limiting the peak

inductive voltage must be implemented. The common method of limiting inductive

spikes is to place a reversed diode in parallel with the inductor, which provides a

path for the current when a switch is opened. A typical diode voltage drop of 0.6 V,

however, is far less than the IGBT could sustain, and would place an unnecessary

limitation on the switch-off speed of the circuit. A larger voltage drop may be obtained

by placing a so-called “burn-off” resistor in series with the diode, with its resistance

chosen to achieve the desired ramp-down voltage at the expected shut-off current.

This solution has the advantage that it offers large initial ramp-down voltages, but as

the current diminishes, the voltage available to ramp it down further diminishes in the

familiar exponential L/R circuit decay. A solution which promises still faster ramp-

down of the currents is to use a varistor in place of the diode/resistor combination.

A varistor offers a nonlinear I-V curve, which allows it, much like a diode, to keep

the voltage nearly constant above a certain threshold current. In contrast to the

diode, however, this voltage may be hundreds of volts. Thus the varistor is capable

of maintaining a large voltage for most of the ramp-down, speeding up the shut-off

considerably. When the current drops below the varistor threshold, however, the

varistor is no longer relevant, and a secondary burn-off path must be provided to deal

with this case, such as the resistor-diode combination mentioned above. This two-

stage ramp-down scheme is illustrated in figure 2.15. The resistances R are chosen

to be a few Ohms, which is large enough to protect them from excessive current flow

during the initial portion of the shut-off, but small enough that they do not generate

a dangerously large voltage when the varistor ceases to conduct.
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2.6.5 RF Noise Reduction

In addition to the need for rapid shut-off of the currents, a significant factor which

has shaped the circuit represented in figure 2.15 is the need to filter and eliminate

sources of RF noise. During initial attempts at evaporation, it was discovered that

the lifetime of the magnetically trapped cloud depended strongly on the bias field

at the minimum of the trap and on the temperature, going from 60 s at bias fields

of several tens of Gauss to as little as 17 s at bias fields of 2 − 3 G. Moreover “hot”

clouds had substantially longer lifetimes than cold at the lower bias fields. There

exist only a few causes for trap loss in a deep magnetic trap; collisions with room-

temperature background gas molecules, near-resonant light, and radio-frequency noise

constitute essentially an exhaustive list. Neither of the former are expected to have

the same dependence on bias field and temperature, so that we soon concluded that

RF noise in the range 1 − 10 MHz was responsible. Attempts to probe directly the

RF noise spectrum in the lab and more specifically on the magnetic trap coils by

means of pickup coils or isolated oscilloscope probes connected to a spectrum analyzer

yielded a number of initial culprits, mostly associated with DC-DC converters, which

typically have switching frequencies in the 100 kHz range, but if poorly designed

can have tens or hundreds of harmonics. Some of the culprits were relatively easy to

replace, like the floating power supplies for the analog isolator circuits that fed control

signals to the large magnetic-trap power supplies, or turn off, like the ion gauge we

used for reading vacuum pressure. Others, like the magnetic-trap power supplies

themselves, were integral to the experiment, while still others could not be identified

at all, but appeared merely to be ambient or power-line noise. To mitigate the effects

of these noise sources, we attempted to filter the outputs of the power supplies before

they entered the vacuum system. This was accomplished by means of so-called π

filters, i.e., with series inductors and parallel capacitors, as shown in figure 2.15. The

inductors in question were required to carry currents of as much as 400 A, so that

thick copper welding cable (4/0 gauge) was used for their construction. The resulting

inductors, consisting of about 10 turns each around 15 cm diameter, had inductances

of about 20µH. Attempts to increase the inductance by the insertion of magnetically

permeable cores were unsuccessful in reducing measured noise at the output in the

few-megahertz frequency range of interest. At lower frequencies, however, these cores
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are expected to improve filter performance. Capacitances of a few µF were placed

between the positive and negative current leads on either side of these inductors,

which themselves were in series with both positive and negative leads, as indicated

in the schematic. These filters appeared to reduce the noise associated with the trap

power supplies, but a more dramatic effect was observed when the trap leads on the

far side of the filters were capacitively coupled to ground (in this case, the optical

table). The presence of these capacitors appeared well correlated with the atom

lifetime, and their implementation shortly preceded the achievement of BEC in our

laboratory. Further measures implemented later, based upon the results of RF noise

measurements taken in a mock chamber on the same optical table, included twisting

and shielding the 4/0 welding-cable current leads from the power supplies to the trap.

The shield, made of overlapping sheets of aluminum foil taped in place, was grounded

to the optical table.

2.6.6 RF Evaporation

Forced RF evaporation was originally proposed for magnetically trapped hydrogen

by Hess [60] and has become a very widely used tool in ultracold atom experiments.

In essence, a RF field of well-defined frequency is resonant with the Zeeman m =

−1 → m = 0 transition (for instance), at a particular magnetic field. As a result, it

selectively flips the spins of atoms at those locations in space where the field has this

magnitude, expelling them from the trap. If this field is chosen so that the expelled

atoms have a higher-than-average energy, then the net effect is to lower the energy

of the sample, which results, after rethermalization, in cooling it. Provided sufficient

energy is removed per atom, the evaporation process will result in a nonzero atom

number when the critical temperature for Bose condensation is reached. In a confining

potential, colder atoms are also denser, resulting in more rapid rethermalization, so

that a virtuous cycle may be initiated in which cooling leads to more rapid interatomic

collisions and thereby to more efficient cooling. This desirable state of affairs is known

as runaway evaporation.

In our experiment, the cloud is allowed to equilibrate after transfer from the MOT

to the uncompressed trap described in section 2.6.3. This equilibration lasts for 2 sec,
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following which the cloud is partially compressed to a bias field of around 50 G. In

the partially compressed trap, preliminary radiofrequency (RF) evaporation at fixed

RF frequency for several seconds is used to prevent the temperature from rising ex-

cessively during compression. The frequency source for evaporation is an IFR model

2023A, which is computer-controlled via GPIB. The signal passes through an RF

switch and an amplifier and is then capacitively coupled into one of the magnetic-

trap gradient coils, which has the advantage of being close to the atoms and of being

correctly orientated to produce a transverse driving field. A disadvantage to this

scheme is that the gradient coil and its leads can broadcast the RF signal throughout

the laboratory, destabilizing sensitive equipment. As no RF feedthrough was incorpo-

rated in the vacuum chamber, however, this has been the unavoidable if regrettable

side-effect of evaporation throughout the history of the experiment.

After the preliminary evaporation, the trap is compressed to a bias field of approx-

imately 2 G, corresponding to trap frequencies of ∼ (140× 140× 5) Hz, as described

in section 2.6.3. During the compression, the RF frequency is ramped down so as

roughly to track the dropping bias field. This ramp, from approximately 50 MHz to

10 MHz crosses a number of RF resonances in the combined system consisting of func-

tion generator, amplifier, coupling network, and broadcast coils. Certain fine tunings

of this evaporation trajectory, other than those required for efficient evaporation, have

proven useful in avoiding the destabilizing effects of RF on lasers and other laboratory

equipment. Slowly ramping up the initial RF power, for instance, proved helpful in

this regard, as have various short jumps in frequency and drops in power, e.g., around

47 MHz and 20 MHz. The remainder of the evaporation sequence, lasting approxi-

mately 20 s, occurs in this fully compressed trap. Condensates of approximately 2

million atoms can be produced, or alternately for the spinor experiments we terminate

the evaporation at a temperature usually of 2µK with remaining atom numbers of

≈ 30 million. Such a cold cloud is suitable for transfer to an optical trap, as described

in section 2.7.
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Figure 2.16. Illustration of compression in Ioffe-Pritchard trap. A radial gradient
B′ and an axial bias field B0 add in quadrature, producing a hyperbolic field profile,
which is close to linear for distances larger compared to B0/B

′ and approximately
parabolic for distances less than B0/B

′. At large B0, the parabolic region is large,
and the curvature is weak, while for small B0 the curvature becomes very large. For
hot clouds in a low-bias-field trap, the potential is a tight linear trap rather than a
relatively weak quadratic trap, which aids in efficient evaporation.
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2.6.7 Water-Cooling and Interlock

The magnetic trap at full power dissipates in excess of 4 kW power. For a sin-

gle coil of conducting cross-section 0.068 cm2 and length 150 cm, using the room-

temperature thermal conductivity of copper, 4.01 W/cm/◦C, one calculates the un-

reasonable equilibrium temperature, limited by conduction to the ends, of 7×104 ◦C.

Black-body radiation, assuming a surface area of ∼ 50 cm2 would limit the tempera-

ture to a more reasonable value of around 1500◦C, but this is still in the neighborhood

of and possibly exceeding copper’s melting point of 1360◦C. Even if melting of the

coils could be forestalled, however, such extreme temperatures would result in highly

undesirable thermal expansion of and stress on the trap, as well as destroying any

insulation on the coils and probably making good vacuum impossible. It is clearly

the case, then, that the magnetic-trap coils must be actively cooled, and indeed they

were designed to be water-cooled by running high-pressure water down the center of

the conducting copper tube.

The system for cooling the coils employs two pumps in series; the first, a Neslab re-

circulating chiller, provides a head of 60 p.s.i. and the second, a Bronze high-pressure

turbine pump from McMaster-Carr, augments this value to 150−180 p.s.i. The high-

pressure water exiting these pumps is split into six parallel channels which feed the

six coils of the magnetic trap, via 1/4 in. tubular copper vacuum feedthroughs. The

water exiting these coils is forced to traverse six independent flowmeters (Lake Mon-

itor style R) which transmit analog readings of the flow in each coil to the interlock

logic box, described below. The flowmeters were chosen to have only metal parts

in contact with the water, so as to preserve their integrity in the presence of hot

water; in practice, this was unnecessary caution, since water temperatures exceeding

30◦C are rarely attained. On each of the six pathways, thermocouples with a 1/16 in.

stainless-steel sheath are immersed in the fluid, the watertight seal being provided by

the compressed ferrules of a 1/16 in. Swagelok TM reducing union. The leads of these

thermocouples are also fed into the interlock logic box via thermocouple extension

cables, and only then are amplified to signal-level (∼ 1 V) voltages. A better design

would place amplifiers much closer to the thermocouples to eliminate RF pickup on

the long leads. After the thermocouples and flowmeters, the six pathways are re-

combined and return to the recirculator, where the water is passed through a heat
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exchanger (cooled by building water) before completing its closed loop by arriving at

the reservoir of the recirculator.

Given the catastrophic consequences mentioned above that will occur in the ab-

sence of cooling water, it is important to ensure that high currents are never permitted

to traverse the coils when adequate cooling is absent. This is ensured by monitoring

flow rate and temperature of the cooling water as described above. In the dedicated

interlock logic box, each flowmeter analog signal is compared to a corresponding

threshold value set by a potentiometer on the front panel of the box. The compar-

ison is made by Schmitt trigger with hysteresis, to provide rapid and chatter-free

switching in the event of a fault condition. Thermocouple signals are amplified in

the interlock box by six AD595 thermocouple amplifiers, and the resulting signals

are similarly compared via Schmitt triggers to a single threshold, likewise set by a

potentiometer. The outputs of these twelve Schmitt-trigger comparators are tied via

pull-up resistors to 5 V, so that they possess TTL-compatible output levels, and these

levels are ANDed together. The output of the AND feeds into a flip-flop consisting

of two NAND gates. The other input is normally high, but can be manually pulled

low by means of a reset button on the front panel. When the manual reset button

is not being pressed and no fault condition (e.g., insufficient water flow or excessive

temperature) is present, the flip-flop can exist in two states, with its output either

high or low. Resetting it will force it into the output-high state, where it will remain

until a fault condition occurs, after which it will remain in the output-low state. This

feature is deliberate, designed to force a conscious decision from the user whether to

continue operation when a fault has occurred, even if the fault condition no longer

appears to be present. The output of the flip-flop gates the TTL signals which con-

trol the switches (IGBTs) for the high-current supplies, so that after a fault condition

has occurred, no current should flow to the trap. As an added safety measure, the

A.C. wall power going to the high-current magnetic-trap supplies passes through con-

tactors (i.e., relays), which are similarly controlled by the interlock output, so that

the power supplies are deprived of A.C. power when a fault condition has occurred.

Like the interlock circuit, the contactor circuit has a “memory”, meaning that once

it is triggered to shut off, it will not turn back on even when the logic signal from
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the interlock box ceases to indicate a fault, requiring a separate reset button to be

pressed to resume normal operation.

2.7 Optical Trap

The optical-dipole trap (ODT) for cold atoms was proposed by Ashkin [19] and

was first demonstrated by Chu et al. [61]. The present use of a shallow ODT for

ultracold atoms previously evaporated in a magnetic trap was first implemented by

[62].

The ODT operates via the A.C. Stark shift of the atomic ground state, which

is to say that the oscillating optical field induces a dipole oscillating at the same

frequency. Some intuition for this process may be gained from looking at the energy

of a classical Lorentz atom, whose electron at sufficient detuning (i.e., neglecting

radiative damping) obeys the equation of motion

mẍ = −mω2
0x− eE cosωt, (2.52)

with the solution

x =
eE/m

ω2 − ω2
0

cosωt. (2.53)

As a result, the average energy of the dipole interacting with the electric field is

〈eEx〉 ≈ (eE)2

4mω0

1

δ
, (2.54)

where in the last step the detuning δ = ω − ω0 has been introduced and terms of

order δ−2 neglected. Since the dipole is in phase with the electric field for δ < 0, its

energy is lower, while for δ > 0 the dipole is π out of phase and therefore has higher

energy.

Quantum mechanically, the A.C. Stark shift of an atomic ground state in the

presence of a laser beam is

∆Eg =
∑

e

~|Ωeg|2
4δe

=
~γ2

8

I

Isat

∑

e

|ceg|2
δe

, (2.55)

where Ωeg is the Rabi frequency, δe the detuning from resonance, I the laser intensity,

Isat the saturation intensity on the cycling transition, and ceg the Clebsch-Gordan

coefficient for the |g〉 to |e〉 transition.
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For 87Rb at detunings large compared to the 6.8 GHz ground-state hyperfine split-

ting, it is permissible to consider only fine structure, in which the D2 transition at

780 nm is a J = 1
2
−→ J ′ = 3

2
transition and the D1 at 794.7 nm is a J = 1

2
−→ J ′ = 1

2

transition. The Clebsch-Gordan coefficients for π-polarized light are |c 1

2

1

2
→ 3

2

1

2
|2 = 2

3

and |c 1

2

1

2
→ 1

2

1

2
|2 = 1

3
, so that the ground state energy shift is

∆Eg =
~γ2

8

I

Isat

(

2

3δD2
+

1

3δD1

)

. (2.56)

This shift is the same for mJ = ±1
2
, meaning that all spin-states in the ground-state

manifold experience the same optical potential. If the detuning is chosen negative,

then this potential is attractive, drawing atoms into regions of high intensity. For

the wavelength of 825 nm employed in these experiments, and using the values γ =

2π × 6 MHz, Isat = 1.4 mW/cm2, this translates to an energy shift of

∆Eg = −h× 0.175
Hz

mW/cm2
I = −kB × 8.3× 10−6

(

µK

mW/cm2

)

I. (2.57)

In order to confine atomic samples with temperatures on the order of a microkelvin, it

is clearly necessary to have a rather large spatial maximum in the optical intensity, i.e.,

a focus of the trapping laser beam. The description of a focused laser beam is elemen-

tary, but will be given briefly for reference in the general case of a possibly astigmatic

focus. Such a focus is conveniently described in the paraxial slowly-varying-envelope

approximation, where E(x,y, z) = E(x, y, z)x̂eikz−iωt and derivatives of E(x, y, z) with

respect to z are neglected beyond first order. The particular linear polarization x̂ has

been chosen for convenience. In this approximation E satisfies the paraxial wave

equation
(

∇2
⊥ + 2ik

∂

∂z

)

E = 0. (2.58)

This equation is separable, so that its solutions can be written as the product of two

functions of the form

E(y, z) =
E0y0

√

y2
0 + 2iz/k

exp

(

− y2

y2
0 + 2iz/k

)

. (2.59)

This solution smoothly interpolates between the form at the focus e−y
2/y2

0 and the

spherical wave at large distances eikR ≈ eikz+
iky2

2z , of which the slowly-varying portion

is e
iky2

2z . If the focus in the x direction occurs a distance ∆z away (i.e., the beam is
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astigmatic), then the total intensity distribution is

I =
2P

πx0y0

√

1 +
(

2∆z
x2
0
k

)2

(

1 +
(

2(z−∆z)

kx2
0

)2
)(

1 +
(

2z
ky2

0

)2
) exp





−2x2

x2
0 + 4(z−∆z)2

k2x2
0

+
−2y2

y2
0 + 4z2

k2y2
0



 ,

(2.60)

where P is the total power.

The general expression for the curvatures in the three directions around z = 0

(assuming a tighter focus in y than in x) is not difficult to derive. In the x and y

directions, the curvatures are

∂2I

∂x2

∣

∣

∣

∣

z=0

= − 8P

πx0y0

(

1

x2
0 + 4∆z2

k2x2
0

)

1
√

1 +
(

2∆z
ky2

0

)2

∂2I

∂y2

∣

∣

∣

∣

z=0

= − 8P

πx0y0

(

1

y2
0

)

1
√

1 +
(

2∆z
ky2

0

)2
. (2.61)

The full expression in the z direction is somewhat lengthy, but provided y0 ≪ x0 is

approximately given by

∂2I

∂z2

∣

∣

∣

∣

z=0

= − 16P

πx0y0

(

1

k2y4
0

)

1
√

1 +
(

2∆z
ky2

0

)2
. (2.62)

The trap frequencies are then determined by

ω2
i =

~γ2

8mIsatδeff

∂2I

∂x2
i

∣

∣

∣

∣

z=0

, (2.63)

where

δeff =
3δ1/2δ3/2

2δ1/2 + δ3/2
. (2.64)

2.7.1 Optical Layout

The parameters of the optical trap, including beam waists, wavelength, and power,

were chosen so that the trap in the vertical direction provided adequate force to sup-

port against gravity, while the transverse horizontal direction was loose enough to
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avoid excessive density, which would lead to high loss rates from three-body recom-

bination. Additionally, it was desired to make the axial frequency reasonably tight

(? 5 Hz), to have a trap depth of at least several µK, and to avoid significant scatter-

ing from spontaneous emission. Availability of diode lasers of adequate power at the

wavelength was an important practical consideration. These criteria were satisfied for

the chosen wavelength of 825 nm and powers of a few mW, with beam waists of 12µm

in the tight vertical direction and 25−80µm in the horizontal direction. Optical trap

light from a free-running diode laser was fiber-coupled, and all the optics beyond

the output of the fiber were placed on a single ∼ 1 ft. × 2 ft. optical breadboard,

clamped above and below with the rubbery vibration-damping material Sorbothane.

This appeared to decrease vibrational heating in the trap quite dramatically. The

light exiting the fiber was shaped by means of cylindrical optics in order to obtain

the desired aspect ratio. In the most recent design, a system of lenses (a composite

“zoom” lens) was put in place that allowed quick changes of aspect ratio in order

to facilitate studies of the rôle of dimensionality in spinor dynamics. This system of

lenses contained a cylindrical telescope to change the vertical size of the beams. This

telescope consisted of a 75 mm lens on a rotatable mount and a 300 mm lens mounted

on translation stage. In the horizontal direction, a separate telescope of three cylin-

drical lenses was constructed, consisting of a rotatable 100 mm lens, a translatable

25 mm lens in the middle, and finally a 50 mm translatable lens. By moving the

middle lens closer to the first lens of the telescope, the magnification of the telescope

could be made larger, while moving it toward the final lens of the telescope would

reduce the telescope. For each position of the middle lens, a corresponding position

existed for the final 50 mm lens which would collimate the beam. A final spherical

lens immediately before the vacuum viewport focused the beam at the location of the

ODT. By imaging the ODT beam onto a camera focused on the location of the trap,

it was possible to fine tune the size, focus, and astigmatism of the beam in real time.

2.7.2 Loading the Optical Trap

The transfer procedure from the magnetic to the optical trap is approximately

adiabatic, contrary to the experience reported in [62] that such a transfer is imprac-

tical because of irregularities in the ramp-down of the magnetic-trap power supplies.
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Figure 2.18. Beam-shaping the ODT. A fixed cylindrical telescope in the vertical
dimension (top) creates a large beam, suitable for the tight (∼ 12µm) focus in the
direction of gravity. A variable telescope in the horizontal direction allows the aspect
ratio of the trap to be varied at will. Conceptually, the 25 mm lens moves on a
translation stage (linear arrow) to change the beam size, while the 50 mm follows to
keep the beam non-astigmatic. Transverse aspect ratios from 3 : 1 to 10 : 1 were
readily created. Cylindrical lenses on mounts (circular arrows) allow compensation
for cross-dimensional aberrations.

Standard conditions prior to transfer are around 3 × 107 atoms at 1.5 − 2µK in a

150Hz × 150Hz× 4Hz magnetic trap. The ODT power is ramped to maximum in a

few tens of milliseconds, as the magnetic trap beings to ramp down over 150 ms. By

making fine (one-time) adjustments in the ramping rates of the main and gradient

supplies (see figure 2.15), it has been possible to avoid displacing the atomic cloud

excessively with transient gradients. After transfer, the optical trap power is expo-

nentially ramped down with a 1/e time constant of ∼ 200 ms and held at a final value

of ∼ 2.5 mW for the tightest traps employed, or closer to 5 mW for higher-aspect-ratio

traps. This lowering of the trap depth causes rapid cooling at the high collision rates

(∼ 1 kHz) of the optical trap, leading to efficient condensate formation. At this trap

depth, the balance between evaporation and heating allows condensates to be held

for approximately a second in a tight trap, or several seconds in a large-volume trap.

Initial alignment of the optical trap is performed by imaging the magnetically

trapped condensate along the trap axis; the ODT beam is then aligned to and focused

at the observed condensate position. This is generally sufficient to capture some

countable number of atoms. Further optimization is performed by making small
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adjustments to the position of the optical trap while monitoring the number held in

the trap after 100 ms, when any untrapped atoms have fallen away.

2.8 RF Coils and Spin Manipulation

For the experiments on spinor condensates, various means of manipulating the

atomic spins are necessary. In general, we exploit the fact that the magnetic trap

purifies the ensemble to mF = −1, since only that state is trapped, so that if a

sufficient guide field is present during the transfer to the ODT, the initial state of

the atoms in the ODT is also mF = −1. At low (> 1 G) bias field, the application of

resonant RF pulses merely rotates the spin state. This is useful for the experiments

of chapter 3 on induced Larmor precession, which require such a rotation in the form

of a π/2 pulse. In order to prepare other states, such as mF = 0, that are not related

to mF = −1 by simple rotation, it is useful to exploit the quadratic Zeeman shift.

Including the quadratic Zeeman shift, the dressed-state Hamiltonian for the three

near-degenerate states

|mF = −1; (N − 1)ω〉

|mF = 0;Nω〉

|mF = +1; (N + 1)ω〉 (2.65)

is

H = ~









−δ Ω/
√

2 0

Ω/
√

2 −q Ω/
√

2

0 Ω/
√

2 δ









, (2.66)

where δ = ω − 1
2
µB|B|/~ and q ≈ 70 Hz/G2 is (minus) the quadratic Zeeman shift.

As shown in figure 2.19, the energy spectrum of this Hamiltonian exhibits the

usual avoided crossings, at δ ≈ ±q and at δ = 0, of magnitude ~Ω
√

2 and ~Ω2/q

respectively. For q ≫ Ω, this means that nearly all the atoms can be placed in

mF = 0. Indeed, for a uniform sweep rate δ̇, the fraction in mF = 0 after a sweep

across resonance from negative to positive δ is given by the Landau-Zener formula,
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Figure 2.19. Dressed-state level diagram for mF = 0 state preparation, with Rabi
frequency Ω = 2π × 5 kHz. A sweep from low RF frequency to high RF frequency,
with atoms initially in the mF = −1 state, can nonadiabatically follow the mF = −1
state at the small avoided level crossing with mF = +1, but adiabatically follow the
level curve into mF = 0 at the second, larger, avoided level crossing. A sweep in the
opposite direction at the same sweep rate would adiabatically transfer atoms from
mF = −1 to mF = +1.
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Figure 2.20. Calculated fraction of atoms not successfully swept into mF = 0. The
fraction has been minimized numerically with respect to Rabi frequency Ω and sweep
rate δ̇ for each bias field, and the resulting minimum is plotted versus bias field.

applied to each avoided crossing separately (i.e., assuming Ω≪ q):

f0 = exp

(

−πΩ4

2q2δ̇

)(

1− exp

(

−πΩ2

δ̇

))

. (2.67)

For a given bias field, i.e., fixed q, this probability has a maximum as a function

of Ω and δ̇. The difference between this maximum value of f0 and unity is plotted

logarithmically in figure 2.20. One could, of course, sweep δ at a nonuniform rate, so

that the m = −1 → m = +1 avoided crossing is maximally nonadiabatic, while the

m = −1 → m = 0 crossing is adiabatic. If q is large enough, moreover, one could

begin the sweep already on the far side of the first avoided crossing, thereby avoiding it

altogether. Thus this result does not purport to represent a fundamental limit on the

purity of m = 0 preparation, but merely to show the probable imperfections resulting

from the most convenient experimental implementation of the state preparation.

In practice, Rabi pulses for ? 100 kHz are generated by an SRS 30 MHz function

generator on “burst” mode, whose output is multiplexed with the evaporation-RF

source and fed to a common amplifier. For lower-frequency pulses, the combined

efficiency of the amplifier and of the coupling onto the gradient coil is too low, so

that a different coil must be used. For this purpose, we have wound a ∼ 20-turn

15 cm-diameter coil which rests on the top imaging window of the vacuum chamber.
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This coil can be driven directly by an unamplified SRS function generator in the

tens-of-kilohertz range.

2.9 Stern-Gerlach Analysis

In order to ascertain the populations in the various Zeeman sublevels, we pulse on

a magnetic gradient of order 5G/cm for 2 to 5ms and allow the differential impulse

imparted to the respective populations to be translated into spatial separation by

waiting for another 30ms before taking an absorption image. To avoid excessive

interatomic collisions during separation, the gradient is usually pulsed on after the

cloud has expanded for 2 ms, thereby reducing its density. A bias field of several

hundred milligauss is present when the gradient is pulsed on, to avoid spin flips from

transient switching effects. The gradient is of the spherical quadrupole form,

Bgrad(z) = B′zẑ− 1

2
B′(xx̂ + yŷ

)

, (2.68)

so that depending on the orientation of the bias field, separation may be made to

occur along any of the Cartesian directions, although the separation will be half as

large in the two transverse directions.

2.10 Magnetic Field Control

For the spinor-condensate work described in chapters 3 and 4, it was essential

to have precise control over the magnitude and direction of the magnetic field, as

well as of magnetic gradients. Magnetic bias fields were controlled by means of three

large coil pairs situated on the outside of the vacuum system. One, the “up-down”

pair, was wrapped on and secured to the body of the vacuum chamber itself. The

remaining pairs, labelled according to a geographical approximation “east-west” and

“north-south,” provided fields along the two horizontal axes. As a result of imperfect

planning, these coils were added to the system after optical breadboards for the MOT

had been put into place, which, along with various other constraints from vacuum

hardware, prevented the implementation of true Helmholtz pairs along orthogonal

axes. The coils are sufficiently large, however, (between 10 cm and 20 cm) and close
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enough to the Helmholtz configuration that the gradients they produce are small.

They are, moreover, linearly independent, so that an arbitrary field may be produced

in a unique way, if not quite so simply as by orthogonal coils. As a technical point,

the power supplies driving these coils were unipolar, so that large fields could only

be produced in one spatial octant. Exploiting the background field (principally the

earth’s magnetic field), however, which had significant components along each di-

rection, fields of either sign along any direction could be produced. The measured

background field, including a calculated vertical field of approximately 200 mG from

one always-on coil, was 580 mG at an angle of 147◦ to vertical and 68◦ to the magnetic-

trap axis. This is approximately of the correct magnitude for the earth’s field, which

is reported by the National Oceanic and Atmospheric Administration to be 494 mG

with an inclination of 61◦ in Berkeley, CA. Detailed numerical agreement is lacking,

however, and is made worse by taking into account the vertical 200 mG field; this

may be attributed either to the presence of residual ferromagnetism in neighboring

vacuum hardware or to small leakage currents through the magnetic trap coils.

Whatever the source of the background field, it was necessary to eliminate it

to the few-milligauss level. This was accomplished by transferring atoms into the

optical trap and iterating a process of measuring the magnetic field and attempting

to reduce it by changing the applied bias field. For initial measurements, the magnetic

field was determined by sweeping a RF field and measuring Stern-Gerlach-separated

populations in absorption imaging. By initially making large sweeps at high power

and gradually reducing the sweep range and power, it was possible to localize the

RF resonance to a few kHz, although care needed to be taken to ensure that the

fundamental and not a harmonic of the RF source was resonant. In this manner, it

was possible, although somewhat laborious, to obtain curves of magnetic field versus

current in each of the three pairs of bias coils. These curves were of the expected

hyperbolic shape, linear at large currents but with a minimum value determined by

the transverse field in each case. By fitting these curves to determine the center

current and the large-current slope, it was possible to obtain preliminary estimates

for the dependence of field on the applied currents, although the nonorthogonality

of the horizontal coils meant that these minima were shifted with respect to the

zero-field values. In order to measure the angles among the field components of the
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different coils and between these and the trap axis, the magnitude of each separate

component was measured, followed by measurements of the resultant when pairs of

components were applied simultaneously. A field along the trap axis was applied

by running current through the curvature coils. From three such measurements, the

angle between any two magnetic fields could then be determined by the law of cosines.

Once these angles were known, then orthogonal linear combinations of east-west and

north-south fields could be formed, and by measuring the magnitude of the total field

as these were varied, hyperbolic curves could again be measured, but now centered

on the true zero-field currents.

This procedure worked well, but required many cycles of the experiment to mea-

sure the field at each current. Moreover, measurements at many different currents

were needed to construct the field-current curve. In addition, at low bias fields it

was difficult to obtain reliable RF resonance measurements, as a result of the limited

current output of our RF source. A more efficient method for obtaining finer zeroing

of the bias field was then implemented, exploiting the kinetics-imaging capability of

our CCD camera (see chapter 3). The magnetic field was slowly swept from a large

downward-pointing value to a large upward-pointing value while phase-contrast im-

ages were recorded at regular known intervals. The spins of the atoms, initially in

mF = −1, were assumed to follow the field adiabatically. As a result of the stronger

interaction of the circular-polarized probe σ− light with the spin-down atoms, the

image went from dim when the field was pointing down to bright when the field was

pointing up. By plotting the brightness of the image versus the applied vertical field

at the time the image was taken, both the field zero in the vertical direction (the

half-maximum point) and the magnitude of the transverse field (the width of the

transition region) could be obtained in a single shot. By varying the transverse field

components to make the transition from dim to bright images as sharp as possible,

the magnitude of the transverse field could be efficiently nulled out. This method

produced minimum fields of a few milligauss, at which level fluctuations in the bias

field made further reduction impracticable.

Two separate pairs of coils have been put in place to null out magnetic gradi-

ents, one along the trap axis and one at an angle of 60◦ to the axis. These pairs are

likewise geometrically constrained, so that they are not of the anti-Helmholtz config-
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uration. Together, they allow gradients of the form dBz

dz
and dBx

dz
to be nulled out.

The measurement of magnetic gradients is described in chapters 3 and 4.

2.11 Imaging Systems

Several imaging systems were employed for this work. For initial characterization

and optimization of the MOT, an imaging system of magnification m ≈ 1
2

along

an otherwise unused diagonal side viewport was employed. For time-of-flight (i.e.,

free expansion) imaging of BECs, a higher magnification system (m ≈ 2.5) imaging

from above was initially employed. For in-situ imaging, higher magnification yet was

required, and a high-quality two-stage m = 12 system was put in place. On a daily

basis, moving the expensive and delicate camera from one imaging station to another

is undesirable, and so a way of adding lenses to the m = 12 system to convert it

to a m = 1.8 imaging system with the same image plane was devised. This quick

conversion scheme has significantly lowered the barrier to switching between time-of-

flight and in-situ imaging and encouraged quick diagnosis of problems in the imaging

system best suited to the particular task at hand. An additional high-quality m = 5

imaging system was implemented along the condensate axis, primarily for the purpose

of aligning the optical trap and eliminating aberrations in its focus.

A diagram of the m = 12 imaging system is shown in figure 2.21. An primary

imaging system of m = 6 forms an image at the focus of the 750 mm lens. Both the

145 mm achromatic lens and the 750 mm plano-convex lens are employed at infinite

conjugate ratio for optimum performance. A secondary system, consisting of two

more lenses at infinite conjugate ratio, namely another 145 mm achromatic lens and a

300 mm lens, re-magnifies the primary image by a factor of 2 for a total magnification

of 12 at the camera. The two-stage imaging system allows a mask to be placed at

the intermediate image, so that only a small portion of the camera may be exposed

at a particular time. This is important for so-called kinetics imaging, as described in

chapter 3. In the absence of refraction by the sample, probe light is focused at the

approximate composite focal length of 120 mm beyond the 750 mm lens; a π/2 phase

dimple (drawn for convenience as a dot) is placed at this focus for phase-contrast

imaging. To switch rapidly to m = 1.8 imaging, typically used for free-expansion
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Figure 2.21. Diagram of imaging system. Front lens pair (145mm and 750mm)
form ×6 magnified image at location of mask. Secondary pair (145mm and 300mm)
re-magnify ×2, for total magnification ×12. Front 145mm lens can be translated
to keep free-falling atoms in focus. An optional phase dot (in reality, a dimple)
≈ 120 mm from the front lens pair is used for phase-contrast imaging, as described
in chapter 3. Two more lenses (100mm and 80mm) can be inserted to create lower-
quality ×1.8-magnification system. A calcite crystal may be inserted to allow separate
simultaneous imaging of both linear polarizations.
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or time-of-flight absorption imaging, a 100 mm lens is inserted ≈ 340 mm after the

750 mm lens, forming an image of the atomic sample that occurs near the focal point

of the 100 mm lens. The net magnification of this new image is approximately 1.3.

In order not to have to move the camera, a second 80 mm lens is placed 130 mm

from the image plane of the m = 6 imaging system, so as to re-image onto this

same image plane, with a further demagnification of about 0.65. Then, as before,

the secondary (now tertiary) m = 2 imaging system re-images onto the camera, for a

net magnification of m = 1.8. Although the m = 1.8 imaging system has too many

lenses of too short focal lengths to be of very high resolution, its ease of use has

frequently outweighed its somewhat inferior quality. The m = 12 imaging system,

on the other hand, has been very carefully aligned, with considerable pains taken

to ensure centering and correct tilt of lenses. Magnification has been measured by

first focusing on a small atomic sample, then intercepting the imaging path with a

mirror and inserting a USAF test pattern at approximately the same distance as the

atoms, and finally adjusting the position of the test pattern along the imaging axis

to bring it into focus. This procedure should ensure that the test pattern is indeed

at the same distance as the atomic sample. Comparing the known size of the test-

pattern figures to the size on the camera (using the specified pixel size of 13µm)

allows accurate calibration of the magnification. More recently, we have been able

more fully to characterize the resolution of the m = 12 imaging system by imaging

oscillatory magnetization patterns in spinor condensate samples; this is described in

detail in chapter 4.
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Chapter 3

Spinor Condensates

This chapter will discuss work on spinor Bose condensates and a new technique

for probing their magnetization; this work was presented in the following publication:

• J. M. Higbie, L. E. Sadler, S. Inouye, A. P. Chikkatur, S. R. Leslie, K. L.

Moore, V. Savalli, and D. M. Stamper-Kurn. “Direct Nondestructive Imaging of

Magnetization in a Spin-1 Bose-Einstein Gas” Phys. Rev. Lett. 95, 050401 (2005).

3.1 Overview of Prior Work

BECs with a spin degree of freedom are naturally more complex objects than

single-component or scalar BECs. They allow the exploration of many interesting

questions, such as the nature of and stability of their topological excitations, the

structure of their ground states, and the character of macroscopic coherence among

multiple condensates.

The first multicomponent quantum fluid to be discovered and studied was 3He.

Interest in ascertaining whether 3He could undergo a superfluid transition analogous

to that for 4He had existed even before 1948, when the former was first successfully

liquefied by Sydoriak et al. [63]. Further interest was aroused when Bardeen et al. [64]

proposed their famous pairing theory of superconductivity, stimulating speculation

that 3He could undergo a similar pairing transition to a superfluid state.

The era of speculation, however, was ended by the discovery of the A and B phases
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of 3He by Osheroff et al. [65]. The difficulty of ascertaining the true nature of the

samples under study is illustrated by the fact that Osheroff et al. initially ascribed

the kinks in their pressurization curve to solidification of the sample, rather than

to a superfluid transition. This misapprehension was quickly rectified, and within a

remarkably short period of time the complex structure of 3He was elucidated [66].

Although fascinating and intricate, the structure of 3He is sufficiently complicated

that it is difficult to consider it as the generic prototype of quantum fluids with spin.

In order to increase the number of such systems available for study, and to gain some

more general understanding of which features are general and which system-specific,

it is appealing to explore other multicomponent quantum fluids than the one nature

(with the aid of dilution refrigerators and tritium production) has provided. 1

The creation of dilute-gas Bose-Einstein condensates in 1995 opened many new

possibilities for the study of different varieties of quantum fluid. The first multicom-

ponent condensates were produced shortly after the production of the first alkali-atom

BECs by Myatt et al. [67] and consisted of two magnetically trappable Zeeman states

of 87Rb in distinct hyperfine levels. The JILA group followed up this initial success

with an impressive series of experiments, in which the coherence and dynamics of this

two-component system were studied.

The following year, the Ketterle group at MIT succeeded in confining a BEC

of sodium in a far off-resonant optical trap [62]. As discussed in section 2.7, the

AC Stark shift at sufficiently large detuning is independent of the spin projection

of an atom, so that a trap formed by a focused red-detuned laser beam will con-

fine all spin states equally, allowing spin-changing collisions to contribute to dynam-

ics, and not merely to loss, as in a magnetic trap. The resulting condensates, in

which the full rotationally-closed hyperfine multiplet was allowed to participate in

dynamics, were christened ‘spinor’ condensates by the Ketterle group, using ‘spinor’

in its nonrelativistic-quantum-mechanics sense, i.e., a several-component wave func-

tion representing spin. This work was extended to studies of the phase diagram of

spinor condensates of sodium, including the miscibility of spin components [68] and

of tunneling dynamics starting from metastable domain configurations [69, 70].

1A possible exception is the proposed superfluid quark-gluon system, which, however, is very

challenging to observe in the laboratory.
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A new generation of spinor-condensate experiments has followed closely on the

heels of these pioneering experiments. Notable work in recent years has included the

observation in spin-1 87Rb condensates of spin relaxation dynamics providing evidence

for the ferromagnetic character of the rubidium ground state [71] as well as coherent

spin oscillations [72]. Also extending the frontier of multicomponent quantum fluids

have been the experiments by the Sengstock group and the Hirano group on F = 2

spinor condensates of 87Rb [73, 74].

3.2 Theoretical Description of Spin-1 Spinor Con-

densate

The Hamiltonian of a system of noninteracting spin-1 Bosons is

Hfree =
∑

m

∫

d3xΨ†
m(x, t)

(

− ~
2

2m
∇2 + V (x)

)

Ψm(x, t), (3.1)

where Ψm(x, t) is a three-component position-space bosonic field operator, satisfying

the equal-time commutation relation [Ψm(x, t),Ψ†
m′(x′, t)] = δ3(x − x′)δm,m′ . Here,

the spin index of Ψ has been written explicitly, but for what follows it will be conve-

nient to suppress this index and to consider Ψ as a three-component column vector

with Ψ† a three-component row vector. To the free Hamiltonian must be added an

interaction term describing the S-wave collisions of ultracold atoms. The interaction

Hamiltonian is required to be a scalar by rotational symmetry, and should be quartic

in the field operators Ψ and Ψ† (specifically containing two creation and two anni-

hilation operators), as it describes two incoming and two outgoing particles in the

scattering process. There are precisely three independent quartic terms, correspond-

ing to the three possible values of the total incoming spin, 0, 1, and 2. Moreover, the

total spin-1 composite state of two individual spin-1 bosons is antisymmetric, which

is incompatible with Bose symmetry when the incoming particles are in the same

motional quantum state, as is certainly the case for atoms in a BEC. As a result,

the collision Hamiltonian may be parametrized by two independent parameters, a0

and a2, the total-spin-0 and total-spin-2 scattering lengths. A very convenient way

of writing this interaction Hamiltonian due to Ho [75] is in terms of the single-atom
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3× 3 spin matrices F:

Hint =
c0
2

∫

d3x
(

Ψ†(x) ·Ψ(x)
)2

+
c2
2

∫

d3x
(

Ψ†(x) · F ·Ψ(x)
)2
, (3.2)

where, using the fact the F1 · F2 = 1
2
(F2

tot − F2
1 − F2

2), the coefficients c0,2 can be

related to the scattering lengths a0,2 as

c0 =
4π~

2

m

(

a0 + 2a2

3

)

c2 =
4π~

2

m

(

a2 − a0

3

)

. (3.3)

For 87Rb, the values of a0 and a2 are inferred to be a0 = 101.8aBohr and a2 =

100.4aBohr, implying that c2 is negative. As a result, states with large net spin,

and hence large expectation value of F, are lower in energy. Thus, spinor conden-

sates of 87Rb are called ferromagnetic, since their mean-field ground state has all

spins aligned in a single direction. In this context, it is of interest to note that when

spin-conservation is taken into account, the many-body ground state can be highly

correlated [76]; these correlated states, however, are expected to be rather fragile [77],

and have not been observed experimentally.

3.2.1 Mean-Field Solutions at Finite Magnetic Field

In a BEC, all atoms occupy the same single-particle state, to the extent that the

quantum depletion can be ignored, which is generally an excellent approximation for

dilute-gas Bose condensates. As a result, the Hartree solutions to the equations of

motion, which approximate the many-body wave function as a product of identical

single-particle wave functions, are usually very accurate. They are mean-field solu-

tions, meaning that each atom responds to an average “potential” due to the other

atoms, neglecting any possible correlations.

The Hamiltonian H = Hfree + Hint retains the same form in this approximation,

but is reinterpreted as an energy functional,

E[ψ] =

∫

d3ψ†
(

− ~
2

2m
∇2 + V (x)

)

ψ +
c0
2

(ψ†ψ)2 +
c2
2

(ψ†Fψ)2,

where ψ is a three-component c-number-valued function. Likewise, the mean field

equations of motion for the condensate wave function are of the same form as the
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field equations of motion derived from the many-body Hamiltonian, except that the

quantum field Ψ is replaced by the classical field ψ. The equation of motion so

obtained is known as the Gross-Pitaevskii equation [78, 79] . For a spin-1 boson

in the finite magnetic field B(r), neglecting the quadratic Zeeman shift, the Gross-

Pitaevskii equation takes the form

i~
∂

∂t
ψa =

[

− ~
2

2m
∇2δab + V (x)δab + gFmFµBB(r) · Fab (3.4)

+ c0ψ
†
cψcδab + c2(ψ

†
cFcdψd) · Fab

]

ψb, (3.5)

where repeated indices are summed.

3.3 Limitations of Prior Imaging Techniques

Although much can and has been learned about spinor condensates by destruc-

tively imaging their separate spin populations after Stern-Gerlach separation (see 2.9)

and free expansion (“time-of-flight”) absorption imaging, it is difficult or impossible

by means of these techniques to bring to light some of the most important aspects of

spinor condensates. Indeed, the one-body density matrix for atoms of spin 1 is of the

form

ρ =









ρ11 ρ10 ρ1−1

ρ01 ρ00 ρ0−1

ρ−11 ρ−10 ρ−1−1









. (3.6)

Adiabatic Stern-Gerlach separation allows one to extract the three on-diagonal com-

ponents, i.e., the populations, but offers no information about the off-diagonal coher-

ences, which constitute the bulk of the information contained in the density matrix

(6 real parameters compared to 2 for the populations, assuming Tr[ρ] = 1).

In terms of the magnetization of the condensate, a determination of the popula-

tions clearly determines the longitudinal magnetization (i.e., the magnetization along

the magnetic field direction and quantization axis, taken to be ẑ) by

Tr[ρFz ] = ρ11 − ρ1−1, (3.7)

while the coherences determine the transverse magnetization

Tr[ρF+] =
√

2 (ρ01 − ρ−10) . (3.8)
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Even for a pure state, which is of particular interest for the study of BEC, there are

two independent phases which determine the spin state. A simple example is afforded

by comparison of the two states (in the spherical basis)








1
2

1√
2

1
2









and









1
2

i√
2

1
2









. (3.9)

The former represents a spin polarized with maximal spin projection +1 along a

particular axis (i.e., a “ferromagnetic” state), in this case the x̂ axis. The second is

an unpolarized state with zero spin projection in all directions; specifically, it is the

m = 0 eigenstate of 1√
2
(Fy − Fz). Such states, for which the vector equation 〈F〉 = 0

holds, are referred to as “polar” or unmagnetized states and are ground states of an

antiferromagnetic condensate, i.e., one for which c2 > 0, as is the case for sodium.

Although these states are very different in their spin character, a Stern-Gerlach

analysis of a condensate in the two states would give identical results, since they

differ only by a phase. Consequently, for the study of spin textures or other patterns

of magnetization in the spinor condensate, a phase-sensitive imaging method is very

desirable.

Of course, it is possible to map coherences into populations via Rabi pulses, as,

for instance, in Ramsey spectroscopy, but such an approach is only possible if the

relative phase differences are stable over the evolution period. Since typical evolution

times for spinor Bose condensates are of the order of hundreds of milliseconds, the

magnetic field stability required (∼ 10µG) is difficult to achieve without magnetic

shielding of the experiment. Magnetically shielding a conventional BEC apparatus,

containing a magnetic trap whose coils produce fields of hundreds of Gauss, is a

significant engineering challenge. A BEC apparatus using small trapping coils close

to the atoms and running small (∼ 25A) currents has been successfully placed in

a magnetically shielded environment by Esslinger et al. [59]. The development of

all-optical BEC by [28] or transport to a dedicated “science chamber” as in [80] also

lower the barrier to making a magnetically shielded BEC, though the requirements

of optical access remain challenging.

It is worth noting, in this context, that the experiments performed by the JILA

group on pseudospin-1/2 87Rb did not suffer from this difficulty, because the two

80



BEC
Imaging Lens

Phase Dot

Image Plane

Figure 3.1. Diagram of phase-contrast imaging. Scattered light is imaged at the
camera, where it interferes with unscattered light that has been phase-shifted by a
phase dot at the Fourier plane.

spin states employed in those experiments possessed nearly equal magnetic moments.

Consequently, magnetic field noise was common-mode as far as the relative phase

between the two states was concerned, so that coherences could be measured as well

as populations by converting the former into the latter.

A second limitation that has afflicted most prior experiments on multicomponent

alkali-gas condensates results from the use of destructive absorption imaging. De-

structive imaging is inefficient for studying dynamics, since a new sample must be

prepared and imaged for each time step in the dynamics. In cases where the dynamics

are not deterministic, moreover, as in the case of an instability nucleated by quantum

or thermal noise, the comparison of images taken on separately prepared condensates

is meaningless in any but a statistical sense. For such cases, if one wishes to follow

the dynamics of an evolving sample, a nondestructive technique is necessary. An

important precedent in the use of nondestructive probes of a multicomponent BEC is

the experiment of [81], in which discrete nondestructive images and nearly continuous

streak-camera recording of the phase of Rabi oscillation were obtained.
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3.4 In-situ Imaging

Given the need for an imaging technique which is sensitive to the relative phase

of the spin states in a spinor condensate (or equivalently, to the direction and magni-

tude of magnetization), it is natural to exploit the fact that the interaction strength

of polarized light with an atomic medium depends both on the spin state or the mag-

netization of the atoms. A well-established method of obtaining nondestructive in

situ images exists in the form of phase-contrast imaging (described below); by using

polarized light appropriately detuned from an atomic resonance, then, it is possible

to add magnetization-sensitivity to the list of the virtues of phase-contrast imaging.

3.4.1 Phase-Contrast Technique

The method of phase-contrast imaging was invented by Zernicke in the 1930s

[82] and has been extensively applied to the imaging of refractive objects such as

biological cells. In this method phase-shifted light is made to interfere with unshifted

light, as is generally the case for measurements of optical phase. The elegance and

practicality of the technique lie in the simplicity of the means by which the splitting

and recombination occur. A nonuniform refractive object causes light to acquire an

angular spread; consequently this spread may be used to differentiate the unscattered

wave (that is, the wave front which would have existed with no object present) from

the scattered wave (the wave which must be added to the unscattered wave to obtain

the actual distribution of light). Indeed, if the unscattered light forms an intermediate

focus as in figure 3.1 at a plane (referred to as the Fourier plane) prior to that of the

image, then the scattered wave, which originates at the object and reconverges at the

image plane, will possess a much larger spatial extent at the Fourier plane than the

tightly focused unscattered wave. Thus, by placing a small extra thickness of dielectric

at this focus, one may introduce a differential phase shift between the scattered and

unscattered light beams. Moreover, since the two beams remain co-propagating, no

special recombination is necessary and the requirements on the path-length stability

of the two (non-distinct) arms of the interferometer are greatly reduced.

In order to provide a simple model for the subsequent calculation, a short version
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of the standard derivation of the phase-contrast signal will be presented here. If the

incoming imaging light is a plane wave E0e
ikz, then after passing through a refractive

medium, the electric field will be proportional to E0e
ikz+iφ. This is trivially rewritten

as the unscattered plus the scattered light

Eunscatt = E0e
ikz

Escatt = E0e
ikz
(

eiφ − 1
)

. (3.10)

The effect of the phase dot is to phase shift the unscattered light by α, usually π/2,

so that the final intensity distribution reconstituted at the image plane is

|E|2 = E2
0 |eiα + eiφ − 1|2

= E2
0 (3 + 2 cos(α− φ)− 2 cosα− 2 cosφ) , (3.11)

which for α = π/2 and φ≪ 1 reduces to

|Ewith atoms|2
|E no atoms|2

= 1 + 2φ. (3.12)

The linear dependence of the signal on the phase shift φ is a desirable feature for

small phase shifts, since other schemes (e.g., dark-ground imaging) produce signals

which are quadratic in φ. This may be thought of as the result of interfering a large

signal (the unscattered light) with a small signal (the scattered light). For a dispersive

object, these two waves do not interfere in amplitude at the image plane, but only in

the phase quadrature. By deliberately introducing a phase shift between them, they

may be made to interfere in amplitude.

3.4.2 Magnetization Sensitivity

To ascertain the magnetization sensitivity of phase-contrast imaging, one can

calculate the polarization state of light having passed through an atomic medium

in a particular spin state. Here, we assume that the state of the atoms is an un-

correlated mean-field state of the form
√

n(r)ξ(r), where ξ(r) is a unit-normalized

three-component spinor and n(r) is the density. More complicated collective spin

states must be calculated in a more sophisticated formalism. This polarization state

of the light will be a function of position, and is thus capable of being reformed
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into an image by means of the appropriate polarization optics. This calculation is

straightforward, but will be recorded here for reference.

The connection between the microscopic spin state of the atoms and the classical

concept of phase shifts and polarization rotation is provided by the dielectric constant,

which becomes a tensor when different polarization states of light are considered. The

dielectric tensor in component form is

ǫjk = δjk +
6πn

k3
0

∑

e

cgej c
eg
k

δ̃e − i
, (3.13)

where cgej is the Clebsch-Gordan coefficient between ground and excited states |g〉 and

|e〉, normalized to the cycling transition (i.e., F = 2, mF = 2 → F ′ = 3, m′
F = 3), k0

is the resonant wave vector, and δ̃e is the detuning from resonance with the excited

state |e〉 in units of the half-linewidth γ
2
. For the calculation of far off-resonant effects

(δ̃ ≫ 1), however, we neglect the i in the denominator of equation (3.13). For a

typical condensate density of n ∼ 3×1014 cm−3 at the wave vector k0 = 8×104 cm−1,

the dimensionless prefactor 6πn/k3
0 is numerically close to 11. For typical detunings

of −230 MHz from the D1 F = 1 −→ F ′ = 2 transition (employed for the work

described here–see figure 3.2), δ̃ ∼ 70, while the maximum value of cegi on this line is

1
2
, so that the dielectric tensor differs from the identity by no more than ∼ 4%. This

fact allows a simplification of many subsequent expressions.

For brevity, we adopt the notation that ǫjk = δjk + µjk. Furthermore, we con-

sider only polarizations orthogonal to the direction of propagation of the light. This

amounts to projecting the full 3×3 matrix ǫjk onto a two-dimensional subspace. The

projection is valid provided effects such as the angular separation of ordinary and ex-

traordinary rays need not be considered across the length of the medium. The precise

choice of basis vectors is immaterial, and we will label the polarization basis vectors

as ê1 ↔ (1 , 0)T and ê2 ↔ (0 , 1)T , which may equally well represent an orthonormal

pair of linear or circular polarizations.

The 2× 2 matrix ǫ can be decomposed into Pauli matrices as

ǫ = 1 + µ̄+ An̂ · σ̃ (3.14)
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Figure 3.2. Level diagram of optical transitions on the D1 F = 1 → F ′ = 2 and
F = 1 → F ′ = 1 transitions. Clebsch-Gordon coefficients are listed next to the
corresponding lines, indicating polarization dependence. Interaction strength of σ+

light with an atom in m = +1 is six times stronger than with an atom in m = −1;
this allows magnetization of an atomic cloud to be imaged, as described in the text.
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where

µ̄ ≡ µ11 + µ22

2

A ≡

√

(

µ11 − µ22

2

)2

+ |µ12|2

n̂ ≡ A−1

{

Re(µ12) x̂ + Im(µ12) ŷ +

(

µ11 − µ22

2

)

ẑ

}

. (3.15)

The eigenvalues of ǫ may easily be read off by comparison with the problem of a

spin-1
2

particle in a magnetic field as λ± = 1 + µ̄±A. The eigenvectors are obtained

by means of the rotation operator

U ≡ exp

(

−i θ
2

m̂ · ~σ
)

, (3.16)

where

m̂ ≡ |µ12|−1

(

− Im(µ12) x̂ + Re(µ12) ŷ

)

tan θ ≡ 2|µ12|
µ11 − µ22

. (3.17)

The dielectric tensor is then

ǫ = U

(

λ+ 0

0 λ−

)

U †, (3.18)

from which it is clear that the index of refraction nref ≡
√
ǫ takes the form

nref = U

(
√

λ+ 0

0
√

λ−

)

U †. (3.19)

The evolution operator corresponding to passage through a medium described by this

index-of-refraction tensor is

Uevol ≡ eik0nrefz = U

(

eik0
√
λ+ 0

0 eik0
√
λ−

)

U †. (3.20)

Using the more explicit form (3.16) of the operators U and U †, one can write Uevol

as




eik0z
√
λ+ cos2 θ

2
+ eik0z

√
λ− sin2 θ

2
sin θ

2
cos θ

2

µ∗12
|µ12|

(

eik0z
√
λ+ − eik0z

√
λ−
)

sin θ
2
cos θ

2
µ12

|µ12|

(

eik0z
√
λ+ − eik0z

√
λ−
)

eik0z
√
λ+ sin2 θ

2
+ eik0

√
λ− cos2 θ

2



 .

(3.21)
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If the initial polarization was χin ≡ (1 , 0)†, which depending on the choice of

basis could represent either linear or circular polarization, then after passing through

the sample it would become

χout ≡ Uevol · χin

=





eik0z
√
λ+ cos2 θ

2
+ eik0z

√
λ− sin2 θ

2

sin θ
2
cos θ

2
µ12

|µ12|

(

eik0z
√
λ+ − eik0z

√
λ−
)



 . (3.22)

This polarization state can contain a considerable amount of information about

the state of the atoms. It can be analyzed in a number of ways. First, let us compute

the effect of phase-shifting the unscattered light, as in phase-contrast imaging. The

light in the absence of atoms would have the polarization state

χunscatt.
out ≡

(

eik0z

0

)

. (3.23)

Thus, analogously to equation (3.10), we can write the scattered light as χout−χunscatt.
out ,

so that a relative phase shift of π/2 applied to the unscattered light will result in the

state

χshift
out ≡ iχunscatt.

out +
(

χout − χunscatt.
out

)

= eik0z





i+ eik0z(
√
λ+−1) cos2 θ

2
+ eik0z(

√
λ−−1) sin2 θ

2
− 1

sin θ
2
cos θ

2
µ12

|µ12|

(

eik0z(
√
λ+−1) − eik0z(

√
λ−−1)

)



 . (3.24)

As noted earlier, the detunings typically employed in the present work are sufficient to

warrant use of the dilute approximation, according to which deviations of the dielec-

tric tensor from the identity are small compared to unity. In the present instance, this

is equivalent to the statement that
√

λ±−1≪ 1. A related (but usually stronger) ap-

proximation is the thin-sample approximation, according to which k0z(
√

λ±−1)≪ 1.

For the experiments described here, the condensate thickness along the imaging di-

rection is approximately z ≈ 3µm (the full width at half-maximum density), so that

k0z ≈ 24. For the strongest transitions, as estimated earlier,
√

λ± − 1 ≈ 0.04, so

that the thin-sample approximation is on the verge of validity, k0z(
√

λ± − 1) ∼ 1,

though the full expression (3.24) must be used to obtain the most accurate results.

The simplicity of the results in the combined thin-sample and dilute approximations
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makes them useful for intuition and for rough calculations, even though they are not

precisely applicable for the experiments under consideration.

In the dilute approximation, neglecting an over-all phase,

χshift
out ≈

(

i− 1 + eik0zµ̄/2
(

cos k0zA
2

+ i cos θ sin k0zA
2

)

i sin θ µ12

|µ12|
(

eik0zµ̄/2 sin k0zA
2

)

)

, (3.25)

while in the dilute and thin-sample approximations,

χshift
out ≈ i

(

1 + 1
2
k0zµ11

1
2
k0zµ12

)

. (3.26)

Here use has been made of the relations A cos θ = µ11−µ22

2
and A sin θ = |µ12|.

The ultimate experimental signal is an intensity at the location of the camera

(i.e., at the image plane), but polarization optics placed before the camera can mod-

ify the detected signal, allowing one to select which component or combination of

components of state (3.22) to detect. We recall that a generic wave plate in the

circular-polarization basis is described by the transformation matrix

(

cos ψ
2

−i sin ψ
2
e−2iφ

−i sin ψ
2
e2iφ cos ψ

2

)

, (3.27)

where, for instance, ψ = π/2 for a quarter-wave plate and ψ = π for a half-wave plate.

The angle φ determines the angle of the principle axes of the wave plate. Similarly,

a linear polarizer, also in the circular basis, is represented by projection on the state

1√
2

(

e−iη

eiη

)

. (3.28)

Making use of these elements, we consider a number of special cases of experi-

mental relevance, employing the approximation of equations (3.26) and the linearized

phase-contrast signal analogous to equation (3.12).

Case 1: Phase dot present, σ+ light in, no polarizer before camera.

This is the simplest case, and the results may be read off from equation (3.26).

The signal recorded by the camera is, to linear order,

S = 1 + k0zµ++. (3.29)
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For imaging light detuned by δ̃γ/2 from the D1 F = 1 → F ′ = 2 transition and

neglecting the weak F = 1→ F ′ = 1 transition, the explicit form form µ++ is

µ++ =
6πn

k3
0 δ̃

(

1

2
|ψ+1|2 +

1

4
|ψ0|2 +

1

12
|ψ−1|2

)

, (3.30)

where ψ is the unit-normalized the condensate wave function quantized along the

imaging direction ẑ. This may also be written in terms of the spin operator Fz as

µ++ =
6πn

k3
0 δ̃

(

1

4
+

5

24
〈Fz〉+

1

24
〈F 2

z 〉
)

. (3.31)

Case 2: Phase dot present, σ+ light in, linear polarizer before camera.

The linearized phase-contrast signal in this case, for a polarizer at angle η, is

S =
1

2

{

(1 + k0z
(

µ++ + cos 2ηReµ+− + sin 2η Imµ+−
)

}

.. (3.32)

For the transition of the previous case, we can write µ+− explicitly as

µ+− =
6πn

k3
0 δ̃

(

1

12
ψ∗
−1ψ+1

)

=
6πn

24k3
0 δ̃
〈F 2

−〉, (3.33)

where F− is the spin lowering operator. As a concrete example, one can consider using

this imaging method to observe the mF = 0 state along x̂, ψ = ( 1√
2
, 0, − 1√

2
)T . This

state is of particular interest, since vortex cores and domain walls in the ferromagnetic

spinor condensate may be made up of this spin state when the magnetic field is along

this x̂. In this case µ+− = −6πn/24k3
0 δ̃, so that the phase-contrast signal is

S =
1

2

{

1 +
6πnz

k2
0 δ̃

(

7

24
− 1

24
cos 2η

)}

.. (3.34)

It is possible, by subtracting images where η differs by π/2 (i.e., images through

orthogonal linear polarizers, such as the ordinary and extraordinary polarizations

transmitted by a calcite block) to measure the ∆m = 2 portion of this signal alone.

If, on the other hand, the initial state had been mF = 1 along x̂, or ψ = (1
2
, 1√

2
, 1

2
)T ,

then the signal would have been

S =
1

2

{

1 +
6πnz

k2
0 δ̃

(13

48
+

1

48
cos 2η

)

}

.. (3.35)

Comparison of equations (3.34) and (3.35) shows that it should be possible to dis-

tinguish m = 0 from m = ±1 regions by this method, particularly if images of both
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linear polarizations are recorded, but that the contrast remains relatively small, at

around 2 : 1.

Case 3: No phase dot, σ+ light in, linear polarizer before camera.

This case is similar to the preceding one, except that it takes as its point of

departure the equation (3.22) rather than (3.26). The linearized signal is

S =
1

2

{

1− k0z Im
(

e−2iηµ+−
)}

. (3.36)

If the aim is to see the mx = 0 state, then this appears more favorable, since there

is no large background scalar or density signal, but only a term depending on µ+−.

The signal (3.36) in the special cases mx = 0 and mx = 1 is

S =
1

2
+

6πnz

48k2
0 δ̃







− sin 2η if mz = 0,

1
2
sin 2η if mz = 1.

. (3.37)

The contrast is thus not any larger, but the absence of a background is appealing.

Case 4: Phase dot present, x̂ light in, λ/4 and linear polarizer before camera.

This is the same as case 1, since linear light can be decomposed into σ+ and σ−,

with the exception that circular birefringence can cause the signal of one circular

polarization to spill into the other.

The signal in this case for the two possible ports of the circular analyzer is

S± =
1

2
(1 + k0z(µ±± + Reµ+−)), , (3.38)

where the extra factor of 1
2

is due to the fact that half of the linearly polarized

incoming light is in σ+ and half in σ−, and where µ++ and µ+− are as given above,

while

µ−− =
6πn

k3
0 δ̃

(

1

4
− 5

24
〈Fz〉+

1

24
〈F 2

z 〉
)

.. (3.39)

Case 5: No phase dot, x̂ light in, and linear polarizer at π/4 before camera.

The measured signal at the camera is easily computed in this case also. It is

S± =
1

4
(2 + k0zRe(µ++ − µ−−))

=
1

2
+

6πnz

k2
0 δ̃

(

5

24
〈Fz〉

)

. (3.40)
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As in case 3, which also assumed no phase dot, the linearized signal shown here reveals

the magnetization signal 〈Fz〉 without contamination from any ∆m = 2 signal (e.g.,

〈F 2
z 〉 or 〈F 2

+〉). Unlike the simpler case 1, however, only half of the incident light

contributes to the signal. If images of both polarizations are recorded, however, then

this does not represent a waste of imaging light.

3.5 Imaging Larmor Precession

One of the primary contributions of the present work has been to apply the

magnetization-sensitive imaging described above to time-resolved imaging of the Lar-

mor precession of a Bose gas, allowing direct spatially and temporally resolved imaging

of its transverse and longitudinal magnetization. An understanding of this imaging

technique relies somewhat on the technical details of the camera, which I summarize

briefly here. The camera used for these experiments, a Roper Scientific PI-MAX (EEV

515x512FT CCD57), is a 512 × 1024 pixel CCD cooled to −40◦C. The CCD works

in a standard fashion: during the exposure period, photons are converted to photo-

electrons which are stored in an electrostatic “bucket” or potential well at each pixel.

The number of photoelectrons in a pixel may be read out by removing the confining

voltage and allowing the photoelectrons to flow into an integrating amplifier, whose

output feeds a digital-to-analog converter. Because of manufacturing constraints,

there is only one such read-out device, located at one corner of the chip (see figure

3.3, so that readout of the entire chip necessitates a two-dimensional bucket-brigade

movement of the pixels via a phased change of voltages applied to the pins of the CCD

chip. Pixels of the first column (i.e., that nearest the read-out corner) are shifted one

by one along the column toward the read-out corner, the value of the pixel at the

corner being extracted on each step. After this process has occurred 512 times, or

once for each row, the second column is moved over to take the place of the first, the

third to take the place of the second, etc., and a second iteration begins. Altogether

there are 1024 iterations, since this is the number of columns. The time required

to shift an entire column of pixels is approximately 1µs, but the time required to

read out a column at the lowest noise setting is approximately 5 ms. This time scale

results from the fact that the integrating amplifier suppresses random noise at its
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input by a factor proportional to 1/
√
Tint where Tint is the integration time; longer

integration time produces less noise, but the scaling with time is not very favorable.

At the lowest-noise setting, corresponding to a 100 kHz digital-to-analog conversion

rate, the total time to read out the contents of the chip is approximately 5 s, and for

a typical image, derived from three separate raw images, this ∼ 15 s read-out time

is a significant portion of the experimental cycle. Because of the large separation in

timescales between the shift time and the read-out time, it is very desirable to be able

to record information at a rate limited by the smaller shift time. This is accomplished

by means the “kinetics” mode of the camera, which allows many a single image to be

broken into many frames. Unlike the standard mode of the camera, in which a single

trigger initiates read-out of the entire chip, in the kinetics mode each trigger causes

the chip to shift all pixels a predetermined number of columns (the frame width)

toward the read-out end. If the entire chip with the exception of a single frame is

masked off, so that imaging light is blocked from reaching it, then the following rapid

sequence is possible: an image is recorded on the unmasked portion by exposing it to

a brief pulse of imaging light. At the end of the imaging pulse, an electronic trigger

initiates shifting of the pixels of the camera, which for a 40-pixel frame is completed

in about 40µs, at which point the cycle begins again, with the prior images safely

stored in the dark. The camera shutter is necessarily open throughout this process,

since it requires several milliseconds to open and close.

The advantage of employing kinetics imaging becomes apparent if one considers

the problem of trying to observe transverse magnetism in the condensate. The con-

densate is initially in the magnetically trappable |mF = −1〉 state, its spin pointing

along the field direction. We prepare a transversely magnetized state by applying

a resonant quarter-cycle (π/2) Rabi pulse. The transversely magnetized state so

prepared is no longer an eigenstate of the Zeeman Hamiltonian, but is rather a su-

perposition of eigenstates of different energies, which accrue phase at different rates.

The physical manifestation of these time-varying phases is precession of the spin at

the Larmor frequency, ωL = 1
2
µB|B|/~. Because the experiments under consideration

operate in a magnetically unshielded environment, in relatively close proximity to

many dozens of pieces of electronic apparatus, the magnetic fields at the location of

the condensate fluctuate by a few mG r.m.s, with a noise spectrum that extends to
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several tens of kHz. As a result, we have found it necessary to operate at a bias

field of 55 mG or higher to avoid noise-induced spin flips, corresponding to a Larmor

frequency of at least 38 kHz, or a period of 26µs. Thus the imaging pulse must be

short compared to 26µs in order to avoid averaging the signal to zero. Indeed, if the

imaging pulse lasts a duration T , the signal recorded would be (in the approximation

that the signal is purely sinusoidal)

S =
1

T

∫ t+T/2

t−T/2
cos(ωLt

′)dt′ =
sinωLT/2

ωLT/2
cosωLt, (3.41)

so that in order for the apparent reduction in amplitude to be less than 10%, one

must have T . 1.58/ωL ≈ TL/4, where TL = 2π/ωL.

Ideally, in order to resolve the Larmor-precession signal well, one would like to

take four or more images over the course of a Larmor period. Given that an image

of the condensate is approximately 20µm wide, which corresponds to about 20 pixels

and about 20µs shift time on the camera, it is clear that this is not possible for

magnetic fields of the size being considered. An alternative method is to sample at

a frequency near an integer divisor of the Larmor frequency and to observe the low-

frequency beat note (to alias the signal, in the language of audio processing). Indeed,

if the sample frequency ωS = 2π/TS satisfies ωL = mωS + ∆ω for m an integer, then

the signals recorded at times nTS, for n = 1, 2, 3... will be

sin(ωLnTS) = sin(∆ωnTS),

so that indeed the apparent frequency is simply the difference frequency ∆ω. Thus,

we can sample at 20 kHz with the bias field at 38 kHz, and the beat frequency of

2 kHz is sufficiently slow to allow upwards of 20 images to be recorded per cycle. In

combination with the less precise, but absolute, determination of the bias field magni-

tude from the resonance frequency of the Rabi pulse (as observed with Stern-Gerlach

“time-of-flight” absorption imaging), the frequency of Larmor precession signal al-

lows us to measure in a single shot the instantaneous magnetic field to a fraction of

a milligauss. A measurement of magnetic field which is yet much more precise can

be envisaged by determining the phase of Larmor precession. This possibility will be

treated in the following chapter.
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Figure 3.3. Schematic of kinetics imaging. The CCD pixel array is divided into
frames of a certain width (usually around 30 pixels). Individual images are recorded
on the last numbered frame. Imaging light does not affect the other frames, which are
blocked by a mask. After the short pulse of imaging light, a trigger causes the camera
to move each frame rapidly to the position of the frame to its left. Frames moving
off the left edge of the chip are lost. When the camera has received as many triggers
as there are frames, the entire contents of the chip are slowly read out through the
amplifier and analog-to-digital converter shown.
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3.5.1 Image Processing

The images obtained in kinetics mode consist, as described above, of a number

Nframes of contiguous frames (usually 25−40) of predetermined width. Since the con-

densate is nominally at rest and the temporal spacing of the images (∼ 50µs) is very

short compared to motional timescales of at least a few milliseconds, it is straight-

forward to identify homologous pixels in each frame, i.e., those which represent the

same subregion of the condensate. Conceptually, then, for each pixel-sized region of

the condensate, one has a time sequence of Nframes signals sampled at ∼ 20 kHz. For

a condensate that is Larmor precessing in the plane of the imaging laser beam, this

signal is to good approximation sinusoidal, and may be Fourier transformed or fit to

a sine wave to extract an amplitude, phase, offset, and frequency. For many of the

experiments described in the present work, the magnetic inhomogeneity across the

sample was less than 10µG, corresponding to 7 Hz maximum difference in Larmor

frequency, so that over the ∼ 1 ms image-collection time the accumulated phase dif-

ference is less than 50 mrad. In this situation, the Larmor frequency across the cloud

can be treated as constant, while leaving the phase variable, even though ultimately

the phase of Larmor precession is due to small differences in the Larmor frequency

acting over the much longer evolution time. In other cases, magnetic gradients of

up to 10 mG/cm have been applied, resulting in Larmor-frequency differences of as

much as 210 Hz and phase accumulation over a 1 ms imaging time of 1.3 rad. For

such images, it is more proper not to constrain the frequency across the cloud to be

constant, although such a constraint could be applied in a subregion of the conden-

sate if one had a priori knowledge about the length scale over which the magnetic

field could be varying. The ability to constrain the frequency is of some practical

utility, particularly for pixels with low signal-to-noise ratio; for such pixels, it may

be possible to extract a phase at a known frequency but difficult to determine this

frequency by searching for the maximum in the Fourier spectrum or by curve-fitting.

Moreover, computation time is considerably reduced if the frequency does not need

to be redetermined at each pixel. The former concern, and to some extent the latter

as well, may be reasonably addressed by binning or performing a weighted average

(e.g., a Gaussian blur) of neighboring pixels before Fourier transforming; this should
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result in no loss in information when the binning size is smaller than the imaging

resolution.

The result of this temporal Fourier transform or curve fit (both of which methods

are commonly employed), is a pixel-by-pixel map of the phase, amplitude, and, op-

tionally, frequency of Larmor precession in the atomic cloud. The offset of the sine

wave, i.e., the DC portion of the Fourier transform, is moreover a measurement of the

density profile of the condensate. If only axial and not two-dimensional information is

desired, the binning procedure may be applied across the full width of the condensate,

or alternatively, the transverse profile at each axial point may be fit to an appropriate

functional form and the peak value or area under the curve ascribed to that point.

For the work described in this sections 3.5.2 and 3.5.3, the latter approach was taken,

using the phenomenological functional form A + B sinc(κ(x − x0)) to take into ac-

count the imperfect imaging resolution in the transverse direction, while for more

recent work a full two-dimensional phase and amplitude map have been preferred.

3.5.2 Zeeman Coherence in a BEC

The observation of Larmor precession in a spinor condensate proceeds along the

following lines. A longitudinally magnetized condensate is produced in the optical

trap by lowering the trap depth and evaporating. A π/2 pulse rapidly converts

the longitudinal magnetization of the condensate to transverse magnetization, which

precesses at the Larmor frequency, here equal to 38 ± 2 kHz. After a variable hold

time Thold, a sequence of images is recorded. As the tipped spin Larmor-precesses

about the bias field, the phase-contrast image intensities oscillate from bright to dark,

accordingly as the spins are aligned or anti-aligned to the direction of propagation of

the imaging beam. A composite image consisting of ≈ 40 images equally spaced by

∼ 50µs (as in figure 3.5) is then uploaded to the computer. In order to account for

imaging-beam inhomogeneity and for background light which may enter the imaging

system, a second and third image are then recorded. The second is identical to the

first, except that the atoms have been expelled from the trap, while in the third image

the probe beam is turned off. The normalized, background-subtracted pixel-by-pixel
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signal is then

S(i, j) =
I1(i, j)− I3(i, j)
I2(i, j)− I3(i, j)

, (3.42)

where In(i, j) is the intensity of the (i, j)-th pixel in image n.

It is apparent from figure 3.5 that the images do, as expected, reveal the time-

dependent relative phase between each spin population, that is, they show a sinusoidal

oscillation due to Larmor precession.

Given that this is a measurement of coherence, it is natural to ask how long the

coherence persists. This we ascertain by comparing Larmor precession images taken

in two different ways, dubbed the “tip-and-hold” and the “hold-and-tip” measure-

ments. The tip-and-hold measurement is precisely what has been described above,

with a variable hold time intercalated between the Rabi pulse and the image pulse.

The hold-and-tip measurement is, as its name suggests, the reverse: a variable hold

time intervenes between the formation of the condensate and the Rabi pulse, with

the imaging immediately following the Rabi pulse. The comparison of these two mea-

surements should distinguish between loss of signal due to number loss or heating

(hence diminished density) and signal loss that specifically affects transverse mag-

netism. The loss rates in the two cases correspond to the inverse T1 and T2 times

of nuclear magnetic resonance. The signal obtained for each type of measurement is

plotted in figure 3.6. It is striking that the decay of the Larmor precession signal in

the two cases occurs at approximately the same rate, indicating that no decoherence

more significant than number loss afflicts the condensate, in contrast to the case of a

thermal cloud (see following section).

For a transversely spin-polarized condensate, one does not expect atomic collisions

to be a source of decoherence (see section 4.3.1). The rôle of another prime suspect in

decoherence, magnetic inhomogeneity, is more interesting. Figure 4.2 in the following

chapter shows an image of a condensate to which has been applied a magnetic-field

gradient of 113 mG/cm for 10 ms. The expected response of the system on short

time-scales in the presence of a magnetic gradient is the development of a matching

phase gradient
dφ

dz
= −1

2

µB
~
B′Thold, (3.43)

where B′ ≡ d|B|
dz

. At longer times, one might expect, neglecting atomic collisions,
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that the trapping frequency would begin to enter the description. In the absence

of collisions, the effect of the gradient is to displace the harmonic potential 1
2
mω2

zz
2

along the trap axis by an amount

∆z =
mFµBB

′

2mω2
z

(3.44)

and to shift the minimum energy of the potential well for particles in state |mF 〉 by

∆E = −(mFµBB)2

8mω2
z

. (3.45)

The energy shift is of order h×3 Hz for typical parameters at a gradient of 14 mG/cm,

and the corresponding displacement is a few µm. After the sudden Rabi pulse, the

mF = ±1 components, which were no longer at the minima of their respective poten-

tials, would begin to oscillate harmonically. Initially the mF = ±1 components would

accrue momentum relative to the mF = 0 component, which would manifest itself as

a winding of the magnetization, but after a quarter cycle the helical magnetization

pattern would reach a maximum pitch and begin to unwind; after a full cycle, the

spins would have returned to their initial configuration.

This is emphatically not what is observed. In fact, the presence of the collisional

mean-field interaction dramatically alters the way in which the condensate responds

to a magnetic-field inhomogeneity. As seen in figure 3.4(a), there is no evidence of

rephasing at the trap period (∼ 200 ms). Instead, the phase gradient merely continues

to increase steadily for as long as we are able to measure it. Figure 3.4 confirms that

the rate at which this phase gradient increases is simply proportional to the applied

gradient. At long times without cancelled gradient, the phase varies rapidly along

the axis of the condensate. To see the linear relationship between phase and position,

one must “unwrap” the phase, i.e., choose the offset 2πn for some integer n. This

is done by comparing the phase to that at neighboring positions, but for long times

at finite gradient, when the spatial phase modulation period approaches the imaging

resolution limit, this ambiguity in phase amplifies errors in determining the phase,

since incorrect jumps of 2π can throw a given data point off considerably. This is

the reason for the large error bars at long times in figure 3.4(a). This problem can

be mitigated considerably by binning image pixels over smaller axial regions, as has

been done in our more recent work, so that there are more measurements per spatial

period.
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Another way of stating this result is that the condensate does not appear to

respond motionally to the magnetic gradient, but merely to develop a phase according

to the local value of the magnetic field. This phenomemon can be understood in

terms of the collisional interaction among atoms, which in very crude terms resists

their being accelerated by the gradient. Indeed, in the Thomas-Fermi approximation,

the mean-field density profile shifts the energy of a particle in the condensate by

exactly the amount required to cancel the inhomogeneity of the trapping potential,

so that the effective “potential” is flat. Because to good approximation the scattering

lengths among all pairs states |F = 1, mF 〉 are equal, the same cancellation occurs

for mF = 0 atoms in an mF = 1 condensate. But an admixture of mF = 0 is simply

a small rotation

eiθFy









1

0

0


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

≈









1

θ/
√

2

0









+O[θ2]. (3.46)

As a result, excitations in the form of small rotations about the magnetization di-

rection of a ferromagnetic condensate (so-called magnons) experience an effective

potential which is flat, rather than harmonic, the consequence being that their period

of oscillation is very long and that no rephasing of the magnetization in the presence

of a magnetic-field gradient occurs.

More mathematically, this can be seen through a linear expansion of the conden-

sate wave function in the Gross-Pitaevskii equation, as calculated by Ho [83] and

Ohmi and Machida [84]. Indeed, the equations of motion for ψ+ and ψ0 are

i~
dψ+

dt
=

(

− ~
2

2m
∇2 + V

)

ψ+ + c0
(

|ψ+|2 + |ψ0|2 + |ψ−|2
)

ψ+

+ c2
(

|ψ+|2 − |ψ−|2
)

ψ+ + c2
(

ψ∗
0ψ+ψ

∗
−ψ0

)

ψ0

i~
dψ0

dt
=

(

− ~
2

2m
∇2 + V

)

ψ0 + c0
(

|ψ+|2 + |ψ0|2 + |ψ−|2
)

ψ0

+ c2
(

ψ∗
+ψ0 + ψ∗

0ψ−
)

ψ+ + c2
(

ψ∗
0ψ+ + ψ∗

−ψ0

)

ψ−. (3.47)

The zeroth-order solution may be taken to be spin-aligned with all population in

mF = 1, so that only ψ+ is nonzero. The wave function can then be taken as the

lowest-energy solution of the time-independent Gross-Pitaevskii equation

i~
dψ+

dt
= µψ+ =

(

− ~
2

2m
∇2 + V

)

ψ+ + (c0 + c2)|ψ+|2ψ+. (3.48)
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Figure 3.4. (A) Phase gradient vs. time. A current of 60 mA has been applied to
the axial gradient coils, and images recorded after a variable hold time. The Larmor
phase was obtained as a function of axial position and fitted to a straight line. The
slope dφ

dz
of this line is plotted against hold time. For this gradient, the spatial period

of the phase modulation was approaching the imaging resolution at 200 ms. This is
reflected in the large error bars at long times, and which are magnified by global phase
ambiguity as described in the text. In (B), the slope obtained from (A) and from
similar measurements at 40 mA, 100 mA, and 200 mA is plotted against the applied
current, and is well fit by a straight line. At a current of 40 mA, the applied gradient
cancelled the residual gradient from other sources, resulting in zero net gradient.
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Figure 3.5. Larmor Precession Image

Now on top of this fixed background, consider a first-order excitation in the zero com-

ponent ψ0, which as noted above corresponds to local rotations of the spin direction.

The linearized equation of motion of ψ0 is

i~
dψ0

dt
=

(

− ~
2

2m
∇2 + V

)

ψ0 + (c0 + c2)|ψ+|2ψ0 (3.49)

which using equation (3.48) may be rewritten

i~
dψ0

dt
=

(

− ~
2

2m
∇2 + µ+

~
2

2m

∇2ψ+

ψ+

)

ψ0. (3.50)

This equation shows that the mF = 0 admixture experiences an effective potential

which is close to flat, since the term involving derivatives of ψ+ is of order ~
2/mL2

where L is the length of the condensate, except near the edge of the condensate. This

energy is of order 1 pK, which is too small to play any part.
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Figure 3.6. Decay of the Larmor precession signal for (a) a Bose-Einstein condensate
and (b) a thermal cloud. Data from the “tip-and-hold” (filled circles) or “hold-and-
tip” (open circles) methods are compared. For the Bose-Einstein condensate, the
measured 1/e decay time of the Larmor precession was 670 ± 120 ms, close to the
decay time of the “hold-and-tip” signal (830 ± 120 ms), indicating no significant
source of decoherence. For the thermal cloud, the 65 ± 10 ms decay time of the
Larmor precession signal was an order of magnitude shorter than the decay time of
the “hold and tip” signal (1100 ± 500 ms).

102



80

60

40

20

0

D
e
ca

y 
ra

te
 [
1
/s

]

86420
External magnetic field gradient [mG/cm]

Figure 3.7. Decay of the Larmor precession signal for (a) a Bose-Einstein condensate
and (b) a thermal cloud. Data from the “tip and hold” (filled circles) or “hold and
tip” (open circles) methods are compared. For the Bose-Einstein condensate, the
measured 1/e decay time of the Larmor precession was 670 ± 120 ms, close to the
decay time of the “hold and tip” signal (830 ± 120 ms), indicating no significant
source of decoherence. For the thermal cloud, the 65 ± 10 ms decay time of the
Larmor precession signal was an order of magnitude shorter than the decay time of
the “hold and kick” signal (1100 ± 500 ms).

3.5.3 Thermal Bose Gas

In contrast to the condensate case, transverse magnetization in a thermal non-

degenerate spinor gas decays much faster than that in a BEC (figure 3.6). Moreover,

while the Zeeman coherence in a BEC appears locally unaffected by magnetic inho-

mogeneity, the decoherence rate in a thermal gas depends strongly on the applied

magnetic gradient (figure 3.7).

A simple model of this decoherence is obtained by noting that the collision rate

of atoms in the optical trap (∼ 200 Hz) is much higher than their axial trapping

frequency (5 Hz). As a result, the motion of thermal atoms is diffusive, rather than

ballistic. The axial distance travelled by a diffusing atom in time t is

d = l
√

t/τc, (3.51)

where τc = (2nσcvth)
−1 is the collision time and l = vthτc is the axial mean free

path. Here σc = 8πa2 is the collision cross section, n is the number density, and

vth =
√

2kBT
πm

is the one-dimensional average speed. The expression for τc contains

an additional factor of 2 because the mean thermal speed in three dimensions (which

determines the collision rate) is twice that in one dimension (which determines the
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mean axial distance travelled). Moreover, in a time t, atoms which have migrated a

distance d will have accrued a relative phase compared to those which have remained

stationary equal roughly to

∆φ =
1

4

µBB
′d

~
t, (3.52)

where the additional factor of two is an approximation to the average of the field ex-

perienced by the atom over its trajectory 〈B〉 ≈ 1
2
(B′z +B′(z + d)). If one estimates

the dephasing time as the time required for this mean relative phase to reach π, so

that the phases associated with different trajectories begin to average to zero, then,

combining equations (3.51) and (3.52) an explicit result is obtained for the dephasing

time

tπ =

(

8π~

µBB′

)2/3(
nσc

vth

)1/3

. (3.53)

The decay rate ΓLP ≡ t−1
π determined from this simple theory is plotted versus mag-

netic gradient in figure 3.7 and compared to the experimentally measured decay.

It is worth noting that this simple picture does not take into account spin waves of

the sort that were seen in pseudospin-1
2

gases [85–87] and some form of which should

also exist in the spin-1 thermal Bose gas.
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Chapter 4

Prospects for Magnetometry

4.1 Principle of the Measurement

As discussed in chapter 3, by imaging with an off-resonant circularly polarized

probe beam, one can spatially resolve magnetization in a spin-1 spinor condensate

with high contrast. A stronger dipole matrix element for the spin-up than for the

spin-down state induces a larger phase shift for the former, and this phase is imaged

by means of the phase-contrast technique. By recording a periodic sequence of such

images, the temporal phase of the Larmor precessing transverse magnetization may

be spatially mapped. If the Larmor frequency is stable to within one cycle over the

interrogation time, it can be meaningfully compared to a local oscillator, and the

phase measurement can be interpreted as a long-baseline frequency measurement. In

essence, this is a Ramsey measurement, with the difference that the second π/2 pulse

is replaced by a detection method which probes the Larmor phase and transverse

magnetization directly.

Measured coherence times for Larmor precession in the condensate are of order

500 ms, and potentially larger in a longer-lived lower-density condensate. In a conden-

sate of ≈ 1 million atoms, this would mean a limit on the measurement of magnetic

field from atomic shot noise of approximately 1 nG or 100 fT on a single shot using

the entire condensate as a single measurement channel. The rather long cycle time of

a typical BEC apparatus would reduce the effectiveness of long-time integrations by a
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factor of
√

(Tmeas + Tcycle)/Tmeas, where Tmeas is the measurement time and Tcycle the

cycle time. but, as mentioned in the introduction, recent all-optical BEC-production

techniques have dramatically lowered Tcycle to a few seconds [28–30], so that in a dedi-

cated apparatus this may not be a large factor. This ideal value, though it represents

a rather small field, is about two orders of magnitude short of the sensitivities of

SQUID and atomic magnetometers [88–91]. Spinor-condensate magnetometry offers

the offsetting merit, however, of very high spatial resolution (∼ 5µm). Similarly high

resolution has been obtained with scanning SQUID microscopy [92, 93], but in con-

trast to such a scanning technique, a spinor-condensate magnetometer would record

simultaneous information from each resolved picture element, which may be impor-

tant in applications where spatial magnetization correlations at a particular time are

desired. In addition, the spinor condensate technique is capable of measuring small

spatial variations of the magnetic field on top of a large (∼ 500 mG or more) uni-

form bias field with undiminished sensitivity, which is not true of the spin-exchange

relaxation-free magnetometer of Kominis et al. [89]. It is also worth noting that,

SQUID measurements inherently measure flux and must therefore rely on separate

measurements of the sensor area to infer field. This area, moreover, may not remain

constant over time. In contrast, the proposed spinor condensate magnetometry has

the benefit of directly measuring the field in terms of fundamental constants, which

is significant for applications in which the accuracy as well as the precision of the

measurement is of importance.

4.2 Spatial Scale in Magnetometry

A commonly used figure of merit for a sensitive magnetometer is its noise floor in

T/ Hz1/2. Since electromagnetic energy always depends quadratically on the fields,

these units are straightforwardly related to a physically sensible spectral power den-

sity, e.g., in W/Hz This figure, however, fails to convey any information about the

length scale at which the magnetometer operates. For many magnetometers, the

intrinsic sensitivity can in principle be made arbitrarily high (i.e., the noise floor

made arbitrarily low) by expanding the physical size of the magnetometer. Thus the

reported noise floor may contain somewhat arbitrary factors related to the actual
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size of the magnetometer rather than to the intrinsic sensitivity of the measurement

method. It is true that for practical purposes, the constraints on the attainable size of

the magnetometer may be as significant as fundamental limitations, but both may be

of interest. Of greater significance is the fact that for many applications, one wishes

to measure spatial patterns of fields at a particular length scale. In order to take into

account the sensitivity as a function of spatial scale, one may alternatively employ a

figure of merit which explicitly depends on length, e.g., with units of fT · cm3/2/Hz1/2,

as was done by Allred et al.[94]. The scaling with length of this figure may be un-

derstood by noting that a doubling of the volume of an atomic magnetometer should

ideally double the number of atoms participating in the measurement, thereby reduc-

ing the statistical fluctuations by
√

2.

As estimated below, a spinor-BEC-based magnetometer ought to be able to

achieve better than 4 pT resolution in a 1µm square pixel, limited by optical shot

noise. This pixel represents a volume of 4 × 10−12 cm3, where the remaining dimen-

sion is the thickness of the condensate along the imaging direction of about 4µm, so

that the volume-invariant figure of merit becomes 8× 10−18 T · cm3/2/Hz1/2 as com-

pared to ∼ 10−15T · cm3/2/Hz1/2 for alkali vapor magnetometers based on nonlinear

magneto-optical rotation [95] and the projected value of 10−17T · cm3/2/Hz1/2 for the

spin-exchange relaxation-free magnetometer [94]. An imaging resolution better than

a few millimeters, moreover, has yet to be demonstrated for these latter types of

magnetometry. Thus for applications requiring reasonably high sensitivity and high

spatial resolution, the spinor condensate system appears quite promising.

Because the proposed magnetometry is an imaging technique, it naturally records

a two-dimensional map of magnetic fields. Therefore, an even more appropriate fig-

ure of merit would reflect the scaling of sensitivity with pixel size, the un-imaged

dimension being held constant; this figure of merit would have units of T · cm/Hz1/2,

and is the most appropriate for comparison with scanning SQUID microscopy. In-

deed, for typical values reported by Kirtley [90] of 10−10T/Hz1/2 in a 7µm-square

pickup, the two-dimensional figure of merit is 7 × 10−14T · cm/Hz1/2. For compar-

ison, the same figure of merit for a spinor-condensate magnetometer is projected to

be 4 × 10−16T · cm/Hz1/2, some two orders of magnitude better. It is worth noting

that the scaling with pixel area compared in these two systems is rather different in
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Figure 4.1. Comparison of projected sensitivity of spinor condensate magnetometry
(solid line) and scanning SQUID microscopy (dashed line) vs. length scale. The
spinor-magnetometry curve is not extended beyond the axial length of the condensate.
For length scales smaller than the transverse size of the condensate, ∼ 20µm, the
scaling is L−1, while for larger length scales the scaling is L−1/2. SQUID sensitivity
is limited to ∼ 2 fT by, e.g., Dewar magnetic-field noise.

physical origin. For the spinor condensate magnetometer, it results from the inclusion

of more atoms in the pixel at larger pixel sizes, which implies a smaller shot noise.

For the SQUID, however, the sensitivity is more naturally expressed in terms of the

flux, e.g., as ∼ 10−6Φ0/
√

Hz, where Φ0 = h/2e, and the scaling of the sensitivity with

area is primarily due simply to the multiplicative conversion between flux and field.

As a result the SQUID sensitivity should scale with the inverse area, while the spinor-

magnetometry sensitivity should scale with the inverse linear dimension, within the

limits set by the size of the sample. Because of this different scaling, the attempt

to capture the sensitivity of each method in a single figure of merit is somewhat

misleading. More properly one should look at the sensitivity as a function of length

scale, as shown in figure 4.1. This figure emphasizes that at length scales shorter

than a few hundred µm, the superior scaling of spinor-condensate magnetometry has

the potential to render it superior to scanning SQUID microscopy. From figure 4.1 it

is clear that the relatively strong dependence of SQUID sensitivity on sensor size is
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Figure 4.2. Wound-up condensate image. The Larmor-precessing BEC has been
exposed to a gradient of 113 mG/cm for 10 ms. The resulting sequence of images
spaced by 50 ms is shown. At each point, the signal exhibits Larmor precession across
the image, but the phase of precession varies across the condensate, resulting in a
strong spatial modulation of image brightness. The spatial period of this modulation
is 12.5µm for the image shown.

partly responsible both for the exceptionally good sensitivity of large-area SQUIDs

and their relative weakness as short-distance magnetometers.

4.3 Resolution

The spatial resolution of spinor-condensate magnetometry is limited by the optical

resolution of the imaging system. We have calibrated the resolution of our imaging

system by imaging condensates whose spins have been tipped transverse to the mag-

netic field and allowed to evolve for a relatively short time (10 ms) in the presence of a

variable magnetic field gradient. The evolution time is chosen so that the largest field

gradient of interest (150 mG/cm) acting on the mF = ±1 spin components for 10 ms

will produce a displacement of not more than 1µm in the worst-case scenario that

the atoms were accelerated as free particles. As discussed in chapter 3, the gradient

induces a linearly varying phase with slope

dφ

dz
=
µBB

′(z)

2~
Thold (4.1)
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Figure 4.3. (A) Phase map of condensate. The image of figure 4.2 has been Gaussian-
blurred with a 1/e2 blur radius of 1.1µm and Fourier-transformed pixel by pixel. The
phase of the Fourier transform is shown in gray scale, with black representing −π and
white representing +π radians. In (B), the phase along a single-pixel-wide vertical
line through the phase map of (A) has been “unwrapped” and plotted against position
to show the quality of the data and of the phase extraction. At the upper end, where
the signal is weakest, a single phase disambiguation error is evident, while in the
central portion residuals from the curve fit are ±200 mrad.
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By fitting for the phase as a function of position, we can accurately infer the gradient

at any current sufficiently small that the resolution of the imaging system does not

affect the measurement. Several gradient-current points are then accurately fit to

a straight line, which allows us to extrapolate to larger gradients, even when the

imaging resolution affects our ability to determine them accurately from evidence

internal to the image. Since we image to good approximation the component of

the magnetization along the imaging direction, a linear phase gradient results in

a sinusoidal modulation of the brightness of the image along the long axis of the

condensate. By measuring the contrast of this modulation as a function of the applied

gradient, we obtain a direct measurement of the response of the imaging system as

a function of transverse wave number. The results of this measurement are shown

in figure 4.4. Because the object being imaged is to good approximation sinusoidal,

the interpretation of this measurement is particularly simple: to first approximation,

transverse Fourier components of the scattered wave propagating out from the object

with wave vectors of magnitude 2π rad/6µm or less are accepted by the imaging

system and reconstituted at the image plane, while those whose magnitude exceeds

this value are diffracted out of the imaging system altogether. The fact that the

cut-off of figure 4.4 is not arbitrarily sharp is presumably attributable to spherical

aberration of far off-axis rays. The value of 6µm is the abscissa of the point at

half-maximum contrast. This resolution is close to the diffraction-limited value of

k⊥ = k‖Rlens/Llens = 2π/5.5µm expected for a lens of radius Rlens = 2 cm at a

distance of Llens = 14 cm from the object.

As a result, with the current imaging system, the spatial resolution for magne-

tometry is approximately 6µm. The difficulty and expense of improving this number

increase rapidly with diminishing length scale; a factor of two or three improvement

in a dedicated machine with custom-made lenses, however, is certainly feasible. The

number of atoms contributing to the measurement, of course, scales with the length,

so that without accompanying improvements in atom number, the advantage to re-

solving ever smaller length scales will rapidly be offset by the increased atom shot

noise. Moreover, for real-world applications the minimum length scale of interest will

in general be no smaller than the minimum separation between the source of the

magnetic field and the measuring device. Since the condensate requires ultra-high
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Figure 4.4. Calibration of imaging-system resolution. Condensates were forced to
Larmor precess in a variable gradient (0 to 150µm) for 10 ms, inducing a helical mag-
netization pattern, which, projected on the imaging direction, resulted in a sinusoidal
modulation of the image brightness along the axis of the condensate. The contrast of
this modulation is plotted versus its spatial periodicity. The contrast is reduced for
high-frequency modulation, dropping to 50% at 6µm.
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vacuum for its survival, while many, if not most, ordinary materials have outgassing

rates incompatible with ultra-high vacuum, one likely scenario for practical applica-

tion of such a magnetometer would involve a thin membrane or window separating

the optically trapped condensate from the sample whose magnetic field is to be mea-

sured as in [92, 93]. We have performed no detailed study on the feasibility of such a

membrane, but a robust vacuum-maintaining membrane much thinner than 2−3µm

seems prima facie implausible. We note in passing, however, that such a membrane,

with the use of an appropriately designed rough-vacuum airlock to contain samples,

might not be obliged to withstand more than a small fraction of atmospheric pres-

sure. It is also worth pointing out that the effects of a material surface, dielectric or

conducting, on the condensate at tens of µm separation are likely to be deleterious,

as observed by Lin et al. [96] and calculated by Rekdal et al.[97].

4.3.1 Absence of Mean-Field Shift

The atoms of a typical alkali-atom BEC are quite dilute (n ∼ 1014 cm−3) by

ordinary standards, but because of their large polarizability, the low-temperature

cross sections are rather large. For instance, in the case of 87Rb , the S-wave cross

section is σcoll = 2.5 × 104a2
Bohr, much larger than one might näıvely suppose from

the size of the atom. As a result, a 87Rb BEC, while sufficiently weakly-interacting

to make it theoretically rather tractable, is strongly interacting enough to render

its use for many precision measurements difficult. Indeed, any measurement (for

instance, the measurement of time in an atomic clock) which relies on the stability of

the energy levels and spectral lines of isolated atoms is likely to run into systematic

energy/frequency shifts on the order of the interaction energy. This energy is typically

a few kHz and is dependent on the atom number or density, which is usually not

a well-controlled parameter in these experiments, making these shifts particularly

deleterious. The presence of such shifts, along with the small atom number obtainable

in most alkali BECs, is a major reason that condensates, whose coherence and velocity

spread would otherwise make them near-ideal atomic samples for metrology, have

hitherto not been employed to a significant degree in atomic clocks or other precision

measurements. A seeming exception is the experiment of Gupta et al.[98], in which

the recoil frequency of sodium was measured at the 7ppm level, but in this experiment
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the condensate had been released from its trap and allowed to expand for 15 ms to

lower the atomic density. The use of a freely expanding sample, however, while useful

in this instance, means sacrificing the possibility of long interaction times, and so is

not desirable for many precision measurements.

In proposing the use of spinor condensates for precise measurement of magnetic

fields, then, it is important to emphasize that such frequency shifts are absent on

the Larmor frequency, at least to lowest order. To see that this is so, we consider a

spinor condensate that is spin-polarized, with its spin tipped transverse to a uniform

static magnetic field. In a frame which rotates with the Larmor-precessing spins

at the single-atom Larmor frequency, the magnetization of the condensate is clearly

quasi-stationary, as would be true for any weakly-interacting ensemble of atoms. For

a ferromagnetic condensate like 87Rb , however, a stronger statement can be made;

namely, that this spin-polarized state is the many-particle ground state of the system,

and is consequently stable.

More formally, consider the second-quantized Hamiltonian for this system, H =

Hfree +Hint +HB, where Hfree and Hint are given by equations (3.1) and (3.2) respec-

tively and

HB ≡ gFµB

∫

d3xΨ†(x)B · FΨ(x)

Typical spin-dependent energies are on the order of h× 1 Hz, while for for the work

described here gFµB|B|/h is between 40 kHz and 100 kHz. Thus it is desirable to

extract the rapidly varying evolution at the Larmor frequency by going to the in-

teraction picture with respect to the Hamiltonian HB, which is equivalent to going

to the co-rotating frame. In the interaction picture, the field operator ΨI obeys the

equation of motion

i~
∂ΨI

∂t
= [ΨI , H̃

I
free + H̃I

int] (4.2)

where H̃free is simply Hfree evaluated at the interaction-picture fields ΨI and Ψ†
I and

likewise for H̃int, or in other words

H̃free = e−iHBtHfreee
−iHBt = Hfree[ΨI ; Ψ

†
I ]

H̃int = e−iHBtHinte
−iHBt = Hint[ΨI ; Ψ

†
I ] (4.3)

Note that the magnetic field Hamiltonian HB no longer appears in equation (4.2). If

we choose ẑ as the magnetic field direction, then in the interaction picture, the total
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spin projection along any axis, but in particular, say, the transverse x̂ direction is a

conserved quantity. Indeed this total spin projection

Ftot
x ≡

∫

d3xΨ†(x)FxΨ(x) (4.4)

commutes with the Hamiltonian. This is clear from the consideration that the only

allowed spin-changing collisions are 0 + 0↔ 1 + (−1). As a result, the state in which

all atoms have the maximum spin projection along x̂ is a stationary state in the

rotating frame, which is to say that the spins do not deviate from the single-particle

Larmor frequency.

This result has not hitherto depended on the fact that 87Rb is ferromagnetic,

and indeed it is true that the fully magnetized state in a polar condensate is also a

stationary state, although not the ground state. In the presence of relaxation mecha-

nisms (e.g., through spin exchange with the thermal fraction), however, it is valuable

to make use the true ground state of the system, which should offer relative immu-

nity from thermally driven relaxation. The statement that the Larmor frequency

is density independent may also be rephrased as stating that for the case of uni-

form transverse magnetization there is no phase diffusion of the type discussed by

Javanainen et al.[99], in which different terms in the expansion of a product state

evolve differently, leading to a spread in relative phase. That this does not occur in

the spinor condensate is a straightforward consequence of rotation-invariance.

The fact that fully transversely magnetized state suffers no mean-field shifts is

certainly promising, but if the promise of high magnetometric resolution is to be re-

alized, the behavior of the system in the case of nonuniform magnetization is also

of interest. An analysis of excitations around the uniform magnetization case was

presented in chapter 3, section 3.5.2. This analysis is all within the S-wave approxi-

mation for interatomic collisions, and so neglects the possibility of dipolar relaxation.

The effects of magnetic-dipole interactions are discussed in section 4.4.4.

4.3.2 Dynamic Range

An important parameter separate from the sensitivity of a magnetometer is its

dynamic range, which specifies the ratio of the largest to the smallest measurable sig-

nals. For spatially resolved magnetometry, moreover, the dynamic range is a function
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of the length-scale over which the magnetic fields are to be measured, i.e., the pixel

size of the magnetic-field map. The smallest measurable signal is determined simply

by the sensitivity, that is, by the ultimate noise level of the device. The maximum

signal that may be measured is subject to several potential limitations. For fields

varying over short length scales, the maximum field that may be measured is deter-

mined again by the optical resolution, since a large spatially varying field will begin

to induce unresolvable phase variations in the atomic magnetization. This limit is

given by

Bmax(λ) =
2~λ

λresµBThold
(4.5)

where λ is the wavelength of the spatial variation of the field and λres = 6µm. By

making Thold as short as possible, this quantity may be made quite large. Indeed, for

Thold = 2 ms, one obtains
Bmax(λ)

λ
= 190mG/ cm. (4.6)

A more interesting limit is enforced by the requirement that the spatially varying

magnetic field not cause undesirable spin excitations in the spinor BEC. This is

expected to occur if the length scale over which the phase varies by ∼ π approaches

the spin healing length, defined as the length scale at which the spin-dependent mean-

field energy equals the kinetic energy:

ξspin ≡
~√

2mc2n
(4.7)

This limit on the spatial Fourier component of the measured field at wavelength λ is

Bmax(λ) ≈ λ

µBThold

√
2mc2n. (4.8)

For typical values of c2n ≈ 0.0046µ ≈ 0.55 nK, where µ is the chemical potential, and

again taking Thold = 2 ms this yields the limit

Bmax(λ)

λ
≈ 240 mG/ cm. (4.9)

This is less stringent, for these parameters, than equation (4.6)

A separate issue is the maximum uniform field that can be measured, as opposed

to the differential or spatially varying fields considered above. For practical purposes,

this maximum bias field is currently determined by the ability to produce imaging
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light pulses that are short compared to a single Larmor cycle. The present method of

producing short pulses relies on an RF mixer, operated as a variable attenuator and

driven by a Stanford Research Systems pulse generator; the mixer can rapidly turn

on and off the RF power going to an acousto-optic modulator, thus acting as a rapid

shutter. This method has easily produced rather square pulses down to 500 ns in

duration, which, according to equation (3.41), allow one to image Larmor precession

at up to 500 kHz. Some degree of improvement on this value is no doubt possible with

the present technique, by focusing the probe beam tightly into the end of the AOM

nearest the RF transducer, for instance, and much faster pulses are possible with an

electro-optic modulator. For the moment, however, there is no strong motivation to

push the Larmor frequency to higher values. It is worth pointing out that the duration

of the required pulses scales inversely with the bias field, so that the required intensity

scales linearly with the bias field. Thus the effective magnetic field imposed by the

A.C. Stark shift from the probe beam scales linearly with the bias field as well. The

sum of the true bias field and the effective optical field is a net effective field that is

rotated by an angle from the true bias field. This angle by which the net effective field

is rotated when the pulse is turned on remains constant as the bias field increases, and

the amount by which the spin precesses around this field during the pulse also remains

constant. Thus, although the effective optical magnetic field becomes quite large at

high probe intensity, it acts for a very short time, so that the number of spin flips to be

expected from this pulsing effective field remains small. For the estimated effective

optical magnetic field of 5 kHz, a bias field of 100 kHz, and a 1µs pulse duration,

the calculated spin-flip probability is approximately 0.05%. Such optically induced

spin flips have been looked for experimentally in Stern-Gerach-separated absorption

imaging, but have not been observed within the measurement uncertainty of a few

thousand atoms.
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4.4 Limitations

4.4.1 Optical Shot Noise

The optical shot noise on an image may be estimated simply from equation (3.42)

by noting that the signal is the ratio of the probe image and the bright-field image,

neglecting dark-field subtraction

S =
I1
I2
, (4.10)

with I1,2 measured in camera photon counts, from which the r.m.s. error on S is

estimated as

∆S

S
=

√

∆I2
1

I2
1

+
∆I2

2

I2
2

. (4.11)

It is found experimentally that in order to avoid depleting the condensate through

superradiant scattering, the number of photon counts on the camera must not exceed

a certain value. Typically, one chooses a light level which will deplete no more than

10% of the atoms, which corresponds to about 30 counts/pixel on the camera at low

camera gain for a detuning from the D1 1→ 2 line of 220 MHz. For an average pixel in

the condensate image, S ∼ 1.5 and I2 ∼ 30, which leads to an estimate of ∆S ≈ 0.39,

assuming ∆I1,2 =
√

I1,2. Technical noise is at the level of 1.3 counts/pixel, and

is substantially smaller than optical shot noise for these parameters. The noise on

the signal may be reduced by
√

2 by eliminating shot noise from the normalization

(bright-field) image; this may be accomplished by increasing the intensity of the probe

in the normalization image by a somewhat large factor and rescaling the final image

by the inverse factor, or equivalently by maintaining a running average of bright-field

images from shot to shot on the experiment. This has recently been implemented, and

has successfully removed relevant levels of noise from the bright-field image. Noise on

the dark-field image has also been eliminated by subtracting an averaged dark-field

image, rather than subtracting it pixel by pixel. If stray light is kept to a minimum,

so that the dark-field is dominated by readout noise, then this procedure should work

well. With these noise-reduction techniques, for the same parameters, fluctuations in

the phase-contrast signal are lowered to ∆S ≈ 0.28.

Somewhat higher light levels may be used if a longer time interval is allowed

to intervene between successive exposures of kinetics frames, so that the motional
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coherence in the condensate responsible for superradiance is more strongly damped.

The superradiance coherence time has been measured to be around 500µs, but we

have observed in earlier work that multi-pulse superradiance decays more rapidly

with pulse spacing than would näıvely be predicted by a two-pulse measurement. In

practice, we have successfully sampled at a rate as low as 5 kHz. At lower frequencies,

chirping of the Larmor frequency due, it is supposed, to stray 60 Hz magnetic fields

complicates interpretation of the images.

The error in the phase of a sinusoidal fit can be calculated, in the limit that

deviations of data from the fit are small (so that the difference can be linearized in

deviations of φ from its expected value). It is

∆φ =
∆y/A

√

Nf

√

〈cos2(kxi + φ0)〉
.

If we assume several points per cycle or randomly distributed points, the 〈cos2〉 = 1
2
,

so that

∆φ =
∆y

A

√

2

Nf
,

where A is the amplitude, Nf is the number of frames or data points and ∆y is

the error in each data point on the sine curve. The same result is obtained for a

discrete Fourier transform on Nf points, again in the limit of small deviations of data

from the sine curve. Taking A = 0.5 and Nf = 30 yields ∆φ ≈ 0.14 radians. For a

measurement time of 1 s, which has been achieved in a large-volume trap, this would

imply a frequency resolution of 14 mHz, which corresponds (at 700 kHz/G) to 40 nG

for one pixel. If the entire condensate were used as a single-channel magnetometer,

this would imply an optical-shot-noise-limited performance of 40 nG/
√

4000 ≈ 640 pG

or 64 fT, where 4000 is the approximate number of pixels in the condensate.

4.4.2 Optimum Probe Frequency for Measuring Magnetiza-

tion

In general, the signal obtainable with phase-contrast imaging of an atomic vapor

scales linearly with the noise as the imaging frequency is varied. This is for the

reason that the largest allowable imaging intensity is limited by the scattering rate,
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so that the intensity I scales as the detuning squared, I ∝ δ2. Optical shot noise is

proportional to the square root of the intensity, and therefore the fractional shot noise

scales inversely with δ. The phase-contrast signal, on the other hand, is proportional

to the index of refraction of the atomic medium, and therefore also scales inversely

with δ. Consequently the lower noise possible at larger detuning is offset by the lower

signal, and the signal-to-noise ratio (SNR) is approximately constant. This argument

does not hold, however, for multilevel atoms, however, and so it was desirable to

compute the signal-to-noise frequency dependence. The signal here is taken as the

Larmor-precession amplitude, which for our condensates is approximately (Smax −
Smin)/approx0.5 at a detuning δ2 from the 1 → 2 transition equal to 230 MHz. This

signal in general is slightly nonsinusoidal, containing a quadrupolar contribution at

twice the Larmor frequency, but for present purposes we will use only the spin-up

signal and the spin-down signal (referred to the imaging direction) to define this

peak-to-peak signal. Explicitly, these are

S± = 3− 2 cosφ± − 2 sinφ±, (4.12)

where

φ+ =
1

2
O.D.

(

1

2δ̃2

)

φ− =
1

2
O.D.

(

1

12δ̃2
+

1

12δ̃1

)

, (4.13)

O.D. is the resonant optical density, unreduced by Clebsch-Gordan factors, and (δ1, δ2)

are the detunings from the 1→ 1 and 1→ 2 D1 transitions. The Larmor-precession

amplitude is then taken to be approximately (S+ − S−)/2.

To compute the noise, we first compute the scattering rate out of the F = 1 three-

component ground state ξin(θ) =
(

cos2 θ,
√

2 sin θ cos θ, sin2 θ
)T

, which represents a

magnetized (m = +1) spin tipped by an angle θ relative to the imaging axis; the

final state ξout in the scattering process is taken to be arbitrary, both in terms of the

optical polarization and of atomic Zeeman states (in F = 1 and F = 2), for a total

of 3× (3 + 5) = 24 components. The off-resonant scattering rate is

Rmin
(θ) =

γ

2

I

Isat.

∣

∣

∣

∣

∣

∑

F ′,m

ξout∗
Ff ,mf ,mout

C∗
F ′,mf +mout;Ff ,mf

CF ′,m+min;1,mξ
in
m(θ)

δ̃F ′

∣

∣

∣

∣

∣

2

(4.14)
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Figure 4.5. Signal-to-noise ratio (SNR) plotted against detuning. The signal is taken
to be half the difference between spin-up and spin-down signals, normalized to 1 at
the measured value of ≈ −200 MHz. Noise is the sum in quadrature of technical noise
(three CCD counts per pixel) and optical shot noise (normalized to 0.31 CCD counts
per pixel at −200 MHz). The precession-averaged scattering rate is held constant, en-
forcing smaller intensity and higher shot noise nearer the F ′ = 1 line (−812 MHz) and
the F ′ = 2 line (0 MHz). The magnetization signal vanishes at around −1000 MHz.
A maximum of around 2.4 occurs near −500 MHz, as compared to the value of ∼ 1.7
at −200 MHz. Another optimum occurs at ∼ +295 MHz, with SNR≈ 2.7.

wheremin is the magnetic quantum number of the imaging laser (e.g., +1 for σ+ light),

mout is the corresponding quantity for the spontaneously emitted photon, and the C’s

are composite Clebsch-Gordan coefficients, i.e., dipole matrix elements normalized to

the cycling transition so that CF ′=3,m′=3;F=2,m=2 = 1.

Experimentally, it is observed, as noted above, that the limitation on probe power

is enforced by superradiant Rayleigh or Raman scattering from the condensate, so

that the correct procedure is to compute not the total scattering rate to all final states

but the largest possible scattering rate to a particular final state. This process will

have the largest gain and will dominate because of mode competition [100]. Equation

(4.14) may be written as a quadratic form in ξout,

Rmin
(θ) =

γ

2

I

Isat.
ξout†Mξout, (4.15)

where M is a 24 × 24 matrix, depending on min and θ, and whose 24 indices label

the states |Ff , mf , mout〉 in some definite but arbitrary order. The explicit form of M
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is simple to obtain from (4.14), but is notationally difficult and will be omitted from

the present discussion. Diagonalizing M at any particular detuning and selecting

the largest eigenvalue will determine the maximum scattering rate and therefore the

dominant superradiant gain. Averaging this gain with respect to θ is then expected

to reproduce approximately the loss experienced by a Larmor-precessing condensate,

although it should be emphasized that the general problem of superradiance from a

non-stationary spin-state distribution is quite non-trivial will not be considered here.

Figure 4.5 displays the signal-to-noise ratio calculated numerically by these means.

The number of photon counts per pixel Nc on the camera that are allowed at any

given detuning is normalized to the experimentally determined value of 30 (on the

camera’s low-gain setting) at a detuning of approximately −200 MHz, and its relative

magnitude is then determined at all other frequencies by computing the maximum

scattering rate averaged over θ, as described above. The noise is then taken to be

∆Nc ≈
S+ + S−

2

1

Nc

√

Nc + (∆N)2
tech.,

where ∆Ntech. is the readout noise of the camera, measured at around 3 counts at low

camera gain, and (S+ + S−)/2 is the approximate magnitude of the average phase-

contrast signal (see section 4.4.1), i.e., the factor by which the incident intensity is

enhanced in the raw image. This corresponds to a value of ∆Nc ≈ 0.31 at the fiducial

detuning of −200 MHz. Noise added in the image processing is ignored, since it is

possible to avoid most such noise by averaging the dark field and using a high-intensity

bright-field image. It is seen in figure 4.5 that there is an optimum in detuning

around −500 MHz with SNR of 2.4 relative to the F = 1 −→ F ′ = 2 D1 transition

and another near +295 MHz with SNR=2.7. This represents a possible improvement

relative to −200 MHz (SNR ≈ 1.7) of approximately 60%. These results, it is worth

pointing out, appear somewhat sensitive to the details of the numerical assumptions

that enter into them, although the general structure of figure 4.5 appears robust.

In particular, the subject of superradiant gain competition presents many subtleties.

There have been indications in our experiments that the general superposition states

ξout are not, in fact, the preferred superradiant states, perhaps because of increased

loss due to decoherence among states with differing magnetic moments. Moreover,

as mentioned above, a state which has high gain on one probe pulse need hardly

present the same high gain to a probe pulse which arrives several Larmor cycles later;
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this effect may or may not be adequately taken into account by normalizing to the

experimentally determined maximum allowable intensity at −200 MHz. For all of

these reasons, it is desirable to confirm this SNR dependence experimentally.

4.4.3 Atomic Shot Noise

Although the condensate wave function is smooth, in any given experiment the

distribution of the finite number of atoms will display a statistical character. Since

the number of atoms is much larger than the number of pixels in the condensate

image, the distribution of atoms among pixels should be very accurately Poissonian,

and in particular the root-mean-square fluctuations of the number per pixel should

satisfy ∆N =
√

〈N〉. For the case where 106 atoms are distributed among 4000

pixels, this implies that 〈N〉 ≈ 250, ∆N ≈ 16, ∆N
N
≈ 0.06. For a mean phase-

contrast signal of 1.5, the atomic shot-noise limit of ∆S
S

= ∆N
N

yields ∆S ≈ 0.1. This

value is approximately three times smaller than the corresponding value obtained

from the optical shot noise, implying that optical shot noise enforces a more strict

limitation on the ultimate magnetic-field resolution than does atomic shot noise. The

atomic shot noise, however, is a more fundamental limit, and may prove important

if improvements are made to allow higher signal-to-noise imaging. A more precise

treatment is given in section 4.6.

4.4.4 Self-Field

Although the primary interactions among atoms are collisional, as described

above, it is of course true that a spin-polarized cloud of atoms possesses a macroscopic

magnetic moment and produces its own field.

Approximating the condensate as a cylindrical bar magnet consisting of 106 atoms

each with magnetic moment −1
2
µB, we readily obtain an estimate of the magnitude

of this field.

If the magnetic moments are aligned along the condensate axis, the magnetic field

satisfies

H =
1

µ0
B−M = 0 (4.16)
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from which B = µ0M. For typical radial radii of 10µm and axial radius of 150µm,

the magnetization is approximately Mz = 10−4 J/T-m3, which implies a field of Bz ≈
1.2µG, equivalent to a Larmor frequency of 0.84 Hz.

To lowest order, this dipolar interaction should not perturb Larmor precession,

since for a uniformly and transversely magnetized atomic cloud the self-field is also

transverse, so that to first order it does not change the Larmor frequency. For mea-

surements of non-uniform magnetic fields, however, this protection will no longer fully

apply, and so magnetic-dipole interactions are expected to be an important system-

atic. Current work on Bose condensates of chromium[101], whose magnetic moment

is exceptionally large (6µB), may soon help to elucidate the effects of long-range and

anisotropic interactions in a quantum-degenerate gas.

4.4.5 Effects of Quadratic Zeeman Shift

The argument of section 4.3.1 for the absence of a mean-field shift to the Larmor

precession frequency was strictly valid only for times or fields over which the quadratic

Zeeman shift is negligible. Indeed, one can no longer transform away the bias field by

going to a rotating frame when the quadratic Zeeman shift is substantial, because the

rate of phase accumulation between the mF = 1 and mF = 0 components no longer

equals the frequency between the mF = 0 and the mF = −1 components. Thus a

rotating frame cannot simultaneously cancel both phases.

In the presence of the quadratic Zeeman shift, denoted q, the transversely mag-

netized mean-field ground state is modified to

Φ =













1
2

(

1− q
2|c2|n

)1/2

1√
2

(

1 + q
2|c2|n

)1/2

1
2

(

1− q
2|c2|n

)1/2













(4.17)

This is not, however, the state that is prepared when an m = −1 condensate is

subjected to a quarter-cycle Rabi pulse; the prepared state is, up to a rotational

phase, (1
2
, 1√

2
, 1

2
)T . Consequently, in the rotating frame, the state that has been

prepared is not stationary.

The stability of this non-stationary state can be investigated by means of the
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linearized Gross-Pitaevskii equation (GPE), as in section 3.5.2. Here we write the

condensate wave function as the sum of Φ, which is stationary in the rotating frame,

and a second function χ, which represents deviations from the stationary state. We

note that the state (4.17) can be expanded for small q as

Φ ≈









1
2

1√
2

1
2









− q

4|c2|n









1
2

− 1√
2

1
2









(4.18)

and that the two column vectors in the above equation are the m = +1 and m = −1

eigenvectors of the spin operator Fx. As a consequence, the state prepared by the Rabi

pulse is a small admixture of m = −1 into the transverse mean field state (4.17). This

can be analyzed, following Ho and Ohmi et al.[83, 84], by retaining terms of linear

order in χ in the GPE. Since Φ is stationary, it satisfies

µΦ =

(

− ~
2

2m
∇2 + V

)

Φ

+ c0
(

Φ†Φ
)

+ c2
(

Φ†FΦ
)

· FΦ + q(F 2
z − 1)Φ (4.19)

The time-dependent GPE for Φ + χ, where χ ∝ (1
2
,− 1√

2
, 1

2
)T , is

i~
dχ

dt
=

(

− ~
2

2m
∇2 +

∑

j

~
2

2m
Φ−1
j ∇2Φj + µ

)

χ, (4.20)

where considerable simplification has resulted from substituting for Φ†Φ using (4.19)

and from exploiting the relations Φ†χ = 0 and Φ†Fχ = 0. This shows that the

excitation present from applying a π/2 pulse at a nonzero quadratic Zeeman shift is

not unstable, but on the contrary behaves as a particle in a box, to the extent that

the derivatives of Φ are negligible.

4.5 Test via A.C. Stark Shift

As noted earlier, achieving high magnetic-field sensitivity on the present BEC

apparatus is precluded by the impracticability of magnetic shielding. A common so-

lution when measuring fields in a noisy environment is to employ a gradiometer, that

is, to use one portion of the field sensor as a co-magnetometer for another. Thus, if
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one could apply a local magnetic field to a sub-portion of the condensate, one could

measure the field difference between that portion and the rest of the condensate with

high accuracy, even if the fluctuating bias field were ill-determined. Unfortunately

for present purposes, however, the condensate is several centimeters from the nearest

point at which such a source of local field could be placed, so that it is impossible

without breaking vacuum to apply a magnetic field on the 10µm length scale. Fortu-

nately, however, it is possible to apply an effective magnetic field optically using the

spin-dependence of the A.C. Stark shift.

Neglecting hyperfine structure, the A.C. Stark shift for σ+ light acting on the

|J = 1
2
, mJ = 1

2
〉 and |J = 1

2
, mJ = −1

2
〉 states is

∆E+ 1

2
=

~γ2

8

I

Isat

(

1

δD2

)

∆E− 1

2
=

~γ2

8

I

Isat

(

2

3δD1
+

1

3δD2

)

. (4.21)

In order to mimic the effect of a magnetic field, one would like the mJ = ±1 states

to be shifted by equal and opposite amounts, so that there is no net shift. This

is the opposite of the requirement on an optical trap for spinor condensates, where

it is desired to have confinement independent of Zeeman sublevel. The net shift

(∆E+ 1

2
+ ∆E− 1

2
)/2 is zero when 2δD1 + δD2 = 0, or at the wavelength λ = 3λD2λD1

2λD2+λD1
.

For wavelengths in air of λD2 = 780.0 nm and λD1 = 794.8 nm, this implies that

cancellation of the net shift occurs at the wavelength 789.8 nm.

The effective magnetic field is then given by the relation

µBBeff =
1

2
(∆E+ 1

2
−∆E− 1

2
) =

~γ2

8

I

Isat

(

1

δD2

)

. (4.22)

At the cancellation wavelength, δD2 = −3.00 × 1013rad/s and γ = 2π × (6 MHz) so

that µBBeff/h = −0.94 Hz (I/Isat). If the A.C. Stark laser is a gaussian beam of 1/e2

intensity radii x0 and y0, then its intensity is 2P/πx0y0, so that the effective field may

be written even more explicitly, using Isat = 1.67 mW, as

µBBeff/h = 358 kHz

(

P

mW

)(

10µm

x0

)(

10µm

y0

)

(4.23)

If, as is the case on the current experiment, the A.C. Stark beam is incident at an

angle to the true magnetic bias field, then of course component of the effective field
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that adds linearly (as opposed to in quadrature) to the bias field is the field of equation

(4.23) times the cosine of the angle between bias field and laser beam.

Preliminary experiments have been performed, and have seen a local Gaussian-

shaped shift in the phase of Larmor precession. At long times, however, the back-

ground phase of Larmor precession, i.e., the phase distribution in the absence of the

A.C. Stark beam, is rather non-uniform and fluctuates considerably. We have accord-

ingly implemented a spin-echo scheme, which has succeeded in reconstituting clouds

with a deviation in phase of not greater than 100 mrad at the echo time, for total

evolution times of 500 ms. A remaining difficulty is the motion of the condensate in

the trap, which is difficult to damp out and which causes phase inhomogeneity that

cannot be removed by the spin-echo technique.

4.6 Possibility of Spin Squeezing

Although measurements of magnetization have not to date been limited by atomic

shot-noise, forthcoming reductions in optical shot noise may make the more funda-

mental atomic shot noise limit accessible. The phase-contrast signal depends both on

the total number of atoms in each pixel and on the net magnetization of the atomic

sample along the imaging direction, so that it is important to distinguish between

shot noise in these two quantities. For concreteness, let us consider an ensemble of

atoms in some small region (e.g., a pixel) that are Larmor precessing in the plane of

the probe beam. Such a state may be written as

1√
N !

(

cos2(θ/2)a†1 +
√

2 cos(θ/2) sin(θ/2)a†0 + sin2(θ/2)a†−1

)N |0〉, (4.24)

where a†m is the creation operator for state m and quantization is along the imag-

ing axis. From this state, by the trinomial expansion, the probability of measuring

{l,m, n} atoms in states {1, 0,−1} is

Pl,m,n = δN, l+m+n
N !2m

l!m!n!
(cos θ/2)4l+2m (sin θ/2)4n+2m , (4.25)

where δ is the Kronecker delta function. The mean value of the dimensionless magneti-

zation 〈Mz〉 ≡ N〈Fz〉 is N cos θ, and the r.m.s. deviation of the measured component
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of the magnetization is readily computed to be

∆Mz =

√

N

2
sin θ. (4.26)

Equation (4.26) exhibits the shot noise in the magnetization signal, assuming the

number of atoms N to be constant. It is noted that this result may also be derived,

although perhaps with less physical transparency, in the collective pseudospin for-

malism and the Heisenberg picture. The shot-noise fluctuation in the total number

of atoms in this region, on the other hand, is simply
√
N , and is always present,

regardless of the phase of Larmor precession. The phase-contrast signal is given by

S = 1 + αN + βMz,

where α and β are constants, as seen in section 3.4.2. As a result, the r.m.s. shot

noise in the phase-contrast signal in this situation is

∆S

S
=

√

(α+ β cos θ)2∆N2 + β2∆M2
z

1 + α〈N〉+ β〈Mz〉

=
√
N

√

(α + β cos θ)2 + 1
2
β2(sin2 θ)

1 + αN + βN cos θ
. (4.27)

Typical values for a single pixel are N ≈ 250, αN ≈ 0.5, and βN ≈ 0.5. For

these values, one obtains a maximal value ∆S ≈ 0.03, which is within a small factor

of current optical shot-noise levels. It is worth noting, however, that atomic shot

noise, unlike optical shot noise, is filtered out by the finite imaging resolution, so

that properly one should consider the shot noise on the minimum resolvable pixel,

rather than on a single physical pixel. Since the resolution is approximately 6µm, this

increases the number of atoms under consideration by a factor of ∼ 36, and therefore

decreases the resolvable atomic shot noise by a factor of ∼ 6. Optical shot noise

should be similarly reduced when averaged over the larger region, although imaging

at the shot-noise limit becomes more challenging at larger length scales because of

technical noise.

Could such technical limitations be overcome, however, and could the density-

dependent atomic shot noise be ignored, a measurement taken at θ = π/2, in the

notation of the preceding paragraphs, would project the state of the atoms in a given

pixel into a spinor Fock state of the form

(l!m!n!)−1/2(a†−1)
l
(a†0)

m
(a†+1)

n|0〉,
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where the populations {l,m, n} are distributed according to equation (4.25). This is a

state of definite ẑ-magnetization, oriented approximately along x̂. As a consequence,

measuring the magnetization at this point would collapse the phase of Larmor preces-

sion to a definite value. Probing the ẑ-magnetization again close to an integer number

of Larmor cycles later would then near-deterministically yield the same value as that

obtained on the first measurement. Such a phase-squeezed state would then be ideal

for measuring small accumulations of Larmor phase, since scatter in the measurement

due to number-phase uncertainty would be greatly reduced. Unfortunately, however,

the phase-contrast imaging method employed does not isolate shot noise due to the

distribution of atoms among spin states from shot noise due to random distribution of

atoms among pixels. Consequently the projective measurement of magnetization de-

scribed above would not in fact be realized. In principle, this can be circumvented by

taking a prior measurement of the distribution of atoms among pixels when the spins

are oriented along the imaging axis (θ = 0), at which time there is no magnetization

shot noise, but only atom-number noise due to the stochastic distribution of atoms

among pixels. After this measurement, the number of atoms in each pixel would be

a known quantity, at least on time scales over which atoms do not move appreciably.

Fluctuations in signal due to magnetization noise could then be measured at each

pixel relative to this baseline population map of the pixels in the condensate.
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Chapter 5

Theory of the Periodically Dressed

Condensate

This chapter will discuss work on periodically dressed BECs and a possible appli-

cation to metrology; this work was presented in the publications:

• J. Higbie and D. M. Stamper-Kurn “Periodically Dressed Bose-Einstein Con-

densate: A Superfluid with an Anisotropic and Variable Critical Velocity.” Phys. Rev.

Lett. 88, 090401 (2002)

• J. Higbie and D. M. Stamper-Kurn “Generating macroscopic-quantum-

superposition states in momentum and internal-state space from Bose-Einstein

condensates with repulsive interactions.” Phys. Rev. A 69, 053605 (2004)

Contrary to the case of spinor condensates, where the coupling among spin states

is given by the fundamental properties of the particular isotope employed, one can

also consider systems where the interactions or other properties of the system are

manipulable by the experimenter. Considerable interest has centered in recent years,

for instance, on the use of Feshbach resonances to control atom-atom interactions,

particularly in ultracold fermions [102–104]. A different way of manipulating the

properties of the atomic ensemble is to modify the properties of individual atoms via

the light-atom interaction. A Bose condensate formed of the modified atoms should

then exhibit novel characteristics, effectively broadening the class of systems in which

Bose condensation may be studied.
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5.1 Single-Atom Theory

The particular system in which we would like to implement this program is an

atom with two stable ground states, |a〉 and |b〉, and an excited state |e〉. The atom

is illuminated by lasers of frequencies ω1 and ω2 and wave vectors k1 and k2 (see

figure 5.1), with polarizations chosen so that the beams connect only states |a〉 to

|e〉 and |b〉 and |e〉 respectively. The energy difference between the ground states is

~ω0 ≡ ~(ωb − ωa). We define likewise the common detuning ∆ ≡ ω1 − ωea, where

ωae is the resonant frequency of the |a〉 to |e〉 transition, and the Raman detuning

δ ≡ ω1 − ω − 2 − ω0. The detuning ∆ is assumed to be sufficiently large that

spontaneous emission from the state |e〉 is negligible. Since the two-photon Rabi

frequency scales as 1/∆ (see below), while the spontaneous-emission rate scales as

1/∆2, the relative importance of spontaneous emission may be made almost arbitrarily

small.

The states of this system may be enumerated by specifying the internal state of

the atom, its momentum state, and the number of photons in each laser beam, Nω1

and Nω2
. The states, and their energies, are:

State Energy

|a,q− k/2;Nω1
, Nω2

〉 0

|b,q + k/2;Nω1
− 1, Nω2

+ 1〉 −~δ

|e,q + k1/2 + k2/2;Nω1
− 1, Nω2

〉 −~∆

, (5.1)

where the difference wave vector has been defined at k ≡ k1−k2. For simplicity, the

number of photons in each beam is taken to be well-defined. This assumption is not

essential to the following development, which could be carried through with coherent

states as well. Nω1
and Nω2

are, however, required to be much larger than one.

Since the three-level atomic system is closed, and since the numbers of photons in

the two laser beams can change only by converting a photon of type 1 to one of type

2 while simultaneously changing the atomic state from |a〉 to |b〉, and the three atom-

plus-photon states listed above couple only among themselves. The Hamiltonian for

this driven-atom system may be written in 3×3 matrix form (in the basis of equation
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ω
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1

Figure 5.1. Levels in Raman transition. Ground states a and b are connected via
lasers of frequencies ω1 and ω2 to an excited state e. The excited state detuning is
∆, assumed to be large. The detuning from Raman resonance is δ.

(5.1)) as

H =
~

2









~(q−k/2)2

2m
0 Ωae

0 ~(q+k/2)2

2m
− 2δ Ωbe

Ω∗
ae Ω∗

be
~(q+k1/2+k2/2)2

2m
− 2∆









, (5.2)

where ~Ωae

2
≡ 〈a|d · E|e〉 and ~Ωbe

2
≡ 〈b|d · E|e〉 are the single-photon Rabi frequencies

for lasers 1 and 2 on the |a〉 to |e〉 and |b〉 and |e〉 transitions. Here the lasers are

treated simply as classical driving fields.

Since the detuning ∆ is large enough that no population resides in the level

|e〉, it is possible to eliminate this level from the dynamics and consider an effective

Hamiltonian for the two ground states, with an effective coupling between them which

encapsulates the relevant three-level physics. This general procedure is described, for

instance, in Cohen-Tannoudji citecohe92. It can be iterated to arbitrarily high order,

but for present purposes the first order is sufficient.
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One defines a Hermitian matrix S, given to first order in Ω/∆ by

S ≈ 1

2∆









0 0 −iΩae

0 0 −iΩbe

iΩ∗
ae iΩ∗

be 0









. (5.3)

The unitary transformation U ≡ eiS then breaks the Hamiltonian into block-

diagonal form, H ′ = UHU †, where, to the same order,

H ′ = H2 ⊕H1,

where

H2 =





~(q−k
2
)2

2m
+ |Ωae|2

4∆

ΩaeΩ∗

be

4∆

Ω∗

aeΩbe

4∆

~(q+ 1

2
k)2

2m
+ |Ωbe|2

4∆
− δ



 (5.4)

and

H1 = ~

(

~(q + 1
2
k1 − 1

2
k2)

2

2m
−∆ +

|Ωbe|2 + |Ωae|2
4∆

)

. (5.5)

In other words the 3× 3 matrix H ′ is reduced to a 2× 2 matrix H2 and a 1× 1

matrix H1. Consequently, if the initial state is in the 2 × 2 manifold corresponding

to the ground states, then subsequent evolution will maintain it in this subspace. For

convenience, we absorb the A.C. Stark shifts |Ωae|2
4∆

and |Ωbe|2
4∆

into the definition of the

energies of the two states (or, equivalently, into δ) and define the two-photon Rabi

frequency Ω ≡ ΩaeΩ
∗
be/2∆.

Thus, the effective Hamiltonian for intra-ground-state dynamics becomes

Heff =
~

2

(

~

m
(q− k/2)2 + δ Ω

Ω∗ ~

m
(q + k/2)2 − δ

)

=
~

2

2m

(

q2 +
k2

4

)

+

(

~δ

2
− ~

2k · q
2m

)

σz +
~Ω

2
σx, (5.6)

where σi are the standard Pauli matrices. From the latter form, the eigenvalues may

be read off as

~ω±
q =

~
2

2m

(

q2 +
k2

4

)

± ~

2

√

Ω2 +

(

~q · k
m
− δ
)2

. (5.7)

This dispersion relation is plotted for Ω = 0 and Ω = 2π × 5 kHz in figures

5.2 and 5.3, and is seen to have some rather interesting features. When δ = 0,
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Figure 5.2. Dispersion relation with zero Rabi frequency Ω, consisting of two parabo-
lae offset in momentum by k and in energy by ~δ.
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Figure 5.3. Dispersion relation for finite Ω, modified from the case shown in figure
5.2 and displaying an avoided crossing at intersection.
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the dispersion relation is symmetric about qz = 0. The upper branch always has a

quadratic minimum at qz = 0, and the effective mass (for motion along the z-axis) of

the |+〉 state is

m∗
− =

m

1 + ~k2

2Ωm

.

The lower branch (|−〉 state) develops a pair of minima at qz = ±k
2

√

1−
(

2Ωm
~k2

)2
for

Ω < ~k2

2m
where k = |k1| = |k2|, giving a reflection symmetry to the ground state. The

effective mass of particles in these two symmetric wells is

m∗
− =

m

1− 4m2Ω2

k4

.

If Ω > ~k2

2m
, then the lower branch has a single minimum with an effective mass of

m∗
− =

m

1− ~k2

2Ωm

.

The effect of adding a small (compared to 2~k2

m
) nonzero δ is to raise one minimum

with respect to the other and make it more shallow, i.e., reduce its curvature. For

δ significantly larger than 2~k2

m
the upper minimum in the lower branch disappears

altogether.

The eigenstates of Heff , corresponding to the eigenvalues 5.7, are

|+〉q = cos
θq
2
|a,q− k/2〉+ sin

θq
2
|b,q + k/2〉

|−〉q = cos
θq
2
|b,q + k/2〉 − sin

θq
2
|a,q− k/2〉 (5.8)

where cot θq ≡ δ
Ω
− 2~k·q

mΩ
. The photonic portion of the states has been suppressed

for brevity, but the superpositions are of atom-photon states as in equation (5.1). It

is also assumed in this expression that Ω is real, which is equivalent to choosing a

particular relative phase for the Raman beams, or to redefining the phase of states a

and b.

5.2 Bogoliubov Treatment of Many-Body Calcula-

tion

The single-particle states and dispersion relation described above set the stage

for a many-body treatment of the periodically dressed condensate system. Indeed,
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one can define creation operators for the states of equation (5.8) as π†
q|0〉 = |+〉q and

µ†
q|0〉 = |−〉q, where |0〉 is the ‘vacuum’ or no-particle state. Since both the atoms

and photons constituting these states are bosonic, the superposition states are also

bosonic in character, so that πq and µq satisfy

[

πq, π
†
q′

]

= δq,q′

[

µq, µ
†
q′

]

= δq,q′, (5.9)

while commutators of πq with µq or µ†
q vanish. Written explicitly in terms of creation

operators a†q and b†q for states |a〉 and |b〉, the dressed-state creation operators are

π†
q = cos

θq
2
a†
q−k/2 + sin

θq
2
b†
q+k/2

µ†
q = cos

θq
2
b†
q+k/2 − sin

θq
2
a†
q−k/2. (5.10)

In terms of these operators, the two-component position-space field operator may

be written

Ψ(r) =
1

V 1/2

∑

q

eiq·r−iσyθq/2

(

πq

µq

)

, (5.11)

where V is the quantization volume.

Suppose that we are able to form a Bose condensate in the lowest-energy single-

particle state, |−〉q. Then, as in the treatment of the weakly-interacting BEC by

Bogoliubov [105], the macroscopic occupation of the ground state will modify the

effective potential experienced by atoms not in the condensate. Or, in the language

of condensed matter physics, the elementary excitations in the presence of the BEC

will be different from those in its absence.

The analysis proceeds from the many-body Hamiltonian

H =

∫

d3rΨ†HeffΨ +Hint, (5.12)

where

Hint =
2π~

2a

m

∫

d3r
(

Ψ† ·Ψ
)2
, (5.13)

with a the S-wave scattering length and Heff is the effective light-atom Hamiltonian

of equation (5.6). We have already diagonalized the noninteracting portion, which is
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no more complicated for N atoms than for one. In second-quantized notation it may

be written

Hfree =
∑

q

(

~ω−
q µ

†
qµq + ~ω+

q π
†
qπq

)

. (5.14)

The interaction Hamiltonian, describing the effects of atomic collisions, is conveniently

written in terms of the spatial Fourier transform of the density operator

nq ≡
∫

d3r
(

Ψ† ·Ψ
)

eiq·r, (5.15)

resulting in the momentum-space version of the collision term

Hint =
2π~

2a

mV

∑

q

(nqn−q −N). (5.16)

It is, of course, not necessarily the case that atoms in state |a〉 and state |b〉
should collide with the same cross-section, as these expressions assume. For the

hyperfine states of 87Rb , however, this is a good approximation, valid to the 1%

level. Moreover, the relative simplicity of the expressions under this assumption is

justification enough, at least for the purposes of gaining insight into the behavior of

the periodically dressed condensate system. We have also neglected collisions which

change the internal state of the colliding atoms. This is likewise a good approximation

for 87Rb, given experimental observation of long lifetimes of spin mixtures [67].

Substituting the expression (5.11) for Ψ into nq yields an explicit form for nq in

the dressed-state basis:

nq =
∑

q′

(π†
q′+q µ†

q′+q)e
iσy(θq′+q−θq′ )/2

(

πq′

µq′

)

. (5.17)

Following the Bogoliubov approximation, we assume that the lowest-energy single-

particle state must be macroscopically occupied with occupation number N0. Calling

the wave vector of this lowest-energy state Q (i.e., Q minimizes the dispersion relation

(5.7), one may reasonably replace µQ and µ†
Q by the c-number

√
N0 and retain only

terms of order N0 or higher in the interaction. At this level of approximation, the

momentum-space density becomes

nq =



















N0 , q = Q
√
N0

(

π†
Q+q sin ∆q + πQ−q sin ∆−q , q 6= Q

+ µ†
Q+q cos ∆q + µQ−q cos ∆−q

)

, (5.18)
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where ∆q = (θQ+q − θQ)/2.

The Hamiltonian Hint + Hfree can be diagonalized by means of a Bogoliubov-

style transformation, generalized to the two-component case. We note that a similar

generalization of the Bogoliubov method was previously made by Bassichis [106].

This Hamiltonian is quadratic in the creation and annihilation operators π and µ,

and consequently should be exactly diagonalizable. In order to be able to interpret the

eigenvalues as an energy spectrum, however, it is necessary that the transformation

yield true creation and annihilation operators, i.e., that the commutation relations of

these operators be preserved. To reduce the problem of determining the appropriate

transformation to a matrix diagonalization, we write the ladder operators as a four-

component vector

v =
(

µ†
Q+q , µQ−q , π

†
Q+q , πQ−q

)T

(5.19)

and define the “metric” matrix, in analogy with the Lorentz group,

Λ ≡















1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1















,

in terms of which the ladder-operator commutation relations can be written

[v†iΛij , vk] = δjk. If v transforms as Uv for some matrix U , then v†Λ should transform

as v†ΛU †, so that the commutation relations will be preserved if and only if U †U = 1,

i.e., if U is unitary. Diagonalization of matrices by unitary operators is familiar terri-

tory; accordingly, we write the many-body Hamiltonian, discarding a constant offset

and keeping terms of order N or higher, as

H =
1

2

∑

q

v†qΛ(H0 + µM)vq. (5.20)

Here, µ = 4π~
2N0/mV is the chemical potential, and the matrix H0 is equal to

~















ω−
Q+q 0 0 0

0 −ω−
Q−q 0 0

0 0 ω+
Q+q 0

0 0 0 −ω+
Q−q















. (5.21)
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Figure 5.4. Dispersion relation for quasiparticle excitations of the condensate. In
the neighborhood of the condensate, i.e., near q = 0, the energy displays a linear
or phonon-like dependence on quasi-momentum q. The slope of the dashed lines
determines the Landau critical velocity.

The interaction matrix M , furthermore, is equal to gΛxxT with

x = (cos ∆q , cos ∆−q , sin ∆q , sin ∆−q)T .

Thus we have merely to diagonalize H0 +µM in the normal fashion to determine the

dispersion relation of the quasiparticle excitations of a periodically dressed conden-

sate. This is easily done numerically; the results of this diagonalization are shown

in figure 5.4. It is seen that the lower minimum is no longer quadratic, as in the

single-particle case, but instead has become linear or V-shaped around the conden-

sate momentum q ≈ Q, just as in the original treatment of Bogoliubov.

5.3 Superfluidity of Periodically Dressed Conden-

sate

The quasiparticle dispersion relation is reminiscent of that of 4He in its general

form, possessing a linear dependence on wave vector in the neighborhood of the
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minimum (i.e., long-wavelength phonons) and a quadratic minimum at a nonzero

difference wave vector. This secondary minimum is similar to the roton dip in the

dispersion relation of superfluid 4He, although the similarity is purely on the kinematic

level, and should not be taken to imply any degree of sameness on the microscopic

level.

Emboldened by this similarity, we may seek to apply the arguments of Landau

[107] for the existence of superfluidity. According to the famous Landau criterion, a

massive impurity of mass M and velocity V traveling through a fluid can lose energy

to the fluid only if there exist energy- and momentum-conserving processes which can

account microscopically for the frictional dissipation. Landau likewise reasoned that

the fluid, being fundamentally a quantum-mechanical system, must possess elemen-

tary excitations, that is, low-lying excited states above the many-body ground state,

and that the dissipative processes in question could be analyzed as the creation of

these elementary excitations by the massive impurity. In this line of reasoning, if the

dispersion relation of the elementary excitations is such that for momentum p the

excitation energy is ǫ(p), then conservation of energy and momentum result in the

relation
1

2
MV2 = ǫ(p) +

1

2
M
(

V − p

M

)2

, (5.22)

or, in other words, if

ǫ(p) ≥ V · p− p2

2M
, (5.23)

then the impurity has insufficient energy to create the excitation while conserving

momentum. This criterion is thus that if

|V| ≤ min
ǫ(p) + p2/2M

|p| , (5.24)

no dissipation can occur. The mass M is commonly taken to infinity to describe

macroscopic objects moving through the fluid. For proposed experiments with the

periodically dressed condensate, however, the case where M is equal to the mass of

atoms in the fluid is also of interest, and so the criterion has been left general.

A convenient graphical method (see figure 5.4) for determining when the condition

(5.24) is satisfied is to plot both ǫ(p) − p2/2M and the auxiliary linear function

f(p) ≡ V · p versus p. If the slope V of f is sufficiently small that f(p) and ǫ(p)

intersect only at the origin, then (5.24) is satisfied, and the largest value VLandau of V
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for which this condition holds true occurs when the line f(p) is tangent to the curve

ǫ(p).

5.4 Periodically Dressed Condensates and the

Double-Well Problem

The concept of entanglement has long been recognized to lie at the heart of the

sometimes strange and counterintuitive behavior of quantum mechanics [108, 109].

More recently, numerous research groups have begun to turn the sorts of nonclassical

correlations present in measurements on entangled particles into practical tools, with

applications in quantum computation and communication. Proposals have also been

made for using correlated many-body states to enhance the statistical sensitivity of

frequency and time measurements[110], analogous to the use of squeezed light to

improve phase measurements.

To date, experimental realizations of controlled entanglement in atomic-physics

systems have involved small numbers of particles. In contrast, superposition states

of superconducting currents have been achieved involving large numbers of electrons,

but with very short coherence times. As a result, it is appealing to attempt to achieve

atomic entangled states with larger numbers of atoms, in order to benefit from the

improved scaling of sensitivity with atom number.

Many interacting bosons in a double well are a paradigmatic system for the study

of many-particle entanglement, as in, e.g., [111, 112]. As shown in section 5.5, the

ground state of the double-well system is very different depending whether the in-

teratomic interactions are attractive or repulsive. The repulsive case results in a

relative-number-squeezed ground state, while the attractive case results in a pair of

near-degenerate maximally entangled states, which are appealing for use in enhancing

the sensitivity of atomic clocks (see section 5.6). Unfortunately, it is difficult to create

large stable condensates with attractive interactions, since in general attractive inter-

actions render a condensate unstable to collapse, although attractive condensates up

to a certain critical size are stable. The periodically dressed condensate provides a

way around this difficulty, by allowing the double well to appear in momentum space,
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where the interatomic interaction is (in an appropriate limit) attractive, even while

it remains repulsive and hence stable in position space.

5.4.1 Raman Resonance and External Potential

To highlight the superfluid nature of the periodically dressed condensate, the

foregoing discussion has all been of the homogeneous system. In order to consider the

application of the periodically dressed BEC to investigation of the double-well system,

however, it is useful to consider the effects of an inhomogeneous trapping potential.

Such a potential is a necessity for the investigation of any but very short-time-scale

phenomena in practice, since in its absence an atomic gas would fall under gravity

and expand due to interatomic repulsion.

Accordingly, one considers the Hamiltonian (5.14) specialized to the case of Raman

resonance (δ = 0) , with the additional potential term

Htrap =

∫

d3rΨ†(r)
1

2
mω2

t r
2Ψ(r). (5.25)

For δ = 0 the lower branch of the dispersion relation (5.7) resembles a double well, but

in momentum space (see figure 5.3). To exploit this similarity with the well studied

double-well problem, we write the entire Hamiltonian in momentum space, with the

correspondence x↔ i ∂
∂q

.

The trapping potential in momentum space and in the dressed-state basis takes

the form

Htrap = −1

2
mω2

t

∑

q

(

π†
q µ†

q

)

eiσyθq/2∇2
q

[

e−iσyθq/2

(

πq

µq

)]

, (5.26)

where an integration by parts has been performed and the boundary terms neglected.

This is justifiable for the spatially localized atomic gas envisioned for these experi-

ments, whose wave function and its derivatives must vanish at large distances.

If the energy of the atoms in the sample is small compared to the splitting between

the upper and lower dressed states, which for large Ω is equivalent to their being

small compared to Ω, then they may effectively be considered to populate the states

on the lower branch of the dispersion relation. In this case, one can neglect the terms
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involving πq and π†
q in equation (5.26). In this case, the noninteracting Hamiltonian

simplifies to

H =
∑

q

µ†
q

(

1

2
mω2

t (i∇q)2 + ω−
q +

mω2
t

8

(

k̂ · ∇qθq

)2
)

µq. (5.27)

The first two terms are readily interpreted as momentum-space “kinetic” and “poten-

tial” energy. The remaining term may be considered as a gauge potential, resulting

from the momentum-dependent change-of-basis. Evaluated explicitly, it is

k̂ · ∇qθq =
2~k
mΩ

1 +
(

2~k·q
mΩ

)2 . (5.28)

When only the lower dressed state is considered, the importance of this term is minor,

representing only a small change in the shape of the double-well potential ω−
q .

This Hamiltonian may be made to appear even simpler by an appropriate choice

of units; if energy is measured in terms of the recoil energy ~
2k2/2m and the dimen-

sionless coordinate q = k · x is introduced, the single-atom Hamiltonian takes the

form

H = − 1

M

∂2

∂x2
+W (x), (5.29)

where M =
(

~k
mωt

)2

and W is the rescaled momentum-space double-well potential.

This form is useful because the effective mass M , which governs the strength of

tunnelling, is exhibited explicitly in terms of system parameters. However, the more

conventional units will continue to be used for the following discussion, in order not

to divorce the analysis any more than necessary from the physical system in which it

is realized.

The Hamiltonian (5.27) is now of the standard double-well form, with the mo-

mentum q playing the rôle of position. It may be diagonalized with by considering

the solutions of the Schrödinger equation
(

1

2
mω2

t (i∇q)2 + ω−
q +

mω2
t

8

(

k̂ · ∇qθq

)2
)

φ(q) = Eφ(q). (5.30)

These solutions come in near-degenerate even-odd pairs. It is assumed that the energy

of the atoms is small compared to the splitting between the lowest and next-to-lowest

pairs of eigenstates (which is of order ~ωt), but not compared to the splitting between

the quasi-degenerate pair. This assumption is not guaranteed to be respected in an
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experimental implementation, though for small condensates in a tight trap it should

be feasible. Even if interatomic interactions cause substantial numbers of oscillator

states to be occupied, however, it will still be the case that there exists a lowest-energy

near-degenerate pair of even and odd states which may be calculated self-consistently,

e.g., by the Gross-Pitaevskii equation. This is the approach of Montina and Arrechi

[113], as well as of Javanainen and Ivanov [114].

One can expand the operator µq in terms of the even and odd states, truncating

the expansion to the populated states φE(q) and φO(q)

µq = φE(q)µE + φO(q)µO, (5.31)

in terms of which the truncated version of Hamiltonian (5.27) is diagonalized

H = EEµ
†
EµE + EOµ

†
OµO. (5.32)

For the double-well problem, it is convenient to define “left” and “right” wave func-

tions as

φL(q) ≡ φE(q)− φO(q)√
2

φR(q) ≡ φE(q) + φO(q)√
2

(5.33)

and corresponding creation operators defined by

|L〉 = µ†
L|0〉 or |R〉 = µ†

R|0〉. (5.34)

The non-interacting Hamiltonian, expressed in the left-right basis, is

H0 = −J0

2

(

µ†
RµL + µ†

LµR

)

, (5.35)

where J0 = EO − EE is the tunnelling rate (equal to the even-odd energy splitting).

To describe the effects of interactions one may write the Fourier-transformed den-

sity operator of equation (5.15) in terms of µL and µR

nq = AqN +Bqµ
†
LµR +B−qµ

†
RµL, (5.36)

where Aq and Bq are overlap integrals among the different states, with a weighting

determined by the mixing angles at each momentum q:

Aq =
∑

l

φ∗
L(l + q/2)φL(l− q/2) cos

(

θl+q/2 − θl−q/2

2

)

Bq =
∑

l

φ∗
L(l + q/2)φR(l− q/2) cos

(

θl+q/2 − θl−q/2

2

)

. (5.37)
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The function Aq is peaked at q = 0, while Bq is peaked at q ≈ k.

In terms of these coefficients, the collision termHint = 2π~2a
mV

∑

q

[

nqn−q

]

, although

nonlocal in momentum space, has the relatively simple form (in the two-mode ap-

proximation)

Hint = −UNRNL +
J1

2

(

µ†
RµL + µ†

LµR

)

+J2

(

µ†
Rµ

†
RµLµL + µ†

Lµ
†
LµRµR

)

(5.38)

where

J1 =
8π~

2aN

mV

∑

q

AqBq J2 =
2π~

2a

mV

∑

q

BqB−q

U = −4π~
2aN

mV

∑

q

B2
q, (5.39)

with NL = µ†
LµL and likewise for NR. An additive energy offset depending only

on N = NL + NR has been suppressed. The pair-tunnelling coefficient J2 is small,

provided the left and right wave functions are reasonably well localized, since Bq is

centered at Q while B−q is centered at −Q. For subsequent analysis, this term will

thus be neglected. A simplified analytical form of these expressions for the case when

the left and right states may be approximated as gaussian functions is given in Higbie

et al.[42].

5.5 Ground States of the Double-Well Problem

And, finally, to complete the reduction of the Hamiltonian to a standard and

easily manipulable form, one may define angular momentum operators

Jz =
1

2
(µ†

RµR − µ
†
LµL)

J+ = J†
− = µ†

RµL. (5.40)

These operators obey the usual angular-momentum commutation relations. The

eigenstates of Jz are labeled by the population imbalance mJ and denoted by

145



|J = N/2, mJ〉, whose meaning is that NR = N/2 + mJ atoms are in the right

well and NL = N/2−mJ in the left.

In terms of the J operators, the Hamiltonian may be written

H = −J
2
Jx + UJ2

z , (5.41)

where

J = J0 − J1, (5.42)

and again offset terms dependent only on N have been discarded.

From the Hamiltonian (5.41), it is easy to compute the many-body ground state in

the extreme cases that either the tunnelling term or the interaction term dominates.

Indeed, if J ≫ U
√
N , then the ground state approaches the highest-weight eigenstate

of Jx, i.e., the state with all atomic pseudospin vectors aligned along x direction:

1√
2NN !

(

µ†
R + µ†

L

)N |0〉. (5.43)

Note the J is assumed positive, since the symmetric (even) ground state should be

lower in energy than the antisymmetric (odd) state.

If, in the other extreme UN ≫ J so that interactions dominate, then the ground

state depends on the sign of U . If U > 0, then the interaction energy is minimized

when mJ = 0, that is, when N/2 atoms are in each well,

1

(N/2)!

(

µ†
Rµ

†
L

)N/2|0〉. (5.44)

Squeezed states of this sort have been observed in optical lattices, e.g., by [115], and

similar physics occurs in the Mott-insulator state [116]. A partially squeezed state is

illustrated in figure 5.5.

On the other hand, if U < 0, then there are two degenerate ground states, with

mJ = ±N/2, corresponding to all the atoms being on the left or all on the right. The

parity eigenstates that can be formed in this degenerate subspace (and in general the

energy eigenstates when the tunnelling is nonzero, although small) are then

1√
N !

(

µ†
R ± µ†

L

)N |0〉. (5.45)
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Figure 5.5. Squeezed state number distribution. The quantitym labels the population
imbalance between left and right wells. For attractive interactions equal populations
are favored, resulting in a narrowed distribution around m = 0.

These states are directly analogous to Schrödinger’s famous |Alive〉 + |Dead〉 cat

state[108], since they contain a quantum superposition of macroscopically (or meso-

scopically) distinct states. The energy difference between them ~∆sc will determine

the macroscopic tunnelling time. It may be computed by an explicit diagonalization of

the Hamiltonian. In figure 5.6, the probability distribution for a partial Schrödinger-

cat state is shown, in which the probability distribution has bifurcated but in which

there remains some joint probability for simultaneous detection in the two wells.

It is now possible to show that one can make good on the promise of section

5.4, that repulsive interactions in position space correspond to attractive interactions

in momentum space, since positive scattering length a implies U < 0 according to

equation (5.39), resulting in the cat-states of equation (5.45). This in intuitively rea-

sonable, since position space repulsion tends to broaden the condensate wave function,

which narrows it in momentum space.

Moreover, equations (5.39) and (5.7) highlight an important characteristic of the

periodically dressed condensate for the exploration of many-body physics in the dou-

ble well, namely the wide tunability of parameters. A short list of the readily tunable

parameters and the corresponding effects follows:
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Figure 5.6. Partial Schrödinger-cat-state histogram. Repulsive interatomic interac-
tions energetically favor having all atoms in one well. The ground state is a symmetric
superposition of states with large population imbalance m.

• k: The magnitude of the Raman momentum transfer may changed by allowing

the Raman beams to intersect at different angles according to |k| = 2k0 sin β

where β is the angle between the beams, between a minimum of 0 and a maxi-

mum of 2k0. This has the effect of changing the separation between the two wells

in momentum space, which primarily changes the tunneling rate J . Dynamic

tuning of this parameter, however, is challenging.

• Ω: The two-photon Rabi frequency may be varied by changing the power in

either Raman beam or, within limits, the common detuning ∆. It can be

varied smoothly between zero and approximately the recoil frequency ~k2/2m,

at which point it deforms the double well out of existence. Changing Ω has the

effect of raising and lowering the barrier between wells, as well as to a lesser

extent changing the interactions by changing the character of the dressed states.

• N : The number of atoms participating is also not difficult to adjust within

limits; in other words, it is not always easy to have more atoms, but fewer

atoms may readily be obtained by loading the MOT for less time (see chapter

2) or by allowing trap loss to operate for a longer time. Changing N has the
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effect of changing the density (particularly in the small- condensate limit), which

changes the interaction parameter U .

• ωt: The trap frequency is generally dynamically variable over a fairly large range

by changing the magnetic-trapping currents or by changing the power of an

optical trap. Increasing the trap frequency decreases the effective momentum-

space mass of the atoms, both increasing the tunnelling rate and increasing the

density, which increases interactions. The effect on the tunnelling rate, however,

is exponential and should dominate.

Another important advantage which this schemes for producing Schrödinger-cat

states affords is the ability to map such states adiabatically into superpositions of

internal states or of momentum states, which could then be easily detected either

spectroscopically or by time-of-flight separation.

Indeed, if the Rabi frequency Ω were slowly decreased, the state |L〉 would adia-

batically be converted into the state |a〉, while |R〉 would be adiabatically converted

into |b〉. If |a〉 and |b〉 were states belonging to different hyperfine manifolds, then it

would be easy to image them separately and thus to count their numbers.

5.5.1 Feasibility of Schrödinger-Cat States

The most serious experimental challenge in creating macroscopic superposition

states is not merely creating a system in which the many-body ground state is such a

state; it is, rather, a result of the same reason that such states are not observed in daily

life. That is to say, it is interaction with the environment in the form of uncontrolled

entanglement, or decoherence, that ultimately limits the number of particles that

can be put into such a superposition state. As an illustration of the stringency of

the requirements on decoherence for a Schrödinger-cat state, if even single particle

is “measured” by the environment in the perfect state of equation (5.45), then the

entire superposition would be collapsed.

Examples of such decohering measurements would be spontaneous emission from

the Raman beams, number loss from the trap, collisions with thermal atoms or with

background gas. To prove the existence of the superposition states (5.45), it is de-
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Figure 5.7. Pure and partial Schrödinger cat-state energy splitting vs. N. In both (A)
and (B) the single-particle tunneling rate has been taken to be J = 50 Hz. In (A) the
interaction parameter U has been chosen according to the strict cat-state criterion
U = J /

√
N , and in (B) the partial-cat-state criterion, U = J /N has been used to

determine U . In each case, the many-body Hamiltonian, for each value of N , was
diagonalized and the splitting between the two lowest eigenvalues extracted. This
splitting, ∆S.C., is plotted against N for the two cases. It is clear that the many-atom
tunneling times rapidly become prohibitively long in case (A), while in case (B), the
tunneling rates remain in a reasonable experimental range for hundreds to thousands
of atoms.
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A value of J = 100 Hz was used for this calculation.

sirable to see oscillations from the left well to right and back. This many-atom

tunnelling rate is a rapidly decreasing function of the number of particles (see fig-

ure 5.7. These two effects, the increasingly deleterious effect of decoherence and the

lengthening of the tunnelling time as N increases, militate against the observation of

pure Schrödinger-cat states at large N .

A more hopeful alternative is to work not with the extreme cat-like distribution,

in which all atoms are either in the left state or in the right, but rather with partial

Schrödinger-cat states, in which the distribution is bimodal, with a peak on the left

and one on the right, but with some finite width as in figure 5.6. Such states are

substantially more forgiving than the pure cat states, since many atoms must be

measured by the environment before the state is fully collapsed. As shown in figure

5.8, the enhancement in the scaling of measurement sensitivity with N (discussed in

more detail in section 5.6) is largely realized even for partial cat states.
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5.6 Application to Sub-Shot-Noise Interferometry

In a conventional microwave atomic clock based on Ramsey spectroscopy, atoms

interact with two resonant microwave cavities (or in a fountain, the same one twice)

driven by a single local oscillator. Each pulse of microwaves experienced by the

atoms effects a π/2 Rabi pulse. The pulses are separated in time by a period of free

evolution during which the atomic states simply accumulate phase according at their

respective Bohr frequencies. If |a〉 ↔ (1, 0)T represents the initial state of the atoms

and |b〉 ↔ (0, 1)T the state to which the microwave transition connects the initial

state (these need not be the |a〉 and |b〉 of the preceding sections), then the matrix

representing the π/2 pulse looks like an optical beamsplitter

U1 =
1√
2

(

1 −i
−i 1

)

. (5.46)

The free evolution operator, assuming a difference in energies between the states of

δhf since usually they are states of different hyperfine manifolds, may be written

Ufree =

(

eiδhfT/2 0

0 e−iδhfT/2

)

. (5.47)

When the atoms reach second microwave cavity, they experience another π/2 pulse,

but with a relative phase φ = δoscT accumulated by the microwave oscillator of

frequency δosc during the time T : U2 = 1√
2

(

1 −ie−iφ

−ieiφ 1

)

A final state-selective

ionization or fluorescence signal is then proportional to

|〈b|U2UfreeU1|a〉|2 = cos2

[

(δhf − δosc)T
2

]

. (5.48)

Since in a conventional clock the atoms are uncorrelated, N atoms undergoing the

same evolution will end up in the factorizable state

1√
N !

[a† cos θ + b† sin θ]N |0〉 = cosN θ
N
∑

n=0

√
N ! tann θ

√

(N − n)!n!
|N − n, n〉, (5.49)

where

θ ≡ (δhf − δosc)T/2. (5.50)
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On any given iteration of the experiment, a determination of Nb = n will be made,

with the probabilities of any particular result being given by the squared coefficients

of equation (5.49). An illustration of simulated measurements on such an atomic

state is shown in figure 5.9(a) for N = 100 as a function of phase. From this binomial

distribution, it is straightforward to compute the mean and r.m.s. deviation. They

are

〈Nb〉 = N sin2 θ

∆Nb =
√
N sin θ cos θ. (5.51)

From these the r.m.s. deviations of θ are easily determined:

∆θ =
∆Nb

dNb

dθ

=
1

2
√
N
, (5.52)

and finally, the frequency and time uncertainty from a single iteration of the experi-

ment are given with reference to equation (5.50) by
∣

∣

∣

∣

∆t

t

∣

∣

∣

∣

=

∣

∣

∣

∣

∆ν

ν

∣

∣

∣

∣

=
1

2πνT
√
N
. (5.53)

This scaling of the signal-to-noise ratio as N−1/2 is generic to schemes involving

uncorrelated atoms, distributed either according to the binomial distribution (as here)

or according to the closely related Poisson distribution.

Suppose, now that instead of acting on each atom independently, the π/2 pulses

acted directly on the N -body states (such a pulse has been christened a “magic

beamsplitter” by Lee et al. [117]). The action of such a beamsplitter or π/2 pulse in

the basis {|a〉N ,|b〉N} (in the interaction-dominated limit of equation (5.41)) would

then be

U =
1√
2

(

1 −ieiφ

−ie−iφ 1

)

. (5.54)

Now a sample of atoms initially prepared in |a〉N would be mapped onto

1√
2

[

|a〉N − i|b〉N
]

, (5.55)

taking the initial beamsplitter phase to be zero. After evolving for time T , the state

would become
1√
2

[

|a〉N − ie−iNδhfT |b〉N
]

. (5.56)
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Figure 5.9. Comparison of projected measurements on uncorrelated atoms (A) to
measurements on perfectly correlated Schrödinger cat-type many-atom state (B). The
mean value of atoms in state ’b’ 〈Nb〉 is the same for (A) and (B), but the cat state
exhibits maximal fluctuations about the mean.

And after a second magic π/2 pulse the probability of being in state |b〉N would be

Pb = cos2
(

NT (δhf−δosc)
2

)

If such a magic beamsplitter could be realized, it would dramatically affect the

statistics of the final measurement. Proceeding in an analogous manner to the un-

correlated case, one can compute the moments of the distribution defined by the

state

cos θ|a〉N + sin θ|b〉N . (5.57)

One obtains the mean number of ‘b’ atoms 〈Nb〉 = N sin2 θ, the r.m.s. deviation of

this number ∆Nb = N sin θ cos θ, and the corresponding r.m.s. deviation of the angle

θ defined by

θ = πN(νhf − νosc)T, (5.58)

that is to say,

∆θ = ∆Nb

(

dNb

dθ

)−1

=
1

2
. (5.59)

Thus the time uncertainty is given by
∣

∣

∣

∣

∆t

t

∣

∣

∣

∣

=
1

2πνTN
. (5.60)
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Note that the scaling is now N−1 rather than N−1/2. This improvement comes about

from the fact that although ∆θ larger for the Schrödinger-cat states by
√
N , these

states accumulate phase N times as fast, so that time is effectively being measured

against a more finely graded ruler. The combination of these two effects accounts

for the net
√
N improvement in scaling. An illustration of simulated measurements

taken on such a cat state is shown in figure 5.9(b); atoms are detected either in one

state or the other, but the probability varies sinusoidally, as in figure 5.9(a).

Thus far the magic beamsplitter has been hypothetical, but in fact it should be

possible to realize such a beamsplitter with the Raman-resonant periodically dressed

condensate. The beamsplitting pulse would proceed as follows: atoms would begin in

the state |a〉N . One would ramp up the Rabi frequency Ω adiabatically with respect

to itself (dΩ
dt
≪ Ω2) and to the trap frequencies, but rapidly relative to the many-atom

tunnelling time, yielding the state |L〉N . After a quarter period of the many-body

oscillation (i.e., a time of π/2∆sc), this state will have oscillated into the macroscopic

superposition state
(

|L〉N + |R〉N
)

/
√

2, at which point adiabatically turning off the

Raman dressing beams will map the state back to a macroscopic superposition of

the undressed states
(

|a〉N + |b〉N
)

/
√

2. Thus this process is precisely the magic

beamsplitter described above.

5.7 Stabilizing a Schrödinger-Cat Clock

In a conventional atomic clock, the number of atoms measured in, say, the upper

hyperfine state on each cycle of the experiment has a small fractional deviation, ap-

proximately 1/
√
N , so that a reasonably reliable estimate of the amount by which the

local oscillator frequency has drifted may be made on that cycle and the appropriate

change in its frequency made to bring it back into line with the atomic frequency.

In contrast, the corresponding signal from a cat-state would exhibit fluctuations in

the atom number of order 100%, making it almost a random guess on each cycle of

the experiment whether to retard or to accelerate the local oscillator. At first glance,

then, one might doubt the practicality of designing the appropriate feedback system

to stabilize the local oscillator to the atomic frequency. In fact, however, such a
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Figure 5.10. Root-mean-squared deviations in the phase φ accumulated by the clock
on each experimental cycle versus feedback step size η. Solid curve in (A) and (B)
is theoretical curve from equation (5.67); solid circles are simulation results based
on recursion relation (5.62). The technical noise parameter is here chosen to be
ξ = 10 mrad. As seen in (A), for values of η ? 0.45 the feedback is unstable, while
for smaller values the scheme is stable. In (B) detailed plot of the small-η region is
shown, revealing a minimum in the fluctuations when the feedback step size equals
the r.m.s. technical noise per cycle, η = ξ.

feedback system appears quite possible, and should not be the limiting factor in any

implementation of such a clock.

With each new batch of atoms that emerges from its second magic π/2 pulse, one

will in the perfect Schrödinger-cat case measure either all atoms in state |a〉 or all in

state |b〉. The probabilities of these two events are given by

Pa =
1 + sin(2φ)

2
≈ 1

2
+ φ

Pb =
1− sin(2φ)

2
≈ 1

2
− φ, (5.61)

where φ = π
4

+ θ, with θ as defined in equation (5.58). The assumption that φ can

be kept small may or may not be borne out in the subsequent development; it is

convenient for analysis, but not necessary. If on a given run of the experiment the

detector clicks “b” then it is marginally more probable that φ < 0, so that statistically

it makes sense to retard the local-oscillator frequency slightly so as to increase φ on

the next iteration. Suppose that the amount by which φ is increased, then, is a small

quantity η so that on iteration j+ 1 the phase φj+1 is related to that on the previous
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iteration j by

φj+1 = φj + ηxj + ξj, (5.62)

where the quantity xj is conditional upon the results of measurement on iteration j.

xj =

{

−1 if a measured

+1 if b measured
(5.63)

and ξj is random technical noise on shot number j, for instance detector noise in

the final atom counting. From this description, it is possible to derive a recurrence

relation for the average value of φ

〈φj+1〉 = 〈φj〉+ η〈xj〉 = 〈φj〉 (1− 2η) . (5.64)

Which has the solution

φj = φ0(1− 2η)j ≈ φ0e
−2ηj , (5.65)

showing that the phase φ damps exponentially to zero with a time scale of approx-

imately 1/2η iterations. One can also examine the fluctuations of φ in the steady

state by taking the mean square of equation (5.62):

〈φ2
j+1〉 = 〈φ2

j〉+ η2〈x2
j〉+ 〈ξ2

j 〉+ 2η〈φjxj〉. (5.66)

In the steady state, 〈φ2
j+1〉 = 〈φ2

j〉. One can explicitly evaluate 〈φjxj〉 = −2〈φ2〉 and

use the fact that 〈x2
j〉 = 1 to obtain the mean square phase deviation

〈φ2〉 =
η2 + 〈ξ2〉

4η
. (5.67)

This analytical value for the noise in the phase per cycle ∆φ is compared to a sim-

ulation result based on the recursion relation (5.10) in figure 5.10, showing good

agreement. It is seen that the diffusive, random-walk character of the feedback favors

the use of a small value of η, so as not to walk away from the stabilized point too

quickly. The desirability of rapid damping, on the other hand, favors a large value of

η. In the absence of technical noise 〈ξ2〉, the diffusion dependence is stronger than

the damping dependence since at the stable point, damping plays no rôle. However,

effective damping is required to recover from kicks to the system suffered from tech-

nical noise. As a result, an intermediate choice of η is optimal, and the r.m.s. phase

∆φ attains a minimum value of 4

√

〈ξ2〉
4

at the point η2 = 〈ξ2〉, as illustrated in figure

5.10.
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5.8 Condensate-Number Fluctuations

Probably the most serious systematic afflicting the scheme outlined above is its

dependence on the number of atoms N . Indeed, since the splitting ∆sc is a strong

function of N , the required duration of the magic beamsplitter pulse π/2/∆sc to

make it accurately a π/2 rotation will likewise change with N . In most existing

ultracold-atom experiments, N is not a very well controlled parameter. Realistic

proposals for control of atom number on the few-atom level have been made [118],

and deterministic delivery of small numbers of atoms via an optical “conveyor belt”

has been achieved [119]. Moreover, schemes exist for measuring numbers on the order

of 100 [120], through which control of similar numbers might also be possible. It is also

plausible that use of the Mott-insulator state, in which an integer number of atoms

inhabits each site of an optical lattice, may be used to control atom numbers more

effectively than was previously possible, particularly if variations in lattice occupation

due to inhomogeneity of the trapping beams are eliminated, e.g., by superimposing

the sort of repulsive box potentials used by the Raizen group in place of the usual

inhomogeneous trapping potentials.
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(2003).

[30] T. Kinoshita, T. Wenger, and D. S. Weiss, Phys. Rev. A 71, 011602 (2005).

[31] S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V.

Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, Phys. Rev.

Lett. 95, 173201 (2005).

[32] K. Gibble and B. J. Verhaar, Phys. Rev. A 52, 3370 (1995).

[33] C. Fertig and K. Gibble, Phys. Rev. Lett. 85, 1622 (2000).

[34] S. Gupta, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann, C. H.

Schunck, E. G. M. van Kempen, B. J. Verhaar, and W. Ketterle, Science 300,

1723 (2003).

[35] H. Katori, M. Takamoto, V. G. Pal’Chikov, and V. D. Ovsiannikov, Phys. Rev.

Lett. 91, 173005 (2003).

[36] M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005).

[37] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

[38] N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961).

[39] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Physical Review Letters 81, 2594

(1998).

161



[40] J. M. Higbie, L. E. Sadler, S. Inouye, A. P. Chikkatur, S. R. Leslie, K. L. Moore,

V. Savalli, and D. M. Stamper-Kurn, Phys. Rev. Lett. 95, 050401 (2005).

[41] J. Higbie and D. M. Stamper-Kurn, Phys. Rev. Lett. 88, 090401 (2002).

[42] J. Higbie and D. M. Stamper-Kurn, Phys. Rev. A 69, 53605 (2004).

[43] D. Steck, Rubidium 87Rb D Line Data, http://steck.us/alkalidata, 2001.

[44] D. Durfee, Ph.D. thesis, Massachussetts Institute of Technology, 1999.

[45] H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, J. Low

Temp. Phys. 132, 309 (2003).

[46] D. E. Pritchard, Phys. Rev. Lett. 51, 1336 (1983).

[47] A. L. Migdall, W. D. Phillips, J. V. Prodan, T. H. Bergeman, and H. J. Metcalf,

Phys. Rev. Lett. 54, 2596 (1985).

[48] T. Bergeman, G. Erez, and H. Metcalf, Phys. Rev. A 35, 1535 (1987).

[49] J. D. Weinstein and K. G. Libbrecht, Phys. Rev. A 52, 4004 (1995).

[50] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee,

and W. Ketterle, Phys. Rev. Lett. 77, 416 (1996).

[51] C. V. Sukumar and D. M. Brink, Phys. Rev. A 56, 2451 (1997).

[52] W. H. Wing, Prog. Quant. Electr. 8, 181 (1984).

[53] W. Ketterle and D. E. Pritchard, App. Phys. B 54, 403 (1992).

[54] M. S. Ioffe and R. I. Sobolev, J. Nuc. Energy C 7, 501 (1965).

[55] D. E. Pritchard, Phys. Rev. Lett. 51, 1336 (1983).

[56] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Phys. Rev. Lett.

74, 3352 (1995).

[57] U. Ernst, A. Marte, F. Schreck, J. Schuster, and G. Rempe, Europhys. Lett.

41, 1 (1998).

162



[58] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Phys.

Rev. Lett. 78, 586 (1997).

[59] T. Esslinger, I. Bloch, and T. W. Hänsch, Phys. Rev. A 58, R2664 (1998).
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