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Development of collective modes

The atoms in our system are confined at many locations within a one dimensional optical
lattice of wavevector kt = 2π/850 nm, yet interact with the cavity mode at the position
dependent coupling rate g(z) = g0 sin kpz. Because of the position dependent coupling and
the distribution of the atoms, a single collective degree of freedom (but not a center of mass
degree of freedom) interacts with the cavity mode.

We consider that each atom is trapped harmonically with frequency ωz and trap center
z̄i, where we denote the displacement of atom i from its trap’s center by the operator δzi =
zi − z̄i = zho(â

†
i + âi) with zho =

√
~/2mωz being the harmonic oscillator length and atom

field operators âi and â†i conventionally defined. We assume that the atomic displacements
are small (kpδzi � 1) and that the cavity-atom detuning is large (|∆ca| � g0

√
N). Omitting

some constant terms, we obtain a Hamiltonian describing the coupled atoms/cavity system
as

H =

(
~ωc +

∑
i

[
~g2(z̄i)

∆ca
− fiδzi

])
n +Ha +Hin, (1)

where n is the cavity photon number operator, Ha =
∑

i ~ωzâ
†
i âi, and Hin describes optical

modes external to the cavity and their coupling to the cavity field [1]. Here, the per-
atom cavity resonance shift is expanded to first order in the atomic position operator, with
fi = −~∂zg

2(z)/∆ca = f0 sin(2kpz̄i) being the optical dipole force on atom i from a single
cavity photon.

We define a collective position operator Z = (Neff)−1∑
i sin(2kpz̄i)δzi, and the conjugate

momentum P =
∑

i sin(2kpz̄i)pi, with pi being the momentum of atom i, and Neff =∑
i sin

2(2kpz̄i). The cavity then serves to monitor a specific collective mode of motion in
the atomic ensemble, with the cavity resonance being shifted by ∆N − Neff f0Z/~ where
∆N =

∑
i g(z̄i)2/∆ca is the cavity frequency shift with all atoms localized at their potential

minima.
Given these collective operators we can write equations of motion;

Ṗ =
∑

i

sin(2kpz̄i)
(
−mω2

zδzi + fin
)

(2)

= −Neff mω2
z

(
Z − f0n̄

mω2
z

)
+ f0(n− n̄). (3)

Ż =
P

Neff m
. (4)
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A constant average optical force of n̄ cavity photons displaces the collective position
variable by ∆Z = (~kg2

0/mω2
z∆ca)n̄ and thereby shifts the cavity resonance frequency to

ω′
c = ωc + ∆N − Nefff0∆Z/~. We define collective quantum operators a and a† through

the relations Z − ∆Z = Zho(a† + a) and P = iPho(a† − a), with Zho = zho/
√

Neff and
Pho = ~/(2Zho). With these substitutions, we have the Hamiltonian describing the collective
mode–cavity system:

H = ~ω′
cn−Nefff0Zho(a† + a)(n− n̄) + ~ωza

†a +Hin. (5)

Calculation of the heating rate

Given equation 5, we can draw directly on existing results which analyze cavity cooling
and heating for similar Hamiltonians [2]. For clarity, however, we present a derivation of
the heating rate below. From Eq. 5 we obtain equations of motion for a and for the cavity
field operator b.

da

dt
= −iωza + iκε(n− n̄), (6)

db

dt
= −iω′

cb + iκε(a† + a)b− κb +
√

2κbin, (7)

where κ is the decay rate of the cavity field and bin represents the coherent-state input field
that drives the cavity. We have introduced the granularity parameter ε = Nefff0Zho/(~κ)
as discussed in the text. We can now express the atomic field operator as,

a(t) = e−iωzta(0) + iκε

∫ t

0
dt′e−iωz(t−t′)(n(t′)− n̄

)
. (8)

From here, we evaluate the rate of change of the atomic energy:

d

dt
(a†a) =

( d

dt
a†
)

t
a(t) + a†(t)

( d

dt
a
)

t
(9)

=
[
iωza

†(t)− iκε(n(t)− n̄)
]
a(t) + a†(t)

[
−ωza

†(t) + iκε(n(t)− n̄)
]

(10)

= 2κ2ε2 Re

[∫ t

0
dt′(n(t)− n̄)(n(t′)− n̄)e−iωz(t−t′)

]

+ iκε
(
a†(0)(n(t)− n̄)eiωzt − (n(t)− n̄)a(0)e−iωzt

)
. (11)

For the sake of evaluating the cavity field evolution we restrict our treatment to times
which are short compared to the timescale over which the atomic motion is significantly
varied by interaction with the light. Under this ansatz we approximate Eq. 8 as

a(t) ' e−iωzta(0). (12)

Inserting this solution for the atomic field operator into the equation of motion for the
cavity field, (7) we have the following for the frequency components of b:

−iωb(ω) = −iω′
cb(ω)− κb(ω) +

√
2κbin(ω) + iκε

(
a(0)b(ω − ωz) + a†(0)b(ω + ωz)

)
. (13)
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Defining L(ω) = (1− i(ω − ω′
c)/κ)−1, we obtain

b(ω) =
L(ω)

κ

[√
2κbin(ω) + iε

(
a(0)b(ω − ωz) + a†(0)b(ω + ωz)

)]
. (14)

We can solve this equation iteratively,

b(ω) =
L(ω)

κ

[√
2κbin(ω) + iε

√
2κ
(
a(0)L(ω − ωz)bin(ω − ωz)

+a†(0)L(ω + ωz)bin(ω + ωz)
)

+O
(
|εa(0)|2

)]
. (15)

In the non-granular regime ε � 1, and assuming small values of a(0), i.e. that the atoms
are sufficiently cold, we neglect terms of order ε3 or higher.

Returning to Eq. 11 we now have

n(t) =
1
2π

∫
dω1 dω2e

i(ω1−ω2)t b†(ω1)b(ω2) (16)

=
1
2π

∫
dω1 dω2e

i(ω1−ω2)t L
∗(ω1)L(ω2)

κ2
2κ

[
b†in(ω1)bin(ω2)+

iεb†in(ω1)
(
a(0)L(ω2 − ωz)bin(ω2 − ωz) + a†(0)L(ω2 + ωz)bin(ω2 + ωz)

)
−

iε
(
a†(0)L∗(ω1 − ωz)b

†
in(ω1 − ωz) + a(0)L∗(ω1 + ωz)b

†
in(ω1 + ωz)

)
bin(ω2)

]
. (17)

With the above normally ordered product of operators bin we are justified in replacing:

bin(ω) →
√

πκnmax δ(ω − ωp), (18)

b†in(ω) →
√

πκnmax δ(ω − ωp), (19)

where ωp is the frequency of a probe laser, and nmax is the maximum intracavity photon
number for resonant cavity excitation. Finally, we obtain

n(t) =n̄
[
1 + iε

(
a(0)L(ωp + ωz)e−iωzt + a†(0)L(ωp − ωz)e+iωzt

)
−

iε
(
a†(0)L∗(ωp + ωz)e+iωzt + a(0)L∗(ωp − ωz)e−iωzt

)]
. (20)

Here we have substituted n̄ = nmax|L(ωp)|2.
We are now in a position to evaluate the heating rate:

d

dt
E = ~ωz

〈 d

dt
a†a

〉
(21)

= 2~ωzκ
2ε2Re

[∫ t

0
dt′〈

(
n(t)− n̄

)(
n(t′)− n̄

)
〉e−iωz(t−t′)

]
+

i~ωzκε
〈
a†(0)

(
n(t)− n̄

)
eiωzt −

(
n(t)− n̄

)
a(0)e−iωzt

〉
. (22)
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Addressing the first term first; for a linear cavity driven by a constant coherent state input,
we substitute the relation,

〈n(τ)n(0)〉 − 〈n(τ)〉2 = n̄ei(ωp−ω′
c)τ−κτ . (23)

Assuming the system is in a steady state, in that 〈n(t)n(t′)〉 = 〈n(t− t′)n(0)〉, and substi-
tuting n̄2 = 〈n(τ)〉2 we obtain for the first half of the heating rate,

2~ωzκε2n̄
( 1
1 + (ωp − ω′

c − ωz)2/κ2

)
= ~ωzκ

2ε2[S(−)
nn (ωz)]. (24)

Here we have introduced the spectral density of photon number fluctuations S
(±)
nn (ω) =

2n̄κ(κ2 + (∆ ± ω)2)−1 [2], with ∆ = ωp − ω′
c begin the probe detuning from the atoms

shifted cavity resonance. The backaction heating is enhanced near the peak of the cavity
resonance, where the sensitivity of the cavity field to the atomic displacement is strongest.
We note that this heating rate can also be derived on a single atom basis, assuming the
cavity mediated coupling between atoms is small.

The second term in Eq. 22 accounts for the effect of transient atomic motion on the
cavity field. To evaluate this term we take the time average over an atomic oscillation
period.

iκε
〈
a†(0)

(
n(t)− n̄

)
eiωzt −

(
n(t)− n̄

)
a(0)e−iωzt

〉
(25)

= n̄ε2κ
(
L(ωp + ωz)− L∗(ωp − ωz) + L(ωp − ωz)− L∗(ωp + ωz)

)
〈a†(0)a(0)〉 (26)

= κ2ε2
[
S(−)

nn (ωz)− S(+)
nn (ωz)

]
〈a†a〉. (27)

These terms represent cavity cooling/anti-cooling. In total, the change in energy is,

d

dt
E = ~ωzκ

2ε2
[
S(−)

nn (ωz) +
(
S(−)

nn (ωz)− S(+)
nn (ωz)

)
〈a†a〉

]
. (28)

Measuring backaction heating by the evaporative loss of trapped atoms

The accuracy of our measurement depends on assumptions made in interpreting the
observed transmission lineshapes, several of which we verified experimentally. For example,
we examined the dynamics of evaporative cooling in the atomic medium. For this, we inter-
rupted the cavity transmission measurement, released the atoms from the intracavity optical
trap and imaged them 4 ms later to measure their temperature. Within our measurement
resolution of 0.1 µK, this temperature remained constant. Thus, our quantification of heat-
ing through the rate of atom loss is valid. Furthermore, by extinguishing the cavity probe
light momentarily during cavity probing, and comparing the cavity transmission when the
probe was turned off and then turned on again, we determined a timescale of 3 ms for N
to equilibrate by evaporative cooling following an increase of thermal energy of the collec-
tive mode. Since this timescale is short compared to the ' 100 ms span of the resonant
transmission signal, we are justified in using simultaneous measurements of dN/dt and n̄ to
determine the instantaneous heating rate.

4



To interpret our measurements as relating to the quantum nature of the intracavity field,
it was necessary to establish that quantum fluctuations dominate over classical, technical
intensity fluctuations which would also lead to heating [3]. For this, we measured the light-
induced heating for varying probe intensities, with n̄ at the cavity resonance ranging from
n̄ = 0.2 to 20. Noting that the contribution of quantum fluctuations to the atom heating
rate scales as n̄ while that of technical fluctuations scales as n̄2, we find that technical
fluctuations account for less than 10% of the atom heating rate at the light level used for
Figs. 2 and 3.

Visibility of photon fluctuations outside the cavity

In this section, we provide support for the observation that the spectrum of intracavity
quantum fluctuations of the photon number is not visible in light transmitted through the
coherently driven cavity. For a two sided cavity we have [1]:

cout(t) + cin(t) =
√

κb(t), (29)
dout(t) + din(t) =

√
κb(t), (30)

b(ω) =
√

κcin(ω) +
√

κdin(ω)
κ− i(ω − ω′

c)
. (31)

The operators cout, dout, cin, din are photon annihilation operators for the outgoing and in-
going fields on either side of the cavity, and b is again the cavity field annihilation operator.
The known commutation relations are,[

cin(ω1), c
†
in(ω2)

]
= δ(ω1 − ω2),

[
cin(t1), c

†
in(t2)

]
= δ(t1 − t2), (32)

and similarly for din. To examine the spectrum of photon fluctuations inside the cavity we
calculate the commutation relation for the cavity field operator:

[
b(t1), b†(t2)

]
=
∫

dω1 dω2

2π

e−iω1t1

κ− i(ω1 − ω′
c)

eiω2t2

κ + i(ω2 − ω′
c)
×[√

κcin(ω1) +
√

κdin(ω1),
√

κc†in(ω2) +
√

κd†in(ω2)
]

(33)

=
∫

dω1 dω2

2π

e−iω1t1

κ− i(ω1 − ω′
c)

eiω2t2

κ + i(ω2 − ω′
c)

2κδ(ω1 − ω2) (34)

=
∫

dω

2π

2κ

κ2 + (ω − ω′
c)2

eiω(t2−t1) (35)

= eiω′
c(t2−t1)−κ|t2−t1|. (36)

From this we obtain the two-time correlation in Eq. 23. Now, for the cavity output, (say,
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dout),

[
dout(t1), d

†
out(t2)

]
=
∫

dω1 dω2

2π
eiω1t1+iω2t2

[
κcin(ω1) + κdin(ω1)

κ− i(ω1 − ω′
c)

− din(ω1),

κc†in(ω2) + κd†in(ω2)
κ + i(ω2 − ω′

c)
− d†in(ω2)

]
(37)

=
∫

dω1 dω2

2π
eiω1t1+iω2t2

(
2κ2δ(ω1 − ω2)

(κ− i(ω1 − ω′
c))(κ + i(ω2 − ω′

c))
−

κδ(ω1 − ω2)
κ− i(ω1 − ω′

c)
− κδ(ω1 − ω2)

κ + i(ω2 − ω′
c)

)
(38)

=
∫

dω

2π
eiω(t2−t1) = δ(t1 − t2). (39)

The commutation relations for fields outside the cavity are the same as for light entering
the cavity, and do not carry any evidence of the photon number dynamics (Eq. 36) inside
the cavity.
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Figure 1: Schematic of the intracavity optical lattice. The 1/e width of the atomic dis-
tribution (back) is small compared to variations in the probe intensity (red linear density
plot). At each location, harmonic confinement is provided by the lattice at 850 nm, and the
atomic distribution occupies the ground state of the ωz confinement. Each atom’s position
is given by the location of the minimum of the harmonic confinement, z̄i plus a deviation
from that minimum, δzi.
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