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Abstract

Cavity Optomechanics in the Quantum Regime

by

Thierry Claude Marc Botter

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dan M. Stamper-Kurn, Chair

An exciting scientific goal, common to many fields of research, is the development
of ever-larger physical systems operating in the quantum regime. Relevant to this
dissertation is the objective of preparing and observing a mechanical object in its
motional quantum ground state. In order to sense the object’s zero-point motion, the
probe itself must have quantum-limited sensitivity. Cavity optomechanics, the inter-
actions between light and a mechanical object inside an optical cavity, provides an
elegant means to achieve the quantum regime. In this dissertation, I provide context
to the successful cavity-based optical detection of the quantum-ground-state motion
of atoms-based mechanical elements; mechanical elements, consisting of the collec-
tive center-of-mass (CM) motion of ultracold atomic ensembles and prepared inside a
high-finesse Fabry-Pérot cavity, were dispersively probed with an average intracavity
photon number as small as 0.1. I first show that cavity optomechanics emerges from
the theory of cavity quantum electrodynamics when one takes into account the CM
motion of one or many atoms within the cavity, and provide a simple theoretical
framework to model optomechanical interactions. I then outline details regarding
the apparatus and the experimental methods employed, highlighting certain funda-
mental aspects of optical detection along the way. Finally, I describe background
information, both theoretical and experimental, to two published results on quantum
cavity optomechanics that form the backbone of this dissertation. The first publica-
tion shows the observation of zero-point collective motion of several thousand atoms
and quantum-limited measurement backaction on that observed motion. The second
publication demonstrates that an array of near-ground-state collective atomic oscilla-
tors can be simultaneously prepared and probed, and that the motional state of one
oscillator can be selectively addressed while preserving the near-zero-point motion of
neighboring oscillators.
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Chapter 1

Introduction

1.1 The history of optomechanics

Optomechanics broadly refers to interactions between light and a moving object.
It stems from the idea that light can exert a force on a material object, an idea first
postulated by Kepler in 1619 who believed that comets’ tails were caused by the out-
ward pressure of sunlight. Light-induced force was placed on firm theoretical ground
in the 1870s by both Maxwell and Bartoli, based on electromagnetic theory and on the
Second Law of Thermodynamics, respectively, and was experimentally demonstrated
for the first time in 1901 [1, 2]. Over half a century later, a seminal investigation
found that light-induced pressure could alter the mechanical properties of a moving
object. This astonishing result paved the way for what is today a dynamic field of
experimental physics, with important implications for both fundamental and applied
science. In this section, I provide a brief overview of the recent history of optome-
chanics, thereby setting the context for the work described in this dissertation. My
take on the evolution of optomechanics is, of course, not exhaustive; only a fraction
of the panoply of key research works is presented.

In 1967, at the height of the cold war, Vladimir Braginsky and Anatolii Manukin
co-authored a paper on the action of light reflecting off a harmonically bound mirror
[3]. Their results indicated that the momentum imparted by the reflection of photons
on a moveable mirror could alter that mirror’s mechanical properties. In particular,
when the moveable mirror was integrated as part of a Fabry-Pérot cavity, its motion
could be damped or amplified by tuning the inserted light’s frequency to the red or to
the blue, respectively, of cavity resonance. Three years later, the duo experimentally
verified this electromagnetically induced mechanical damping and amplification in
an ultra-high frequency (UHF) resonator of quality factor Q ∼20,000 [4], nearly a
hundred times smaller Q than the best UHF resonators today.

This idea of cavity optomechanics received much attention through the 1970s and
early 1980s as it applied to the then novel idea of detecting gravitational waves us-
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LASER

DETECTION

Figure 1.1: Schematic of a gravitational wave detector. Arrows highlight the differ-
ential impact of a passing gravitational waves. Interferometer arms typically range
from hundreds of meters to kilometers.

ing Michelson-type laser interferometers. Gravity waves passing through the Earth
would push apart the mirrors in one interferometer arm, while bringing the mirrors
in the orthogonal interferometer arm closer together [5], thereby producing a differ-
ential phase shift that could be detected on the interferometer’s recombined optical
signal (Fig.1.1). This new scheme launched extensive studies of the quantum limits in
cavity-optomechanics-based measurements. Quantum mechanics dictates that conju-
gate quadratures, such as position and momentum, cannot be simultaneously known
arbitrarily precisely; their respective uncertainties are bounded by the Heisenberg
uncertainty relation, leading to a base measurement limit known as the “standard
quantum limit” (SQL) [6, 7]. Different ideas were proposed to surpass the SQL. The
first idea, proposed and coined by Braginsky [6], centered on quantum nondemoli-
tion measurements (QND): if one could engineer a method to projectively measure
one quadrature, say the moving mirror’s position, without impacting its evolution,
i.e. by having the measurement operation commute with the freely moving mirror’s
hamiltonian, then that quadrature could be known with arbitrary precision by repeat-
ing the measurement an infinite number of times. One example is the stroboscopic
measurement of the mirror’s position every half cycles of motion (i.e. every time the
mirror crosses the position axis in its phase-space trajectory). The simple premise of
QND detection was extensively studied by, among others, Kip Thorne [8], Vladimir
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Figure 1.2: Representation of a coherent (a), amplitude squeezed (b), and phase
squeezed (c) state of light. The left column shows the quantum uncertainty distri-
bution between amplitude (AM) and phase (PM) quadratures of each state of light
at time t=0. The right column shows the time-dependence of each state of light’s
electric field, with the gray shaded area representing the quantum uncertainty.

Braginsky [9], William Unruh [10] and Carlton Caves [11]. In 1981, Carlton Caves
proposed an alternative method to surpass the SQL when measuring the differential
displacement of mirrors in the two arms of an interferometer, ∆ z = z1 − z2 [12]. By
injecting squeezed light, that is light with an unevenly shared uncertainty between
its conjugate amplitude and phase quadratures (Fig. 1.2), both the backaction of the
light on the motion of the harmonically bound mirrors and the random fluctuations
in the arrival time of photons could be reduced, yielding measurement uncertainties
below the SQL. Thanks to wide-spread scientific enthusiasm, as exemplified by these
quantum investigations, laser-based interferometers became the norm for attempting
to detect gravitational waves, surpassing the widely popular Weber bar [13]. Today,
three large-scale laser-based gravitational wave detectors, with interferometric arms
spanning hundreds of meters to a few kilometers, are in operation around the world:
LIGO, GEO 600, and VIRGO.

Throughout the 1980s, optomechanics became relevant to many fields of physics,
but took on different, specialized forms in each area of research. In optical physics,
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Figure 1.3: Scanning electron micrograph of the first ultra-high-Q silica toroidal
microcavity, produced by the group of Prof. Kerry Vahala in 2003. Image taken from
Ref.[21].

table-top experiments derived from the idea of applying cavity optomechanics to-
wards gravitational wave detectors were designed. They produced the first obser-
vation of radiation-pressure-induced mirror confinements and optical bistability in a
Fabry-Pérot cavity [14]. In atomic physics, the interaction of light with the mechan-
ical degree of freedom of atoms led to the first experimental realizations of laser-
based deceleration of atoms [15], optical molasses [16] and the accidental discovery of
polarization-gradient cooling (also known as Sisyphus cooling) [17]. The use of light
to cool and trap atoms evolved independently of Braginsky and Manukin’s earlier
work. In solid state physics, the development of the first atomic force microscopes
(AFMs) [18] also called upon optomechanics. Light reflecting off the backside of a
miniature cantilever was used to monitor cantilever deflections caused by short-range
forces exerted by a nearby sample.

The independent evolution of various sub-fields of optomechanics continued through
the 1990s. A notable experimental achievement during that decade was the demon-
stration of motional cooling by applying an electronically controlled radiation pres-
sure on a moveable cavity mirror [19]. Additionally, in 1994, Fabre and colleagues [20]
showed that optomechanical interactions could in theory produce optical squeezing,
that is the reduction of optical quantum noise in one quadrature below the SQL. Due
to challenging experimental requirements, this prediction on the quantum nature of
optomechanical interactions remained unverified experimentally for over 15 years.

By the beginning of the current millenium, microfabrication techniques had ma-
tured to the point of producing very high-quality-factor (high-Q) optical microcavi-
ties, such as toroidal microcavities (Fig. 1.3), and high-Q nanomechanical resonators.
Light transmitted through high-Q toroidal microcavities exhibited strong amplitude
modulation at narrow, distinct frequencies. Tobias Kippenberg and Kerry Vahala
demonstrated that these were caused by optical excitation of mechanical eigenmodes
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of the entire microcavity [22]. In parallel, Andrew Cleland [23] and Keith Schwab
[24] showed that the position of high-Q nanomechanical resonators could be electri-
cally read out with unprecedented sensitivity. These results provided a first bridge
between optomechanics research in solid-state physics and optical physics. It also
marked the beginning of the extremely rapid progress in experimental investigations
of optomechanics over the last few years.

In 2005-2006, experimental demonstrations of dynamical backaction, the amplifi-
cation [22, 25] and cooling [25, 26, 27] of a mechanical element’s motion by injecting
an optical signal to the blue and red of cavity resonance, respectively, were made.
In 2007-2008, experiments on cavity quantum electrodynamics found that ultracold
atoms interacting with an optical standing wave inside a Fabry-Pérot cavity consti-
tutes a unique paradigm of cavity optomechanics [28, 29], where the center-of-mass
motion of atoms forms the mechanical element. While solid-state experiments were
battling thermal effects that masked the underlying, fundamental optomechanical
interactions, atoms-based experiments entered the optomechanical playground with
extremely cold mechanical oscillators, enabling the observation of the first quantum
optomechanical effect: quantum-measurement backaction [30]. This was the state of
research in optomechanics when I started my graduate work in August 2007.

In 2009, optical measurements of the motional spectrum of a mechanical resonator
demonstrated sub-SQL imprecision at frequencies far from the mechanical resonance
frequency [31, 32], a first step towards quantum-limited position measurements. That
same year, the first dual-mechanical-element optomechanical system was experimen-
tally investigated. The setup consisted of two evanescently coupled high-Q microcav-
ities and demonstrated synchronized motion under specific probing conditions [33].
A major milestone was reached in 2010 with the first experimental observation of
a quantum-ground-state mechanical resonator [34]. The resonator was cooled to its
motional ground state through cryogenic refrigeration and observed optomechanically
via a microwave-frequency quantum bit (qbit). A year later, the quantum motional
ground state of a solid-state mechanical oscillator was again achieved, this time using
the original backation-induced optomechanical cooling method proposed by Braginsky
nearly 45 years earlier [35, 36]. Finally, optomechanically induced squeezing of light,
discussed by Fabre et al. in 1994, was observed experimentally in the Stamper-Kurn
group in 2011 [37].

The remainder of my dissertation essentially starts at this point in the history
of optomechanics. I consider myself very fortunate to have entered the world of
optomechanics at such an effervescent stage of its evolution and to have been able to
contribute to some of the key advances in the field.
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1.2 What is this dissertation about?

At the core of this dissertation are two experimental realizations pertaining to
the interactions between the quantum fluctuations of light and the quantum collec-
tive motion of atoms. In the first realization, the zero-point collective motion of an
atomic ensemble and the quantum backaction from light on this collective motion
were both observed [38]. In the second, the construction of an array of distinguish-
able quantum-ground-state collective atomic oscillators and the ability to selectively
address one targeted oscillator’s motion was demonstrated [39]. Both works were im-
portant in exposing fundamental properties of cavity optomechanics in the quantum
regime and extending the bounds of experimental capabilities. Material presented in
this dissertation aims at complementing the already published results.

Chapter 2 is dedicated to setting the theoretical framework relevant for the exper-
imental studies. The chapter first shows how dispersive interactions between atoms
and photons inside an optical cavity, captured by the Tavis-Cummings hamiltonian,
can be understood as a cavity optomechanical system, where the collective motion
of atoms forms an effective mechanical element. The general properties of cavity
optomechanical systems are then presented. For this second part, readers are re-
ferred to an extensive study authored by the Stamper-Kurn group, Ref. [40], which
is included in Appendix A. The final section introduces dimensional operators to
translate bosonic operators, used in Ref. [40], into experimentally relevant units.

The principles of photodetection are described in a stand-alone chapter, Chapter
3. The chapter covers both the detection of a single laser beam and the balanced
interferometric detection of a pair of beams. It also links the power spectral density
(PSD) of optical signals to that of generated photocurrents in both cases. This
link is particularly important since every experimental observation reported in this
dissertation hinges on a correct mapping of the photon field inside the cavity to
detected PSD.

Chapter 4 presents many details concerning the experimental setup, with focus
primarily placed on the complicated network of feedback loops used throughout exper-
iments. This naturally leads to Chapters 5–6, which discuss the two core experimental
realizations: Chapter 5 pertains to experiments with a single effective atomic oscilla-
tor, while Chapter 6 expands to experiments with several atomic oscillators arrayed
within an optical cavity. In both of these chapters, the discussion mainly focuses
on the theory behind published results and on unpublished experimental methods;
the salient features of Refs. [38]–[39] are only mentioned in passing. A final chapter,
Chapter 7, summarizes the contents of the dissertation and proposes several research
topics for future experiments related to atoms-based cavity optomechanics.
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Chapter 2

The theory behind cavity
optomechanics

2.1 From cavity quantum electrodynamics to cav-

ity optomechanics

The quantized interactions between atoms and photons inside an optical cavity,
such as a Fabry-Pérot cavity, are the subject of study in cavity quantum electrody-
namics (CQED). The particular case of one two-level atom interacting with photons
is captured by the Jaynes-Cummings model [41]. The extension to an ensemble of
two-level atoms interacting with photons is described by the Tavis-Cummings model
[42]. These models have been studied at length and are today commonly found in
many textbooks ([43, 44, 45, 46, 47, 48] to name a few). Beautifully simple, step-
by-step derivations of how to reformulate these models in a manner that highlights
optomechanical interactions have been included in the dissertations of two former fel-
low graduate students, Kater Murch [49] and Tom Purdy [50], as well as in recent
work by the Vuletić group [51] and a review article by Dan Stamper-Kurn [52]. In
this section, the key steps of these derivations are succinctly presented and the results,
adapted to the experiments discussed later in this dissertation.

The hamiltonian describing interactions between N two-level atoms and n photons
in an optical cavity, Ĥtot, is given by the sum of four energy terms:

Ĥtot = ĤA,int + ĤA,ext + ĤF + ĤI, (2.1)

where ĤA,int and ĤA,ext represent the energy contained within the internal and mo-

tional degrees of freedom of the atomic ensemble, respectively, ĤF encapsulates the
quantized energy of the electromagnetic radiation, and ĤI captures the atom-photon
interactions. Eq. 2.1 treats the optical cavity as a closed system, neglecting any form
of communication with the outside world. The open-system case, where light can
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enter and exit the cavity, and where atoms are connected to external excitations, will
be treated in Section 2.2.

The Tavis-Cummings hamiltonian, ĤTC, corresponds to a subset of Ĥtot:

ĤTC = ĤA,int + ĤF + ĤI, (2.2)

ĤA,int =
1

2
~ωa

(
N∑
i=1

σ̂
(3)
i + 1

)
, (2.3)

ĤF = ~ωcâ†â, (2.4)

ĤI =
N∑
i=1

~g(xi, yi, zi)
(
â†i σ̂

(−) + âiσ̂
(+)
)
, (2.5)

where the rotating-wave approximation (RWA) [43, 53] was applied in Eq. 2.5. Op-
erators â† and â are the creation and annihilation operators of the cavity photon
field, respectively (

〈
â†â
〉

= n). The Pauli operators act on the the ground, |g〉, and

excited, |e〉, internal states of each atom as follows: σ̂(+) = |e〉 〈g|, σ̂(−) = |g〉 〈e|, and
σ̂(3) = |e〉 〈e| − |g〉 〈g|. Frequencies ωa and ωc refer to the two-level atomic resonance
frequency and the cavity resonance frequency, respectively. The position-dependent
frequency g corresponds to the system’s Rabi frequency [43, 53]; it captures the
per-atom strength of CQED interactions at atom i’s location inside the cavity axis,
(xi, yi, zi). Its maximum value, go = d · E/~, is set by both the atomic transition’s

dipole moment, d, and the single-photon electric field amplitude, E =
√

~ωc
εoV

. Here,

εo is the permittivity of free space and V refers to the light field’s effective, round-
trip-through-the-cavity volume (i.e. twice the optical mode volume inside the cavity,
Vm).

The Hilbert space for this system spans all possible excitations that can be shared
between the N atoms and n photons. This space can be significantly reduced by
applying two conditions relevant to the experiments discussed in this dissertation:

• all atoms are initially in their ground internal state,

• the system operates in the “dispersive limit,” where the light field is far detuned
from the atomic transition, such that at most one photon-induced atomic ex-
citation can exist at any one time (i.e. the number of intracavity photons can
vary between n and n− 1).

Under these conditions, ĤTC contains N+1 eigenstates: two bright states, where the
collective atomic wavefunction is symmetric, and N -1 dark (i.e. sub-radiant) states,
where the collective atomic wavefunction is anti-symmetric. The two relevant, bright
energy eigenvalues of ĤTC are

ETC,± = ~ωcn−
~∆ca

2
± ~

√√√√∆2
ca

4
+ n

N∑
i=1

g2(xi, yi, zi), (2.6)
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where ∆ca = ωc − ωa is the cavity detuning from atomic resonance. These eigenval-
ues can be further simplified by applying the dispersive-limit approximation ∆ca �√
Ngo:

ETC,+ = ~ωcn+ ~n
∑N

i=1 g
2(xi, yi, zi)

∆ca

, (2.7)

ETC,− = ~ωc(n− 1) + ~ωa − ~n
∑N

i=1 g
2(xi, yi, zi)

∆ca

. (2.8)

Eqs. 2.7–2.8 show that the two bright eigenstates of the system become increasingly
distinct as the light field is further detuned from the atomic transition: one ap-
proaches the stated initial condition of having n photons and no atomic excitation
(“+” state), while the other approaches the case of having one steady excitation
within the atomic ensemble and n− 1 photons (“−” state). From this point forward,
only the experimentally relevant “+” state will considered.

Optomechanics enters the discussion by introducing the atoms’ motional degree
of freedom and making the position dependence of g(xi, yi, zi) explicit. To do so,
three specifics about the experiment must be stated, all of which will be further
described in Chapter 4. First, the photons with which atoms dispersively interact,
the “probe” photons, are contained in a TEM0,0 mode of a near-planar Fabry-Pérot
cavity. Second, the atoms are trapped along the cavity axis by a far off-resonance
optical dipole trap (FORT). The trap is formed by one or two other TEM0,0 optical
modes of the cavity that are red-detuned by several million transition linewidths from
the two-level transition, and hence have negligible CQED interactions with atoms.
Third, atoms are cooled to ultracold temperatures. The trapped atomic ensemble’s
spatial extent in directions transverse to the cavity axis is therefore much smaller than
the widths of the TEM0,0 modes (see Fig. 2.1), meaning that each atom’s transverse
motion negligibly contributes to the light-atom dynamics; the cavity-atom system
can be effectively treated as a one-dimensional system along the cavity axis [49, 50]
(g(xi, yi, zi) → g(zi)). As a side note, “radial” optomechanics, i.e. optomechanical
coupling to the transverse motion of atoms, has often been suspected to contribute
to reduced trap lifetimes and odd features in the optomechanical responses observed
in our experiments, but we have performed no detailed experimental examinations to
confirm these suspicions.

In this context, trapped atoms oscillate quantum mechanically about minimum
points of the FORT standing-wave potential, which varies sinusoidally along the cavity
axis. However, by virtue of their ultracold temperatures, atoms explore only a small
fraction of this sinusoidal potential, meaning their motion can be well approximated
by that of a quantum harmonic oscillator (Fig. 2.1):

ĤA,ext =
N∑
i=1

~ωm,i b̂†i b̂i, (2.9)
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Figure 2.1: Schematic of a single-color FORT (grey) holding a distribution of atoms
(blue) in one potential minimum. The top panel shows the gaussian envelop of the
atomic distribution within the FORT’s standing-wave potential distribution along
the cavity axis, as well as the harmonic potential approximation (dashed grey) at
the atoms’ trap location. The lower panel highlights the much smaller size of the
atomic distribution relative to FORT’s optical intensity profile. The inset shows the
corresponding, vertical orientation of the optical cavity for reference. Note that the
cavity, atom and FORT orientation in the lower panel is rotated relative to their
orientation in the the top panel for clarity. Cartesian directions: z points along the
cavity axis, while x and y are transverse to the cavity axis.

where b̂†i and b̂i are the motional creation and annihilation operators, and ωm,i the
mechanical oscillation frequency of atom i. Oscillating atoms also only sweep across
a small fraction of the probe’s standing-wave potential because of their ultracold tem-
peratures. The spatial dependence of atom i’s interaction frequency with the probe
can therefore be approximated by a low-order expansion of its quantum mechanical
motion, ẑi = zHO(b̂i + b̂†i ), about its equilibrium point zi:

g2(zi + ẑi) = g2
o sin2 (kp(zi + ẑi)) , (2.10)

' g2
o

(
sin2(kpzi) + kpẑi sin(2kpzi) + (kpẑi)

2 cos(2kpzi)
)

(2.11)

where kp is the probe wavenumber. The term

zHO =

√
~

2mωm,i
(2.12)

refers to the single-atom harmonic oscillator length, with m the atomic mass.
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Grouping together the energy eigenstates of the Tavis-Cummings model in the
specific dispersive regime relevant to experiments discussed in this dissertation with
the harmonic-oscillator-like motion of atoms, the complete closed-system hamiltonian,
Ĥtot, can be expressed as:

Ĥtot =
N∑
i=1

~ωm,i b̂†i b̂i + ~ωcâ†â+

~
â†âg2

o

∆ca

N∑
i=1

(
sin2(kpzi) + kpẑi sin(2kpzi) + (kpẑi)

2 cos(2kpzi)
)
. (2.13)

Three position-dependent atom-photon interactions terms are included in Eq. 2.13.
Each term has a distinct significance. The first corresponds to a static shift in the
cavity’s effective resonance frequency due to the presence of atoms:

ω
′

c = ωc +
g2
o

∆ca

N∑
i=1

sin2(kpzi). (2.14)

In the dispersive regime, atoms act as a medium of index of refraction, which explains
this additive shift in cavity resonance. The second term, which I will label Ĥdyn,
is responsible for “linear” optomechanics, where the interaction strength is linearly
dependent on each atom’s displacement. It is the CQED analog of Braginsky’s orig-
inal proposal for optomechanics [3] and has been studied by three different research
groups [29, 30, 51]. The last term corresponds to a coupling between each atom’s
displacement squared, or equivalently its mechanical energy, and the probe photon
field. This type of optomechanical interaction is commonly termed “quadratic” op-
tomechanics and has been explored by only two large size mechanical systems, one
involving thousands of atoms [54] and one involving a thin silicon membrane [55];
several earlier single-atom CQED experiments also effectively studied quadratic op-
tomechanics [56, 57, 58] even though their results were not framed in those terms.
Since experiments described in this dissertation are based exclusively on linear op-
tomechanical interactions, I will drop the quadratic and higher-order coupling terms.

The final ingredient needed as part of this atoms-based optomechanics recipe is
the concept of collective mechanical variable. Suppose all N atoms are trapped at
the same spatial location, and hence have the same linear coupling (kpzi = φ) and the
same mechanical oscillation frequency (ωm,i = ωm). The linear-optomechanics hamil-
tonian term in Eq. 2.13 is then dependent on a sum of equally weighted displacement
operators:

Ĥdyn = ~
â†âg2

o

∆ca

kp sin(2φ)
N∑
i=1

ẑi. (2.15)

This sum is related to the center-of-mass (CM) mode of motion of the entire atomic
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ensemble:

b̂CM =
1√
N

N∑
i=1

b̂i, (2.16)

ẐCM = ZHO

(
b̂CM + b̂†CM

)
=

1

N

N∑
i=1

ẑi, (2.17)

where ZHO = zHO/
√
N is the harmonic oscillator length of the CM mode. In this

scenario, then, probe photons effectively interact with a single atomic oscillator of
mass mCM = Nm:

Ĥdyn = ~gOMâ
†â
ẐCM

ZHO

, (2.18)

where

gOM =
Ng2

o

∆ca

sin(2φ)kpZHO (2.19)

is the linear optomechanical coupling rate.
This result can be generalized to instances where not all atoms are situated at the

same trap location. If atoms are dispersed among several potential minima, labeled
by parameter j, then each populated minimum can be attributed a CM displacement
operator, ẐCM,j, with a particular collective harmonic oscillator length, ZHO,j, and
optomechanical coupling rate, gOM,j:

ẐCM,j =
1

Nj

Nj∑
i=1

ẑi, (2.20)

ZHO,j =

√
~

2Njmωm,j
, (2.21)

gOM,j =
Njg

2
o

∆ca

sin(2φj)kpZHO,j, (2.22)

Ĥdyn =
∑
j

~gOM,jâ
†â
ẐCM,j

ZHO,j

, (2.23)

where Nj, ωm,j and φj = kpzj are the number of atoms, mechanical oscillation fre-
quency and local linear coupling phase at location j, respectively. Optomechanics
in this more general case takes place between cavity probe photons and an array of
collective motional modes, one from each populated site. When each member of the
array has a distinct mechanical frequency, ωm,j, each member’s contribution to the
overall optomechanical interactions can be individually identified. This idea lays the
foundations on which the multi-oscillator experiments, detailed in Chapter 6, were
constructed.
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In the more specific case where each populated trap minimum has the same me-
chanical oscillation frequency, ωm, Eqs. 2.20–2.23 can be reformulated as

ẐCM,eff =
1

Neff

∑
j

NjẐCM,j sin (2φj) =
1

Neff

N∑
i=1

ẑi sin (2φi), (2.24)

ZHO,eff =

√
~

2Neffmωm
, (2.25)

gOM,eff =
Neffg

2
o

∆ca

kpZHO,eff , (2.26)

Ĥdyn = ~gOM,eff â
†â
ẐCM,eff

ZHO,eff

, (2.27)

where

Neff =

Nj∑
i=1

sin2(2φi). (2.28)

Despite the spatial distribution of atoms over multiple FORT sites, optomechanics in
this particular case takes place between the photon field and a single effective CM
mode, where each atom’s contribution to the effective collective mode is weighted by
its coupling to the light field, sin(2φi). The mass of this effective atomic oscillator is
mNeff . In the limit of all atoms being placed in the same potential minimum (φi → φ
for all i), the effective mechanical mode coupling to the light field becomes the atomic
ensemble’s CM mode, and Eqs. 2.18–2.19 are recovered.

2.2 Linear cavity optomechanics

This previous section details how CQED can be adapted as a cavity optomechan-
ical system. Cavity optomechanics also comes in many other forms, as highlighted
in Chapter 1. Each form has its own strengths and weaknesses, allowing it to study
a certain subset of cavity-optomechanics properties. As these subfields become ever-
more specialized, translation from one experimental realization to another becomes
lost. And yet the fundamental optomechanical interactions at play remain the same
across applications. In this section, I introduce an amplifier model to represent and
understand cavity optomechanics in general. The point of this model is to serve as a
common language in the multi-lingual world of optomechanics.

One of the scientific products of my graduate work was the development of an
optomechanical amplifier model, published in Ref. [40]. The model begins by consid-
ering linear cavity optomechanics in the Heisenberg picture, where the optical and
mechanical fields evolve in time and frequency. The evolution of these fields is rep-
resented as a feedback circuit, with an input and output channel for each field. Just
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Properties
Definition in published

amplifier model
Definition in dissertation

Fourier transforms
f̃(ω) =

∫
f(t)eiω tdt f̃(ω) = 1√

2π

∫
f(t)eiω tdt

f(t) =
∫
f̃(ω)e−iω tdω f(t) = 1√

2π

∫
f̃(ω)e−iω tdω

Quadrature
operators

amplitude f̂+ = f̂ + f̂ † f̂+ =
(
f̂ + f̂ †

)
/
√

2

phase f̂− = i
(
f̂ − f̂ †

)
f̂− = i

(
f̂ − f̂ †

)
/
√

2

Table 2.1: Definitions of Fourier transforms and quadrature operators. The table
outlines the unconventional definitions used in the linear optomechanical amplifier
model (see Appendix A), and the more conventional definitions used throughout this
dissertation.

as with any feedback circuits, the optomechanical outputs are shown to be related to
the inputs by way of a transfer matrix. What then distinguishes one experimental
realization from another are the entries to this matrix. The model accurately pre-
dicts two well-known optomechanical phenomena: ponderomotive squeezing [20, 37]
(i.e. optical squeezing caused by the mechanical motion) and electromagnetically in-
duced transparency [59, 60]. Moreover, thanks to its general, transfer-matrix-based
language, the model also shows that these two phenomena are intimately related.
The published theoretical results are adapted to account for experimental realities,
in particular limited detection efficiency.

A copy of the publication is included in Appendix A. Readers are referred to the
publication for details regarding this optomechanical amplifier model and to learn
more about some of the salient features of optomechanics. Some of the results, par-
ticularly the constituents of input-to-output transfer matrices, will be used in later
chapters of this dissertation. Readers are warned that the definitions used for Fourier
transforms and quadrature operators in the publication are not normalized. These
definitions will not be employed as part of this dissertation to avoid introducing
factors of 2 and

√
2 when relating theory to experimental results. Instead, more con-

ventional, properly normalized definitions will be used. Both series of definitions are
explicitly stated side-by-side in Table 4.1 to help readers visualize the differences.
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2.3 The units of an experimentalist

Readers having carefully scoped through the published linear optomechanical am-
plifier model (see Appendix A) will note that quoted results are normalized by the
inputs, sweeping away any need for units. In addition, both mechanical and optical
operators are bosonic operators, with experimentally inadequate units. For instance,
optical inputs and outputs have powers in units of “quanta/second,” not “watts.” In
this section, I complement the work outlined in the publication by introducing opera-
tors with experimentally relevant units for both the mechanical and optical fields.

In Section 2.1, the position operator, ẑ, was subtly introduced with units of dis-
tance by including the harmonic oscillator length, zHO. This was not the case in the
optomechanical amplifier model, where a dimensionless position operator was instead
defined. Converting from bosonic position (momentum) operators to dimensional
operators thus only requires factoring in the harmonic oscillator length (momentum,
pHO =

√
~mωm/2):

ẑ = zHO

(
b̂+ b̂†

)
, (2.29)

p̂ = ipHO

(
b̂− b̂†

)
. (2.30)

A similar approach can be taken for the intracavity optical field operators, since pho-
tons can also be represented as particles in a quantum harmonic oscillator. However,
instead of a length or a momentum, the photon energy inside the cavity, ~ωc, must
be used to convert from bosonic operators to dimensional operators:

ĉ† =
√

~ωcâ†, (2.31)

ĉ =
√

~ωcâ, (2.32)

ĉ+ =

√
~ωc
2

(
â+ â†

)
, (2.33)

ĉ− = i

√
~ωc
2

(
â− â†

)
. (2.34)

I stress the word “inside” because of a subtlety: an incoming photon with frequency
ωp, i.e. detuned from cavity resonance by ωp − ωc, will be perceived as a particle
with energy ~ωc if it enters the cavity. Why? Because a cavity cannot distinguish
frequencies; it can only filter based on its lorentzian linewidth. This subtle point is,
for all intent and purpose, irrelevant for high-quality-factor (high-Q) optical cavities,
since photons that enter the cavity satisfy ωp ∼ ωc.

Dimensional operators for the optical fields outside the cavity can also be defined.
Recalling that operator α̂ used in the optomechanical amplifier model has units of√

photons/second, its dimensional analog requires the energy of traveling photons,
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~ωp:

ζ̂ =
√

~ωpα̂, (2.35)

ζ̂† =
√

~ωpα̂†, (2.36)

ζ̂+ =

√
~ωp
2

(α̂ + α̂†), (2.37)

ζ̂− = i

√
~ωp
2

(α̂− α̂†). (2.38)

The mechanical degree of freedom also has input and output field operators. These
traveling fields capture energy exchanges between the mechanical element and its
environment, much like the traveling optical fields represents photons entering and
exiting the cavity from the outside world. The optomechanical amplifier model made
use of operator η̂, defined with units of

√
phonons/second, to represent traveling

phonons. This operator can be used to define dimensional quadrature operators of
traveling phonons, ξ̂+ and ξ̂−, which bridges the position and momentum of the
mechanical element, respectively, with the element’s surroundings:

ξ̂+ = zHO

(
η̂ + η̂†

)
, (2.39)

ξ̂− = ipHO

(
η̂ − η̂†

)
. (2.40)

What is the physical meaning of both dimensional quadrature operators? From
Eq. (6) in Appendix A, ξ̂+ and ξ̂− are known to couple to the mechanical element’s ve-
locity and acceleration, respectively. ξ̂− is therefore related to classical and quantum-

level forces acting on the element: F =
√

Γm

〈
ξ̂−

〉
(see Eq.(35) in Appendix A).

ξ̂+, however, has a much more obscure meaning. Perhaps it represents a classical

and quantum-level impulse imparted on the element: J = m
√

Γm

〈
ξ̂+

〉
. An impulse

and a force are not sharply distinct, so this proposed definition is somewhat weak.
Regardless, ξ̂+ does capture the quantum fluctuations that the mechanical element’s
position inherits from the outside world, which contributes to the position’s Heisen-
berg uncertainty.

The bosonic and dimensional operators quoted above apply in the time-domain.
Their respective frequency-domain counterpart carry an additional (rad/second)−1.
Unless otherwise specified, all frequencies stated in both the optomechanical amplifier
model and this dissertation are in radial units, not cyclical units.
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Chapter 3

Optical Detection

In plain terms, photodetection operates by converting traveling photons ( i.e. op-
tical power) into traveling electrons ( i.e. electrical current) through absorption in a
semiconductor material. Although the premise is quite simple, the quantum mechan-
ical description of this process is much more complicated. Roy Glauber was first to
provide a mathematical description of photodetection in a Nobel-prize-winning arti-
cle, Ref. [61]. The theory has since been treated in a number of books, including
[47, 62, 63, 64] to cite a few. In this chapter, I introduce a few important concepts
regarding photodetection, and apply these concepts to model balanced detection.

3.1 The basics of photodetection

The time and frequency-domain evolution of light can be studied in the Heisenberg
picture using the quantized optical field operators ζ̂ and α̂ introduced in Chapter 2.
These operators respect the following commutation relations in each Fourier-conjugate
domain: [

ζ̂(t), ζ̂†(t′)
]

= ~ωL
[
α̂(t), α̂†(t′)

]
= ~ωLδ(t− t′), (3.1)[

ˆ̃ζ(ω), ˆ̃ζ(ω′)
]

= ~ωL
[

ˆ̃α(ω), ˆ̃α†(ω′)
]

= ~ωLδ̃(ω − ω′), (3.2)

where ωL is optical frequency of the traveling light field.
An ideal laser emits a coherent state of light, that is a stream of identical photons,

each having an optical frequency ωL. The coherence of the emitted light is captured
by the corresponding expectation values of the optical field operators:〈

ζ̂L(t)
〉

=
√

~ωL 〈α̂L(t)〉 =
√

~ωL
〈
α̂L(0)× e−iωL t

〉
=
√
PLe

−iωL t, (3.3)〈
ˆ̃ζL(ω)

〉
=

√
~ωL

〈
ˆ̃αL(ω)

〉
=
√

~ωL
〈
α̂L(0)×

√
2πδ̃(ω − ωL)

〉
, (3.4)

=
√
PL ×

√
2πδ̃(ω − ωL), (3.5)
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where PL = ~ωL
〈
|α̂L(0)|2

〉
= ~ωL 〈α̂L(0)〉2 is the laser beam’s optical power.

If a weak amplitude or phase modulation, at frequency ωmod � ωL, is applied to
the laser emission, a pair of small sidebands, at frequencies ωL +ωmod and ωL−ωmod,
respectively, will be added to the traveling field:〈

ζ̂L(t)
〉

=
√
PL

(
e−iωL t +

√
η

2

[
e−i(ωL+ωmod) t + e−i(ωL−ωmod) t+iθ

])
, (3.6)〈

ˆ̃ζL(ω)
〉

=
√

2πPL × (3.7)(̃
δ(ω−ωL)+

√
η

2

[̃
δ(ω−ωL−ωmod)+eiθδ̃(ω−ωL+ωmod)

])
,

where the total power contained in the sidebands, Pmod = ηPL, is set by the modula-
tion depth, η � 1. The phase θ specifies the quadrature of the applied modulation,
i.e. whether the modulation is applied to the laser beam’s amplitude (θ = 0), phase
(θ = π) or a combination thereof.

A photodetector records optical power, or equivalently electric-field beats. Conse-
quently, a detector exposed to a single light beam will measure the mean power and
amplitude modulations of that beam, but will carry no information about its phase
modulation. As a demonstration, consider the photodetection of the laser beam de-
fined in Eqs. 3.6–3.7, with again η � 1:〈

Î(t)
〉

=
√
εG
〈
ζ̂†L(t)ζ̂L(t)

〉
=
√
εG
〈
ζ̂†L(t)

〉〈
ζ̂L(t)

〉
, (3.8)

=
√
εG
(
PL +

√
2PLPmod [cos(ωmod t) + cos(ωmod t+ θ)]

)
, (3.9)

where
〈
Î(t)

〉
is the resulting photocurrent, and G and ε refer to the optical-to-

electrical conversion gain and the overall photodetection efficiency, respectively. In-
deed, the right-hand side of Eq. 3.9 is identically zero when θ = π, but can have a
non-zero value when θ = 0. In order to sense phase modulations, a more intricate
detection method must be employed. One approach is to expose the photodetector
to two distinct and overlapping laser beams, and record optical beats between both
beams. This is the premise of balanced homodyne and heterodyne detection discussed
in Section 3.2.

Additionally, notice that from Eqs. 3.8 and 3.9 the photodetector appears not to
have a record of the light’s quantum fluctuations. Indeed, the photocurrent’s expec-
tation value does not show signs quantum optical fluctuations, since ζ̂†(t) and ζ̂(t) are

normally ordered, but the photocurrent’s squared magnitude,
〈
|Î(t)|2

〉
, does. Quan-

tum optical fluctuations can therefore be experimentally observed by monitoring the
detected photocurrent’s electrical power across a resistor, a trivial measurement to re-

alize. However, expressing
〈
|Î(t)|2

〉
analytically requires the “two time time-ordered
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correlation function.” I will not pretend to be an expert on this complicated quantum
correlation function, but I will say that its Fourier transform yields the power spectral
density (PSD) of the detected photocurrent by virtue of the Wiener-Khintchine theo-
rem. PSDs can be straightforwardly calculated from normalized Fourier transforms,
which have the form:

f̃(ω) = lim
T→∞

1√
T

∫ T

−T
f(t)eiωtdt. (3.10)

PSDs are not, strictly speaking, related to standard Fourier transforms, such as those
defined in Section 2.2, since powers are not square integrable functions. Following the
example of certain authors [65], I will overlook this strict definition and nonetheless
formulate the PSD of the photocurrent considered in Eq. 3.9, SII(ω), in terms of its

standard Fourier transform, ˆ̃I(ω):

SII(ω) =

〈
ˆ̃I†(ω′) ˆ̃I(ω)

〉
2πδ̃(ω′ − ω)

=
εG2

〈
ˆ̃ζ†L(ω′)ˆ̃ζL(ω′)ˆ̃ζ†L(ω)ˆ̃ζL(ω)

〉
2πδ̃(ω′ − ω)

, (3.11)

SII(ω)

εG2
= P 2

Lδ̃(ω) + PL
√

2PLPmod (1 + cos(θ))
[
δ̃(ω + ωmod) + δ̃(ω − ωmod)

]
+PLPmod (1 + cos(θ))

[
δ̃(ω + 2ωmod) + δ̃(ω − 2ωmod)

]
+
PL~ωL

2π
. (3.12)

The final term in Eq. 3.12 represents the light’s spectrally uniform quantum fluctua-
tions. Mathematically, the term comes from normally ordering the field operators in
Eq. 3.11 using the commutation relation in Eq. 3.2. Physically, this term is due to
the random emission times of laser photons, which leads to random detection times
at the photodetector, hence the name “shot noise” often attributed to quantum fluc-
tuations. Shot noise can also be understood as beats between the laser’s carrier tone,
at frequency ωL, and the quantum mechanical fluctuations of the vacuum, which in
free-space are flat across frequency.

Lastly, I note that SII(ω) has units of W2/(rad/s). Its analog in units of W2/Hz
is related by a factor of 2π: SII(f) = 2π×SII(ω). Eq. 3.12 therefore translates to the
following expression in cyclical units:

SII(f)

εG2
= P 2

Lδ̃(f) + PL
√

2PLPmod (1 + cos(θ))
[
δ̃(f + fmod) + δ̃(f − fmod)

]
+PLPmod (1 + cos(θ))

[
δ̃(f + 2fmod) + δ̃(f − 2fmod)

]
+PL(~ · 2π fL). (3.13)
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Figure 3.1: Schematic of a balanced photodetector setup. The LO and signal beams
are evenly split and overlapped using a beamsplitter. The beamsplitter’s two output
ports are separately detected, and the two resulting photocurrents are subtracted.

3.2 Balanced homodyne / heterodyne detection

A general balanced detector is shown in Fig. 3.1. A reference optical beam, the
“local oscillator” (LO), assumed to be a pure coherent tone, is overlapped with an-
other optical beam, the signal, carrying some modulation of interest at frequency
ωmod and relative phase θ, on a 50:50 beamsplitter. In the context of experiments
discussed in this dissertation, probe light exiting the science cavity forms the signal
beam. The LO and signal beams are separately expressed as follows:〈

ζ̂LO(t)
〉

=
√
PLOe

−iωLO t+iθLO , (3.14)〈
ζ̂s(t)

〉
=

√
Ps

(
e−iωs t +

√
η

2

(
e−i(ωs+ωmod) t + e−i(ωs−ωmod) t+iθ

))
, (3.15)

where ωLO (ωs) and PLO (Ps) are the LO’s (signal’s) carrier frequency and power,
respectively, and θLO is the LO’s phase relative to the signal beam at time t = 0. The
signal’s modulation depth, η = Pmod/Ps, is assumed to be much smaller than unity.
Notice that the signal field (Eq. 3.15) is effectively identical to the laser field studied
in the previous section (Eq. 3.6).

The beamsplitter’s output ports can be expressed in terms of the input operators,
defined in Eqs. 3.14–3.15:

ζ̂1(t) = ζ̂LO(t)/
√

2 + iζ̂s(t)/
√

2, (3.16)

ζ̂2(t) = iζ̂LO(t)/
√

2 + ζ̂s(t)/
√

2. (3.17)

Both of the output ports of the beamsplitter are separately detected. The photocur-



21

rent produced by each detector is given by〈
Î1(t)

〉
=
√
ε1G1

〈
ζ̂†1(t)ζ̂1(t)

〉
, (3.18)

〈
ζ̂†1(t)ζ̂1(t)

〉
=

PLO

2
+

〈
ζ̂†s(t)ζ̂s(t)

〉
2

+i

√
PLO

2

〈
ζ̂s(t)e

iωLO t−iθLO − ζ̂†s(t)e−iωLO t+iθLO

〉
, (3.19)

and 〈
Î2(t)

〉
=
√
ε2G2

〈
ζ̂†2(t)ζ̂2(t)

〉
, (3.20)

〈
ζ̂†2(t)ζ̂2(t)

〉
=

PLO

2
+

〈
ζ̂†s(t)ζ̂s(t)

〉
2

−i
√
PLO

2

〈
ζ̂s(t)e

iωLO t−iθLO − ζ̂†s(t)e−iωLO t+iθLO

〉
. (3.21)

Both detectors record half of the LO and signal powers entering the beamsplitter,
as well as half the total power contained LO-signal beats. However, the detectors
measure the LO-signal beats with opposite phases. These optical beats, which carry
the relevant amplitude and/or phase information, can be isolated from the LO and
signal powers by taking the difference between Î1 and Î2, assuming each detector has
the same overall detection efficiency (ε1 = ε2 = ε) and gain (G1 = G2 = G):

〈Ibal(t)〉 =
〈
Î1(t)− Î2(t)

〉
, (3.22)

= i
√
εG
√
PLO

〈
ζ̂s(t)e

iωLO t−iθLO − ζ̂†s(t)e−iωLO t+iθLO

〉
, (3.23)

=
√
εG
√
PLO ·

[
2
√
Ps sin (∆LO,s t+ θLO) (3.24)

+
√

2Pmod{sin((∆LO,s+ωmod)t+θLO)+sin((∆LO,s−ωmod)t+θLO−θ)}
]
,

where ∆LO,s = ωs − ωLO. This difference measurement is part of the fundamental
premise of balanced detection, with homodyne and heterodyne types corresponding
to ∆LO,s = 0 and ∆LO,s 6= 0, respectively.

Pertinent signal information is magnified by a factor of
√
PLO on the balanced-

detection photocurrent, Ibal. One therefore does best by using as intense of a LO
as possible. If the beamsplitter outputs are sensed by two independently powered
photodetectors, each detector is susceptible to saturation from the static photocurrent
generated by a strong LO (PLO/2 in Eqs. 3.19–3.21). If instead the photoreceivers
are powered in series, as in Fig. 3.2, their static photocurrents offset, making them
immune to saturation in balanced detection. The LO power can then, in principle,
be arbitrarily large.
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Figure 3.2: Schematic of a pair of photodiodes connected in series as part of a
balanced-detection configuration.

In balanced homodyne detection, the LO phase angle can be set to maximally
observe the applied modulation. In particular, the optimal θLO value for an applied
amplitude (θ = 0) and phase (θ = π) modulation is π/2 and 0, respectively:

(θ=0, θLO =
π

2
) :〈Ibal(t)〉 = 2

√
εG
[√

PLOPs+
√

2PLOPmod cos(ωmod t)
]
, (3.25)

(θ=π, θLO =0):〈Ibal(t)〉 = 2
√
εG
[√

2PLOPmod sin(ωmod t)
]
. (3.26)

However, balanced homodyne detection has the significant drawback of being sensitive
to low-frequency amplitude noise present on the LO, as well as parasitic low-frequency
noise in the detector’s electric power source. Although ideally the LO and signal
beams are combined on a perfect 50:50 beamsplitter, in practice the beamsplitter’s
outputs are never exactly equal in power. The residual power imbalance causes the
beams’ low-frequency amplitude noise, particularly that of the intense LO, to be
mapped onto Ibal. For balanced homodyne detection, this amplitude noise, along
with low-frequency electronic noise, overlaps in frequency with the modulation of
interest. In the context of experiments described in this dissertation, operating in
homodyne mode would mean attempting to accurately measure small optomechanical
modulations, which barely rise above the signal beam’s shot-noise floor, in a forest of
technical noise.

Since noise tends to tail off as some function of frequency (e.g. the “1/f” noise),
operating the balanced detector in heterodyne mode, with ∆LO,s � 0, makes it easier
to measure signals with quantum-limited precision instead of classical-noise-limited
precision. For that very reason, heterodyne detection was adopted as part of the
experimental setup. Heterodyne measurements do come with one major disadvantage:
there is a 50% reduction in detection efficiency when tracking one particular signal
quadrature because the LO spends half its time “sensing” the incorrect quadrature.
Contrary to homodyne detection, where θLO can be tuned to optimally detect a
particular signal quadrature, in heterodyne detection the phase quickly raps a full
2π, at a rate ∆LO,s, which results in all quadratures being simultaneously detected.
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Most of the central claims of experimental work presented as part of this disser-
tation are based on measurements of the balanced detector’s photocurrent PSD. For
a general balanced detector, the PSD of its photocurrent is given by

Sbal(ω) =

〈
ˆ̃I†bal(ω

′) ˆ̃Ibal(ω)
〉

2πδ̃(ω′ − ω)
, (3.27)

Sbal(ω)

G2PLO

=
(1− ε)~ωLO

2π
+

ε

2πδ̃(ω′ − ω)

〈[
ˆ̃ζ†s(ω

′ + ωLO)eiθLO− ˆ̃ζs(−ω′ − ωLO)e−iθLO

]
·
[

ˆ̃ζs(ω + ωLO)e−iθLO − ˆ̃ζ†s(−ω − ωLO)eiθLO

]〉
, (3.28)

which in homodyne configuration, for the LO and signal beams considered here, leads
to

S
(hom)
bal (ω)

G2PLO

=
~ωLO

2π
+ ε

[
4Ps sin2(θLO)δ̃(ω)

+Pmod[1− cos(2θLO − θ)]·
[
δ̃(ω − ωmod)+δ̃(ω + ωmod)

]]
, (3.29)

and similarly in a heterodyne configuration yields

S
(het)
bal (ω)

G2PLO

=
~ωLO

2π
+ ε

[
Ps

[
δ̃(ω −∆LO,s) + δ̃(ω + ∆LO,s)

]
+
Pmod

2

[
δ̃(ω −∆LO,s − ωmod) + δ̃(ω −∆LO,s + ωmod)

]
+
Pmod

2

[
δ̃(ω + ∆LO,s − ωmod) + δ̃(ω + ∆LO,s + ωmod)

] ]
. (3.30)

The ~ωLO terms in Eqs. 3.28–3.30 represent the dominant LO’s shot-noise (PLO �
Ps, Pmod), which does not subtract away in a balance measurement since vacuum
fluctuations are uncorrelated. The remainder of the photocurrent’s PSD is propor-
tional to the signal beam’s PSD. In the homodyne detection case (Eq. 3.30), the
measured PSD is a copy of the power contained in quadrature θ = 2θLO + π of the
signal beam. In the heterodyne case (Eq. 3.30), the recorded PSD is an average of
the signal beam’s power distribution over all quadratures. The power distribution of
the signal quadrature containing the modulation of interest, θ, can be isolated in a
heterodyne measurement by first demodulating the balanced-detection photocurrent
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at frequency ∆LO,s:

Îdem(t) = Îbal(t)× sin(∆LO,st+ θLO −
θ

2
) (3.31)

S
(het)
dem (ω) =

〈
ˆ̃I†dem(ω′) ˆ̃Idem(ω)

〉
2πδ̃(ω′ − ω)

(3.32)

S
(het)
dem (ω)

G2PLO

=
1

2

~ωLO

2π
+ ε

[
Ps sin2(θ)δ̃(ω)

+
Pmod

2

[
δ̃(ω − ωmod) + δ̃(ω + ωmod)

] ]
, (3.33)

Interestingly, the θ-quadrature PSD (Eq. 3.33) contains only half of the total detected
shot-noise; the remaining half is mapped onto the orthogonal, (θ + π) quadrature.

Consequently, the relative modulation-signal-to-shot-noise ratio in S
(het)
dem (ω) is twice

as large as that in S
(het)
bal (ω). This advantageous signal-to-noise ratio (SNR) was

used when attempting to sensitively measure externally applied forces, as detailed in
Chapter 6.

Eqs. 3.27–3.33 apply for all real values of frequency ω, from −∞ to ∞. How-
ever, spectrum analyzers typically only report positive frequencies when displaying
PSDs. For the remainder of this dissertation, quoted PSDs will contain only positive
frequencies; negative frequency components will be dropped.
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Chapter 4

The experimental apparatus

This chapter outlines the details of the experimental setup and the methods em-
ployed to conduct studies of optomechanics with ultracold atoms. The content builds
on the information provided in Tom Purdy’s dissertation [50], in particular details re-
garding the construction of the experimental chamber and the atom chip, and the first
stages of experimental routines, which pertain to the preparation of atomic ensembles.

The experiments discussed in this dissertation were based on similar experimental
sequences lasting ∼ 30 to 35 seconds. Summarized briefly, these sequences started
with the capture of ∼ 107 87Rb atoms emanating from a continuously powered getter
in a magneto-optical trap (MOT). Collected atoms were then referenced to an atom
chip by briefly releasing them from the initial MOT and re-capturing them in a dif-
ferent MOT, a UMOT, one whose magnetic field was in part produced by U-shaped
wires on the chip. Atoms were next optically pumped to the |F = 2,mF = 2〉 state
and cooled via forced radio-frequency (RF) evaporation. Once cold, they were mag-
netically carried to a Fabry-Pérot cavity, termed “science cavity” and located ∼ 2
cm away from the MOT region, by applying tailored currents to patterned “conveyor
belt” wires on the atom chip. Once at the cavity, atoms underwent a second round
of forced RF evaporation before being transfered to a far-off resonance trap (FORT)
formed by a standing wave of light inside the optical cavity. Atoms were then disper-
sively probed near their |F = 2,mF = 2〉 → |F = 3,mF = 3〉 closed cycling transition
(87Rb D2 transition) with σ+-polarized light, leading to optomechanical interactions,
before being released from their trap and imaged.

The material presented in this chapter deals with relevant information surrounding
the last stage of experimental sequences, when atoms were at the science cavity. Ear-
lier stages will be discussed only secondarily as part of the “experiment’s checklist,”
which was developed to help diagnose problems with the MOT and atom prepara-
tion in general. Two experimental realizations are discussed in this dissertation: one
in which atoms were prepared in a single-color FORT, i.e. formed by only one trap
light (λA = 850 nm), and therefore collectively behaved as a single effective mechan-
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ical element, and one in which atoms populated several lattice sites of a superlattice
FORT, i.e. formed by two trap light beams (λA = 861 nm, λB = 843 nm), where each
populated site served as a distinguishable mechanical element. The two realizations
differed somewhat in construction, with the prime difference being the upgrade of two
trap lasers in the multi-oscillator setup. Experimental details covered in this chapter
will focus mostly on the more involved multi-oscillator construction.

4.1 The building blocks

The creation of a cold-atoms-based mechanical oscillator, followed by tailored
optomechanical probing, required a carefully coordinated series of actions among six
central building blocks: two trap (FORT) lasers, a probe laser, the science cavity, a
“transfer” optical cavity, which served as a means to frequency reference the lasers
and narrow their spectral emission, and a balanced heterodyne detector for the probe
at the output of the science cavity. Information regarding each block is detailed in
this section. The complete experimental lock chain, which includes interconnections
among these building blocks, is discussed in the following section.

4.1.1 Science cavity

The theory of optical cavities is discussed in detail in Ref. [66]. In this section, I
provide only a quick overview of certain key features relevant for the science cavity.

The place where optomechanics came to life during experiments was in the science
cavity, a high-finesse Fabry-Pérot cavity. The cavity is composed of two highly reflec-
tive mirrors, with radius of curvature R = 5 cm, separated by a distance L = 250µm;
it is a type of near-planar (R � L) stable resonator. The cavity admits particular
transverse electromagnetic (TEM) modes of Hermite-Gaussian beams (see Fig. 4.1),
with eigenfrequencies

ωq,m,n = FSR

(
q + (m+ n+ 1)

arccos(gcav)

π

)
, (4.1)

where m and n are the horizontal and vertical orders of the eigenmodes (TEMm,n), q
is the longitudinal order of the eigenmodes and gcav = 1−L/R = 0.995 parametrizes
the cavity. The cavity eigenmodes have a common beam waist size of

w2
0 ∼

λ

π

√
RL

2
= (25µm)2 , (4.2)

where λ is the wavelength of the optical field. The spectrum of allowed TEM modes
repeats every free spectral range, FSR:

FSR = ωq+1,m,n − ωq,m,n = c/ (2L) = 2π × 600 GHz, (4.3)
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Figure 4.1: Near-planar Fabry-Pérot (FP) optical cavity. (a) Schematic of a FP
cavity in near-planar configuration, with mirrors (solid grey) separated by a distance
L. The transverse size of resonating beams varies only minutely between the center
and the edges of the cavity, with waist w0 relative to the longitudinal axis of the cavity
(dashed line) (b) Transmission spectrum of a near-planar FP cavity. TEM modes are
closely spaced in frequency (Eq. 4.1). (Inset) Magnified image of a TEM0,0-mode
transmission signal.

where c refers to the speed of light. In experiments discussed in this dissertation, all
three lasers were adjusted to be resonant with a TEM0,0 of the science cavity.

The FSR is related to the cavity’s quality factor, also known as its finesse, F , and
the cavity’s half-width at half-maximum (HWHM), κ:

F =
FSR

2κ
. (4.4)

The cavity mirrors’ imperfections, specifically their transmission, T , and loss, L,
coefficients, define F :

F =
2π

T1 + T2 + L1 + L2

. (4.5)

Coefficients T and L can be understood as the probability that a photon be transmit-
ted through a mirror or loss in a mirror’s coating or substrate during one round-trip
through the cavity. F thus reflects the likelihood of a photon reflecting off both mir-
rors and hence surviving a cavity round-trip. Both F and κ are wavelength dependent
as the mirror coatings are designed to operate at one particular wavelength. For the
science cavity, mirrors were designed to maximize the reflectivity in the vicinity of
the 87Rb D2 transition line (λ = 780 nm).

A cavity with T1 = T2 is referred to as a “balanced” or “two-sided” cavity, while
a cavity with T1 6= T2, is termed an “unbalanced” or “one-sided” cavity. The science
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cavity is of the latter form; layers of reflective coating were removed from one of
the mirrors prior to assembling the cavity (see Ref. [50]). Each cavity mirror’s
transmission at λ = 780 nm was individually measured during the construction phase
of the experiment to be T1 = 1.5× 10−6 and T2 = 12× 10−6. After the experimental
apparatus was completed, the total mirror losses, and hence the cavity finesse, at
λ = 780 nm were determined using the method proposed by Christina Hood in
Ref. [67] and employing the already known transmission ratio between both cavity
mirrors (T2/T1 = 8): L = L1 + L2 = 25× 10−6 and F = 163, 000.

The half-linewidth, κ, was also measured at λ = 780 nm by cavity ringdown. The
method essentially consists of measuring the cavity’s impulse response function by
inserting a delta-function-in-time light pulse into the cavity and measuring the light’s
exponential decay rate (1/τdecay) out of the cavity:

τdecay =
1

πκ
. (4.6)

A delta-function-like pulse was generated by very quickly sweeping the laser light
across the cavity resonance in frequency space. This could have in principle been
done by rapidly varying the laser frequency. Instead, the laser frequency was kept
fixed and the science cavity length was quickly modulated, thereby modulating the
cavity resonance frequency. This modulation was done by applying a strong oscillating
tone to one of the cavity mirrors’ piezoelectric tube. The measurement yielded κ =
2π × 1.82 MHz.

4.1.2 CQED parameters

The intensity-averaged volume occupied by TEM0,0 modes in a near-planar cavity
is given as

Vm =
π

4
w2

0L. (4.7)

The dipole moment for the |F = 2,mF = 2〉 → |F = 3,mF = 3〉 closed cycling transi-
tion in 87Rb is d = 2.53× 10−29 C·m. When applied to the science cavity, with probe
light near λ = 780 nm, these properties lead to a maximum probe-atom interaction
rate of go = 2π × 13.1 MHz. This rate far exceeds κ and the atomic D2 transition
full-linewidth, Γ = 2π × 6.07 MHz, which means that every photon scattered by the
atomic ensemble during experiments was most likely to remain within its TEM0,0

science cavity mode. This scattering condition is parametrized by the CQED coop-
erativity, C = g2

o/κΓ = 15.7. Since C > 1, the experimental apparatus is said to
operate in the “single-photon strong-coupling” regime.
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Diode Lens Grating

Steering mirror

Figure 4.2: Schematic of a typical extended-cavity diode laser in Littrow configura-
tion. The wider beam between the diode and the grating represents the overlap of
the diode’s emission and the grating’s first-order diffraction mode.

4.1.3 Lasers

DL Pro tunable diode lasers from Toptica Photonics1 were used for the probe and
FORTs. These lasers are a type of tunable external-cavity diode lasers in Littrow
configuration [69] (Fig. 4.2).

The basic principle underlying the operation of extended-cavity diode lasers is the
partial reflection of emitted light back into the laser diode to maintain stimulated
emission of photons, and hence stabilize the laser at one particular wavelength. In
the case of Littrow configurations, this partial reflection is ensured by a diffraction
grating, a periodically structured optical component which generates constructive
optical interferences at wavelength-dependent angles, θ:

θr = arcsin

(
rλ

ds
− sinθi

)
, (4.8)

where ds defines the spatial period of the structure (e.g. the spacing between slits in
a multi-slit grating), r is an integer that quantizes the output grating angle θr, and
θi is the incidence angle of the light beam on the grating surface. The angle of the
diffraction grating is adjusted such that r = 1 diffraction order reflects back into the
laser diode (θ1 = 0), while the more intense r = 0 diffraction order is allowed to exit
the laser housing and serve as the experimentally useable laser source. This condition

is met when θi = arcsin
(
λ
ds

)
. The use of an AR-coated laser diode in this setup is

particularly important: it prevents partial reflections from the diode’s external facet,
which would compete with the grating-provided reflection into the diode and hamper
the overall stability of the system.

Optical feedback alone is generally not sufficient to maintain an extended-cavity
diode laser’s coherence for a long period of time. Additional sources of decoherence

1Ref. [68] offers a great description of these lasers and some of the theory behind them.
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that must be overcome include nanometer-scale displacement drifts of the partially
reflecting element and electronic noise in the diode’s current source. Active electronic
feedback based on the external measurement of the laser’s frequency is therefore nec-
essary to finely regulate the laser’s emission, and hence maximize the coherence of its
stimulated emission process. In the experimental setup described here, this stabiliz-
ing feedback stemmed from Pound-Drever-Hall (PDH) locks to the transfer cavity2.
Each of the three lasers were individually stabilized by feeding back PDH-lock signals
through two separate loops using Toptica Photonics’ Fast Analog Linewidth Con-
trol (FALC 110): measurements of low-frequency drifts were sent to the piezoelectric
device that controls the diffraction-grating angle, while high-frequency fluctuations
were canceled by being returned to the diode’s current source.

Under optimal operating conditions, this setup enabled laser frequency linewidths
below 10 kHz. In other words, stimulated photons emitted 100µs = 1/(10 kHz)
apart from each other remained correlated. This achievement was important as it
significantly reduced noise near the mechanical oscillation frequency of trapped atoms
(ωm ∼ 2π × 120 kHz), thereby minimizing optically induced heating of the atomic
motion [49]. The lasers’ overall quietness however hinged on the quality of their
diodes. It turns out that many off-the-shelf AR coated diodes do not achieve the
optimal, sub-10-kHz operating condition. It also turns out that Toptica Photonics
has a dedicated unit to test and screen available laser diodes, and include only those
that meet the stringent specifications as part of their DL Pro package. As a word of
advice to future users of the experimental apparatus, I suggest you opt for Toptica’s
laser diodes instead of low-price diodes to ensure quality performance.

4.1.4 Transfer cavity

A Toptica Photonics’ FPI 100, a confocal3 (R = L = 7.5 cm) Fabry-Pérot interfer-
ometer with FSR = 1 GHz and κ near 1 MHz for the probe (780 nm) and trap (near
850 nm) wavelengths, was used as the transfer cavity. The cavity was placed inside
an evacuated chamber and was both temperature stabilized and vibration isolated to
maintain its length and position constant.

Temperature control was achieved via a thermoelectric cooler (TEC) sandwiched
between the transfer cavity and a copper slab thermally connected to the vacuum
chamber by a few thin copper ribbons. In this setup, the vacuum chamber served
as a large temperature reservoir. The temperature gradient produced by applying a
current to the TEC was kept absolutely constant during experiments by an active
feedback on the applied TEC current, as detailed in Section 4.2.1 in the context of
the overall system’s lock chain. The entire cavity-to-copper stack sat on pieces of
Sorbothane (the brand name of a viscoelastic polymer used for mechanical damping)

2Details regarding the theory of PDH frequency stabilization is provided in Ref. [70].
3For a confocal cavity, FSR = c/ (4L).
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Figure 4.3: Schematic of the heterodyne-detected probe power spectrum in trans-
mission of the science cavity during typical experiments. The probe carrier (gray) is
depicted as being resonant with the science cavity, with the EOM-applied sidebands
(green) symmetrically detuned from cavity resonance and ∼ 1/5 of the carrier power.
The science cavity lorentzian lineshape (dashed blue) is shown for reference.

that acted as a low-pass vibration filter, keeping the cavity isolated from ground
vibrations.

4.1.5 Balanced heterodyne detector

The theory of balanced detection is discussed in Chapter 3.

Detection of the probe in transmission of the science cavity was done by hetero-
dyne detection with an optical local oscillator (LO) on a NewFocus 80-MHz balanced
photoreceiver. The two beams, the probe and LO, originated from a common laser
source, the probe laser, and were separated using a polarizing beamsplitter (PBS),
with most of the light directed on the LO path, which circumvented the science cav-
ity. The LO power was stabilized to yield 1 mW at the heterodyne detector, which
enabled the probe to be detected with shot-noise limited sensitivity. The small re-
maining fraction of laser light formed the probe and was sent to the science cavity.
The probe was offset in frequency by ∆LO,p = ωp− ωLO = 2π× 10 MHz from the LO
using a pair of oppositely diffracting AOMs on the cavity-bound path (see Fig. 4.4).
In addition, small sidebands were applied on the probe by placing a resonant EOM,
with resonance frequency ωmod = 2π × 2.87 MHz ∼ 1.6κ, on the probe path. These
sidebands served only as frequency markers; it is the carrier that acted as the op-
tomechanical probe, with a mean number of intracavity photons, n̄, near unity. The
sidebands added a negligible amount of incoherent heating during probing, and mu-
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tually cancelled their optomechanical effects (e.g. Γopt, ωopt) since they were detuned
by an equal amount to the blue and red of cavity resonance during experiments (the
probe carrier was set to be on resonance - see Fig. 4.3).

Powering the two oppositely diffracting AOMs and the resonant EOM required
three separate radio-frequency (RF) sources. Two more function generators were
used to demodulate the heterodyne-detected LO-probe beats for active control of
certain probe properties (more details in Section 4.2.3). Since demodulation hinges on
having electronic local oscillators with constant phases, the phases of all five frequency
sources were locked to a “master” function generator. The master generator also
clocked GageScope, the computer-based system with which experimental data was
recorded.

4.2 Lock chain

The integration of all five building blocks into a single, orchestrated unit was
experimentally challenging. It required developing a network of eleven active feed-
back loops, involving both optical and electronic connections, as shown in Fig. 4.4.
The specifics about the transfer-cavity and science-cavity feedback circuits, and the
procedure followed to lock the entire system are discussed in this section.

A common theme in many of the coming subsections is the overlapping of cavity
resonances, specifically the TEM0,0 cavity modes corresponding to the probe, laser
A and laser B. What does that mean exactly? It does not mean overlapping them
in frequency, since all three lasers have widely different optical frequencies. Instead,
“overlapping” refers to adjusting the lasers’ optical frequencies so as to make them all
resonant with a TEM0,0 cavity mode at one common cavity length. This is achieved
by choosing three TEM0,0 modes, one for each laser, that are spaced by an integer
multiple of the cavity’s FSR. For example, if the probe frequency is set to ωp =
2π × 384.188 THz (∆ca ∼ −2π × 40 GHz) and the cavity length happens to yield a
cavity FSR exactly equal to 2π × 600 GHz, then plausible resonant frequencies for
lasers A and B are ωA = 2π × (384.188 − 60 × 0.600)THz = 2π × 348.188 THz and
ωB = 2π × (384.188− 48× 0.600)THz = 2π × 355.388 THz.

4.2.1 Laser-transfer cavity locks

Three of the control loops were designed to reduce the level of technical phase
noise of the trap and probe lasers’ emission by PDH locks, described in Section 4.1.3.
A few tens to hundreds of microwatts were picked off from each laser output and
fiber-coupled to the transfer cavity area. The signals from laser B and the probe
were sent through fiber-based wide-frequency-band electro-optic modulators (EOMs)
from EO Space to produce sideband tones. These sidebands provided the necessary
degrees of freedom to simultaneously overlap all three lasers on both the science and
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Figure 4.4: Experimental lock chain. The schematic highlights the free-space (solid
line) and fibered (dashed line) optical paths of each laser, along with the many elec-
tronic feedback connections (dotted lines - color). For clarity, certain components
have been omitted from the schematic including electronic control systems, wave
plates and function generators. Definition of acronyms: OI - optical isolator; EOM
- electro-optic modulator; AOM - acousto-optic modulator; TEC - thermoelectric
cooler; PZT - piezo-electric transducer; PD - photodiode; APD - avalanche photodi-
ode; IS - intensity stabilization; SL - “sidelock,” which refers to the probe’s frequency
lock relative to the science cavity resonance; HF - high-frequency lock; LF - low-
frequency lock.
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transfer cavities. Indeed, overlapping three lasers on two separate cavities requires
six different frequencies, which can only be attained if at least five frequencies are
tunable. In the experiments discussed here, the five degrees of freedom were the center
frequencies of all three lasers and the RF frequencies powering the two fiber-based
EOMs.

The phase modulation necessary to produce a dispersive error signal in reflection of
the transfer cavity was applied directly on the diodes of laser A and B. The same was
not done on the probe to avoid having the applied modulation impact the dispersive
interaction with atoms at the science cavity. Instead, the probe’s PDH modulation
was applied via the in-fiber EOM, by mixing the modulation tone with the EOM’s
RF signal. In all cases, the feedback was applied to the laser using Toptica’s FALC
110 (see Section 4.1.3).

In addition to narrowing the spectral emission of each laser, these three lock loops
also pegged each laser’s optical frequency to the transfer cavity and, by extension, to
each other. The lasers would therefore commonly follow any changes in the transfer
cavity lengths, whether intended or not. Conversely, the laser frequencies could be
kept fixed by actively maintaining the cavity length constant. In particular, the
probe’s detuning from atomic resonance, ∆ca, a critical element of the optomechanical
coupling strength gOM, could be stabilized to a desired value. This capability was
included in the experimental setup by monitoring the probe’s emission frequency
on a Toptica Photonics’ High Finesse Wavelength Meter, termed “wavemeter,” and
applying a proportional-integral (PI) feedback signal to the transfer cavity’s TEC to
hold the probe’s frequency constant. The feedback was digitally computed, the only
digital control circuit in the entire lock chain.

4.2.2 Intensity and science cavity locks

As was done for the laser locks to the transfer cavity, all three laser beams were
simultaneously overlapped on the science cavity. This time, however, the laser carriers
were directly overlapped, by tuning their respective frequency, instead of relying on
EOM-produced sideband tones. Since all three lasers were referenced to each other
via their respective lock to the transfer cavity, maintaining this common overlap on
the science cavity required referencing only one laser to the science cavity. The probe
would have been a poor choice to fulfill that role. The ability to sweep the probe
independently of the cavity, to tune in real time the probe-cavity detuning, ∆, and to
turn off the probe completely are desirable experimental abilities that could not have
been possible if the probe was locked to the science cavity. Instead, one of the trap
lasers, laser B, was used to chain the laser system to the science cavity. Note that
in the single-oscillator work, only laser A was used, so it served as the laser system’s
chain link to the science cavity.

The locking technique was similar to a PDH lock. A dispersive error signal was
generated by detecting the phase modulation applied on laser B’s diode as part of the
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transfer cavity lock (Section 4.2.1) in transmission of the science cavity instead of in
reflection. Although not technically correct, I will term this method “transmission-
PDH.” It is important to note that even though the same applied phase modulation
was used in two different feedback loops, the information recorded in each loop was
distinct. The transmission-PDH lock’s low-frequency information was used to sta-
bilize the science cavity’s mirror separation; the high-frequency information was fed
back to laser B’s AOM and fed forward to laser A’s AOM. This feedback-feedforward
combination was made possible by powering both AOMs with a common voltage
source, and using the same Bragg diffraction order in both double-pass AOM setups.
I note that feeding high-frequency information to lasers A and B had a marginal im-
pact on the atoms. As detailed later in the dissertation, the temperature and lifetimes
of optically trapped atoms were observed to be dominantly influenced by the level of
noise on the two trap lasers’ emission.

As described in Section 4.4, the oscillation frequency of atoms-based mechani-
cal elements is determined by the trap lasers’ intracavity intensity. Similarly, the
strength of atoms-probe optomechanical coupling is proportional to the mean num-
ber of intracavity probe photons, n̄. Control over each laser’s intracavity intensity is
therefore necessary. For the trap lasers, this control was experimentally achieved by
stabilizing their respective science-cavity-transmitted optical power to a computer-
controlled set-point. The optical trap depth could therefore be optimally adjusted in
real time over the course of experimental routines. For the probe, a more elaborate
construction was used, one that also provided control over ∆. The maximum num-
ber of intracavity probe photons, nmax, obtained when placing the probe directly on
science cavity resonance, was controlled by picking off a small fraction of light before
the probe enters the cavity and actively stabilizing the pick-off’s power to a desired
level. This method was successful in part because the input coupling into the science
cavity was observed to remain constant over several days. The actual intracavity
probe photon number, n̄, was determined and set using the balanced heterodyne de-
tector. Independent control of nmax and n̄ also defined ∆ based on the science cavity’s
lorentzian lineshape:

∆ = κ
√
n̄/nmax − 1. (4.9)

After-the-fact measurements of ∆ were made on each experimental iterations using
the recorded heterodyne signal. Details surrounding the active stabilization of n̄ and
∆ are presented in the coming subsection.

4.2.3 The heterodyne-detector-based locks

Since equally-spaced frequency markers were placed on the probe, active control of
∆, and by extension n̄, could have in principle been accomplished using a heterodyne-
detector-based transmission-PDH lock with a tunable offset. This would have required
two consecutive demodulations: first at the probe-LO detuning (∆LO,p = 2π × 10
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MHz), and then at the EOM modulation frequency (ωmod = 2π × 2.87 MHz). How-
ever, in practice, the signal-to-noise ratio (SNR) following the double demodulation
was simply too small to produce a reliable lock. The limitations were the very small
amount of detected sideband power, usually below 1 pW, and the relatively consid-
erable amount of noise added at the different amplification and demodulation stages
following heterodyne detection.

Instead, ∆ and n̄ were set by actively controlling the frequency of the RF signal
powering the “200 MHz AOM,” which importantly was common to both the probe and
LO, so as to maintain the lower-frequency sideband at a set intensity. This approach
required two parallel demodulations rather than two consecutive demodulations. The
clearest explanation I can offer starts with a mathematical expression of the system’s
heterodyne photocurrent in the absence of optomechanics (i.e. without atoms present
in the science cavity), which comes from Eq. 3.24:

Ibal(t) =
√
εG
√
PLO ·

[
2
√
Pp sin (2π × 10 MHz · t+ θLO)

+
√
Pmod sin (2π × 12.87 MHz · t+ θLO)

+
√
Pmod sin (2π × 7.13 MHz · t+ θLO − θ)

]
, (4.10)

where ε is the detection efficiency, G is the detection gain, θLO is the relative phase
offset between the LO and probe carrier, θ defines the phase of the applied modulation,
and PLO, Pp = 2κ~ωpn̄ and Pmod are the LO, probe carrier and probe sideband powers,
respectively. The latter two powers are related by the depth of the EOM modulation,
η: Pmod = η · Pp. In order to observe and eventually stabilize the amplitude of the
lower-frequency sideband, one must have a good handle on θLO, which is to say that
the relative path length difference between the LO and probe should be kept constant
via active control. Experimentally, this control was achieved by demodulating Ibal(t)
at 10 MHz,

I
(1)
dem(t) = Ibal(t) · cos(2π × 10 MHz · t), (4.11)

=
√
εG
√
PLOPp sin(θLO) + (higher frequency terms), (4.12)

and locking I
(1)
dem(t) to zero, thereby fixing θLO = 0, by stabilizing the position of a

retro-reflection mirror on to the LO path (see Fig. 4.4). The amplitude of the lower-
frequency sideband could then be isolated by applying a second, parallel demodulation
to Ibal(t), at 7.13 MHz, with a very specific phase:

I
(2)
dem(t) = Ibal(t) · sin(2π × 7.13 MHz · t− θ), (4.13)

=
√
εG

√
PLOPmod

2
+ (higher frequency terms). (4.14)

Stabilizing I
(2)
dem(t) to a computer-controlled setpoint thus stabilized Pmod, which for

a constant η also fixed Pp and, by extension, n̄. This rather involved method of
controlling n̄ was referred to as “sidelocking.”
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Figure 4.5: Beamsplitter model for any loss mechanism on an optical path. The
output optical signal’s electric field, ζ̂out, is related to that of the input, ζ̂in, based on
the transmission efficiency, ε: ζ̂out =

√
εζ̂in +

√
1− εζ̂vac. The electric field terms ζ̂vac

and ζ̂loss refer to vacuum fluctuations and the loss channel, respectively.

The probe’s detuning, ∆, was monitored during experimental runs by comparing
the mean number of transmitted photons in the red, n̄sb,r, and blue, n̄sb,b, sidebands:

∆ =
R + 1

R− 1
ωmod −

√
4Rω2

mod

(R− 1)2
− κ2, (4.15)

where R = n̄sb,r/n̄sb,b and ωmod = 2π × 2.87 MHz is the EOM modulation frequency.
As described in Chapters 5 and 6, both the single- and multi-oscillator experiments
were designed to operate with the probe on cavity resonance. Post-selection ensured
that only data with ∆ within ± 200 kHz ∼ ±κ/10 were kept for analysis.

4.3 Detection efficiency

Every source of optical power loss between the cavity and the detector must be
accounted for when determining the heterodyne detection efficiency. Fortunately,
every loss mechanism, regardless of its nature, can be modeled as light exiting the
incorrect port of a beam splitter and being replaced by an equivalent fraction of
optical vacuum fluctuations (Fig. 4.5). The overall detection efficiency is thus like
placing a series of beam splitters along the optical path, one for every channel of
optical loss, and then taking the product of their respective efficiency.

In the experimental setup, four different sources of loss were labeled for the probe
photons. The first concerned the efficiency with which intracavity photons would exit
the transmission port of the science cavity:

εcav =
T2

T1 + T2 + L1 + L2
= T2

F
2π

= 0.32. (4.16)

The inability to collect more photons from the one-sided science cavity was the main
source of loss in the detection chain. The second efficiency grouped the entire optical
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path between the science cavity and balanced detector. The dominant sources of loss
in that path were an optical isolator, inserted to prevent photons from being reflected
back to the science cavity, polarizing beamsplitters and dichroic mirrors. Combined,
these elements yielded a path efficiency of εpath ∼ 0.60. The third efficiency, termed
“mode-matching” efficiency, measured the spatial overlap of the LO and probe’s re-
spective gaussian mode at the heterodyne detector. Optimizing this efficiency was
not only a matter of aligning their wavevectors, but also making sure that their
intensity profiles were as identical as possible. Characterizing the mode-matching
efficiency, εmm, was done by comparing the root-mean-squared (RMS) value of the
measured LO-probe beat power, PRMS, relative to their respective optical powers at
the detector (PLO and Pp - recall Eq. 3.24):

εmm =
P 2

RMS

2PLOPp
=
VRMS/GTI

2PLOPp
∼ 0.80, (4.17)

where VRMS is the RMS voltage of the heterodyne-detected LO-probe beat, as mea-
sured on an impedance-matched device, and GTI is the transimpendance gain of the
balanced photodetector at the matched impedance. The fourth and final efficiency
was the quantum efficiency of the NewFocus 80-MHz balanced photoreceiver, that
is the number of electrons produced for every photon detected. The photoreceiver’s
specifications, in particular its quoted responsivity, indicated a quantum efficiency of
εq = 0.8.

The experimental setup’s overall detection efficiency was therefore given as ε =
εcav · εpath · εmm · εq ∼ 0.12. On good days, this compounded efficiency could reach
0.15, while on bad days it could drop to as low as 0.09. The overall detection effi-
ciency was commonly termed the homodyne detection efficiency to distinguish it from
the effective heterodyne detection efficiency. The latter applied when demodulating
the LO-probe beat to look at a particular quadrature of the probe signal, which as
explained in Section 3.2 would lead to a 50% reduction in efficiency.

4.4 Far off-resonance optical dipole trap (FORT)

The concept of optical trapping of particles was pioneered in the 1980s. Two archi-
tectures were simultaneously developed, one focused on biological structures [71, 72,
73], for which optical traps were termed “optical tweezers,” and the other, on neu-
tral atoms [16]. Today, far off-resonance optical dipole traps (FORTs) are common
occurrences in cold-atom experiments, including CQED experiments [28, 29, 51, 74].
Extensive descriptions of the theory behind optical traps can be found in many text-
books [43, 53, 75, 76] and review articles [77]. In this section, I will first outline a
few basic concepts regarding optical trapping and, in the process, present the one-color
FORT used for the single-oscillator experiments (Chapter 5). I will then expand on
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these concepts to introduce the two-color FORT used for the multi-oscillator experi-
ments (Chapter 6).

4.4.1 FORT with a single color of light

An optical trapping potential arises from a trap light’s induced dipole moment
on an atom, the same effect that contributed to the probe-induced energy splitting
between dressed states in Chapter 2. The effect is known as the AC Stark shift. For
a trap light that is far-detuned from an atomic transition, |∆ta| � Γ, the AC Stark
shift leads to a dipole potential, Udip, of the form

Udip =
~Γ

8

Γ

∆ta

It
Isat

, (4.18)

where It is the trap light intensity, Isat = ~ω3
aΓ/(12πc2) is the saturation intensity

of the atom’s closed cycling transition, and ωa and Γ are the frequency and full-
linewidths of the atomic transition. In the single-oscillator experiments, linearly
polarized light from laser A significantly red-detuned from both the D1 and D2 87Rb
transitions (∆ta < 0) was used to confine atoms prepared in the |F = 2,mF = 2〉
state. The atoms therefore experienced a total dipole potential, Ut, given by

Ut =
~It
8

(
1

3

Γ2

∆taIsat

∣∣∣∣
D1

+
2

3

Γ2

∆taIsat

∣∣∣∣
D2

)
, (4.19)

The factor of 1/3 and 2/3 for the D1 and D2 transitions, respectively, comes from the
Clebsch-Gordon (CG) coefficients, cCG, for optical transitions in 87Rb. Information
regarding Isat and Γ for 87Rb, as well as the the D1 and D2 transition frequencies can
be found in Ref.[78].

Eq. 4.18 shows that the spatial dependence of Udip is the same as that of It.
Here, each FORT was created with a TEM0,0 modes of the science cavity, which
has a sinusoidally varying intensity pattern along the cavity. The dipole potential
produced by laser A’s emission alone therefore had the form

Ut(z) = UA sin2(kAz + φA), (4.20)

where UA and kA refer to potential depth and wavenumber of laser beam A, re-
spectively. The angle φA captures the offset between the intensity standing wave of
beam A relative to the intensity standing wave of the probe, an offset caused by both
science-cavity mirrors having different reflectivity at wavelengths λA and λp.

Atoms deposited into the single-color FORT became trapped at locations where
Ut(z) was at a minimum. Since ∆ta < 0 during experiments, atoms were attracted to
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locations of maximum optical intensity, zmin,j:

dUt(z)

dz

∣∣∣∣
z=zmin,j

= 0, (4.21)

zmin,j =
1

kA

(
(2j + 1)π

2
− φA

)
, (4.22)

where j indexes the potential minima, i.e. the lattice sites, and takes on real positive
integers. Under typical experimental conditions, trapped atoms had a temperature of
2.5 to 5 µK, while the FORT had a potential depth of |Ut| ∼ kB · 50µK, where kB is
the Boltzmann constant. Atoms were therefore tightly confined in potential minima,
deep below the upper edge of the potential and with minimal excursions about their
respective potential minimum. Each atom’s effective potential could therefore be
expressed as a low-order expansion of Eq. 4.20 about its equilibrium point, zmin:

Ut(ẑi) = UA sin2(kAzmin + φA) + UAkA sin (2(kAzmin + φA)) ẑi (4.23)

+UAk
2
A cos (2(kAzmin + φA)) ẑ2

i ,

where ẑi refers to each atom’s displacement about zmin. The first term in Eq. 4.23
gives the constant energy offset of each trap minimum. This offset was negative
during experiments since ∆ta < 0. The second term describes the linear coupling
between each atom’s motion and the trap potential. The prefactor to ẑi, equal to
dUt(ẑi)/dẑi|ẑi=0, follows from Eq. 4.21 and is therefore identically 0. Finally, the
third term expresses the trap’s potential curvature at location zmin. This quadratic
dependence on motion relates to each atom’s harmonic motion and hence defines each
atom’s motional oscillation frequency:

m

2
ω2
m,i ẑ

2
i = UAk

2
A cos (2(kAzmin + φA)) ẑ2

i , (4.24)

ωm,i = ωm =

√
−2UAk2

A

m
. (4.25)

Every atom, regardless of its location in the FORT, therefore had the same oscillation
frequency, ωm.

Published results pertaining to optomechanical probing of the atoms’ collective
CM motional mode, where only laser A was used to form the FORT (λA = 850 nm),
were obtained with ωm = 2π×110 kHz, though the experimental setup had sufficient
trap light power to reach ωm = 2π× 200 kHz. In any case, the setup operated in the
unresolved-sideband regime, where ωm � κ (see Appendix A).

4.4.2 FORT with two colors of light

The objective in creating a FORT with two different colors of light is to produce
a superlattice, that is a lattice whose amplitude is spatially modulated due to beats
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between the intensity profiles of each light beams [79]. Experimental work involving
an array of atoms-based mechanical elements was done using an optical superlattice
formed by linearly polarized light from lasers A and B, with λA = 862 nm and
λB = 843 nm, respectively. Both lasers were therefore significantly red-detuned from
the D1 and D2 transitions of 87Rb. The total dipole potential experienced by atoms
in this case was given by extensions of Eqs. 4.19 and 4.20:

Ut(z) =
∑
A,B

~It(z)

8

(
1

3

Γ2

∆taIsat

∣∣∣∣
D1

+
2

3

Γ2

∆taIsat

∣∣∣∣
D2

)
, (4.26)

Ut(z) = UA sin2(kAz + φA) + UB sin2(kBz + φB), (4.27)

where A and B label the two different colors of light.
No analytic expression for the locations of potential minima in this optical super-

lattice exists; only a transcendental relationship can be obtained:

dUt(z)

dz

∣∣∣∣
z=zmin,j

= 0, (4.28)

UAkA sin (2(kAzmin,j + φA)) + UBkB sin (2(kBzmin,j + φB)) = 0. (4.29)

However, a low-order approximation of the FORT potential near each atom’s potential
minimum, zmin, can still be derived:

Ut(ẑi) = UA sin2(kAzmin + φA) + UB sin2(kBzmin + φB) (4.30)

+ [UAkA sin (2(kAzmin + φA)) + UBkB sin (2(kBzmin + φB))] ẑi

+
[
UAk

2
A cos (2(kAzmin + φA)) + UBk

2
B cos (2(kBzmin + φB))

]
ẑ2
i .

As before, this approximation applies for ultracold atoms, which are trapped deep
below the upper edge of their local potential wall. Eq. 4.30 has two interesting
differences relative to its single-color counterpart, Eq. 4.23, assuming kA 6= kB. First,
the energy offset varies from one potential minimum location to the next. This stems
from the spatial beat pattern between lasers A and B along the cavity axis, with
a beat period of (2/λB − 2/λA)−1 = 19.1µm. Second, although atoms are trapped
at locations of zero net optical force, as given by Eq. 4.29, the force from each trap
beam at these locations can be non-zero; atoms are attracted to spatial locations of
equal and opposite forces from the two trap lights. Consequently, contrary to single-
color FORTs, each trap potential in two-color FORTs can be linearly coupled to the
motion of atoms. This makes atoms more susceptible to low-frequency noise on the
trap lasers, as discussed in Chapter 6.

The motional oscillation frequency of each atom in an optical superlattice can be
modeled from the trap’s quadratic dependence on each atom’s ẑi:

m

2
ω2
m,i ẑ

2
i =

[
UAk

2
A cos (2(kAzmin+φA))+UBk

2
B cos (2(kBzmin+φB))

]
ẑ2
i , (4.31)

ωm,i =

√
2 [UAk2

A cos (2(kAzmin+φA))+UBk2
B cos (2(kBzmin+φB))]

m
. (4.32)
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Figure 4.6: Model of the FORT used during the multi-oscillator experiments, with
ωm,A,B = 2π× (127 kHz, 128 kHz). The figure includes the potential produced by
standing waves A (blue) and B (red) individually, as well as the total, combined
potential (gold). Lower panel shows a magnified view of the region bounded by the
dashed gray in the upper panel.

Interestingly, the oscillation frequency can vary quite substantially from one lattice
site to the next (zmin,j to zmin,j+1) depending on UA, UB, kA and kB. This dispersion
in ωm allowed each lattice site to be mechanically resolved and therefore enabled
the creation of an array of distinguishable atoms-based mechanical oscillators. More
details on this topic will be provided in Chapter 6.

The upper and lower bounds on ωm can be expressed as

ωm,max =

√
2 |UAk2

A + UBk2
B|

m
=
√
ω2
m,A + ω2

m,B, (4.33)

ωm,min =

√
2 |UAk2

A − UBk2
B|

m
=
√
ω2
m,A − ω2

m,B, (4.34)

(4.35)

where ωm,A and ωm,B refer to the individual trap frequency produced by lasers A and
B, respectively (Eq. 4.25). The largest variation in trap frequency, which coincides
with the condition of maximum variation in trap depth over one superlattice period,
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is attained when the two trap lights produce equal dipole potential (ωm,A = ωm,B).
This was the case in the mechanical-array experiments where ωm,A,B = 2π× (127
kHz, 128 kHz). The resulting potential structure is shown in Fig. 4.6.

4.5 The atoms

4.5.1 Distribution, temperature and number

As described in Tom Purdy’s dissertation [50], the magnetic transport to the
science cavity confined atoms into very tight cigar-shaped traps, with transverse
(i.e. along the y and z axes in Fig. 2.1) trap frequencies reaching 4.5 kHz at the
science cavity. Magnetically trapped atoms could therefore be tailored to have a
spatial extent along the cavity axis comparable to the FORT lattice spacing. The
magnetic field minimum inside the science cavity had to be carefully and precisely
overlapped with the FORT in order to optimally populate one particular optical lat-
tice site. This was experimentally achieved by adjusting the final atom-chip-based
waveguide wire currents during the atom transport to the science cavity, as described
in Dan Brooks’ dissertation [80]. Atoms were inserted into the cavity with the FORT
as weak as possible, with just enough trap light to reliably maintain the science cavity
lock. Once inside the cavity, with the magnetic trap still on, forced RF evaporation
was applied to reduce the spatial extent of the atom cloud, particularly along the
cavity axis, to a desired size. The evaporation also eliminated hotter atoms, but the
final temperature of optically trapped atoms was found to be predominantly depen-
dent on the characteristics of the FORT, such as the trap lasers’ linewidth (i.e. the
quality of their lock to the transfer cavity) and the level of linear coupling between the
atoms and trap lights in the two-color FORT. Nonetheless, the distribution, tempera-
ture and number of optically trapped atoms remained related; no experimental knobs
could control one of these parameters independently of the other two. Attainable
distributions, temperatures and numbers ranged from one to eight populated lattice
sites, from ∼ 1 to 10µK, and from ∼ 800 to 6000 atoms, respectively.

A sporadic source of heating was uncontrolled noise impulses during experimental
sequences, such as current surges on one of the conveyor wires during atom transport
or mechanical “earthquakes” in the atom chip due to intense dissipated heat from the
integrated electrical wires. These transient noises would show up on certain days for
no apparent reasons and would rattle both the science cavity and the magnetic trap
minimum. Although the sources of noise were difficult to track down, the presence
of noise bursts could be clearly observed when monitoring the trap lights’ intensity
stabilization signal in transmission of the science cavity and the currents circulating
through the atom chip wires using Hall probes. Noises would tend to appear at
particular time intervals during and after atom transport. Atoms were found to be
most immune to them when in the FORT. Experimental sequences were therefore
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tailored to hurry atoms into the FORT and hold them in the trap, when possible,
to allow the noise bursts to pass before undertaking optomechanical measurements.
Post-selection was also at times used to reject experimental iterations containing too
few atoms.

As previously mentioned, the distribution of atoms in the FORT was intimately
related to the location of magnetic trap minimum relative to the science-cavity optical
mode during handoff. Maintaining a stable atom chip temperature was observed to
be critical to ensure atoms were inserted at the correct location along the cavity axis
on every experimental iteration. As described in Tom’s dissertation, temperature
regulation was done through an actively controlled TEC, which had a maximum
current input of 1.5 A. The TEC was capable of maintaining a steady temperature over
an indefinite number of consecutive experimental iterations provided each iteration
lasted at least 20 seconds. When shorter experimental cycles were employed, the
average thermal load caused by the intense atom-chip-wire current on each cycle
would exceed the TEC’s capabilities, resulting in the science cavity slowly moving
relative to the atom chip and hence atoms being deposited at unintended locations
in the FORT.

4.5.2 Experimental checklist

As with any atomic physics experiment, properly preparing the atoms is key to
getting good, reliable data. Here, the quality and size of the atoms-based oscillator
produced at every experimental iteration was intimately tied with the first experimen-
tal stages, involving atom trapping and cooling prior to transport. For that reason,
at the start of every day, the MOT light, routed to the experimental chamber via
fiber optic cables, was re-optimized: lasers were re-locked when necessary and the
beam path leading to fiber optic cables were carefully adjusted to maximize the light
intensity at the experimental chamber.

Despite these day-to-day tweaks, fewer or no atoms were at times observed at the
science cavity region. In virtually all cases, the root cause pertaining to a problem
during the preparation stages, not with the atom transport or the hand-off to the
FORT. Identifying the problem was sometimes hard. The last resort was always
adjusting the mirrors directing MOT light into the experimental chamber, as the
process was pain staking and difficult to undo. But, that option was sometimes used
a little pre-emptively, before other possible causes were verified. It was therefore
determined that having a “checklist” of things to test before tweaking the MOT
beam alignment into the science chamber was beneficial. The list included some
standard elements, applicable to many atomic physics experiments, such as the level
of MOT repump power, the obstruction of free-space-circulating MOT beams, the Rb
dispenser current setting. The list also included elements specific to this experimental
setup, such as the range of motion of electro-mechanically controlled waveplates and
the MOT to UMOT handoff. Implementing a checklist considerably helped in quickly



45

gravity

t1

t4

t2

t3

Figure 4.7: TOF imaging. The schematic shows the superposition of four fictitious
images, taken at four distinct times (labeled 1 through 4), of an atom cloud falling
under gravity and ballistically expanding after being released from a gaussian trap.
The uneven vertical and horizontal widths at t1 indicates the trap was initially asym-
metric, while the symmetric atomic distribution at t4 shows that atoms were initially
in thermal equilibrium. The variation in the cloud’s grey shade as a function of time
reflects the decreasing atomic density as the cloud ballistically expands.

diagnosing atom-preparation-related problems.

4.6 Characterization tools at the science cavity

Three tools were used consistently used to properly calibrate and measure both
atomic and optical properties at the science cavity. These tools and methods are
discussed in this section.

4.6.1 Absorption imaging in time-of-flight

Absorption imaging in time-of-flight (TOF), that is a motion-picture-like series of
snapshots of atoms expanding after being released from their optical or magnetic trap
(Fig. 4.7), was a powerful tool to determine the atomic cloud’s size, temperature and
mean atom number. The pictures were taken horizontally, perpendicularly to both
the science cavity axis and the direction of free fall. The imaging process consisted of
first applying a strong steady-state magnetic field along the imaging axis to tilt the
atomic spins, then releasing the atoms from their trap and, after waiting a controllable
amount of time (i.e. the time-of-flight - TOF), resonantly imaging the atoms on their
|F = 2,mF = 2〉 → |F = 3,mF = 3〉 closed cycling transition. The process would
then be repeated over multiple experimental iterations, changing the TOF at every
iteration.

Atoms released from their trap expanded ballistically while falling under gravity.
The cloud’s time-dependent size along one cartesian direction, σTOF(t), was set by the
convolution of two gaussian distributions: the atomic distribution and the velocity
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distribution along that same cartesian direction. The cloud’s initial gaussian full-
width at half-maximum (FWHM), σw, therefore added in quadrature with the cloud’s
mean gaussian expansion to yield σTOF(t):

σTOF(t) =
√
σ2

w + |v|2t2, (4.36)

where |v| =
√
kBT/m was the cloud’s mean speed as defined by the equipartition

theorem and T was the mean temperature of atoms. By fitting the series of measured
gaussian cloud sizes as a function of the TOF according to Eq. 4.36, σw and T along
the cartesian directions perpendicular to the imaging axis could be determined.

Information regarding the atom number was determined from the cloud’s optical
depth. The principle was simple: the more light was absorbed by the atomic cloud
during imaging, the more atoms must have been present in the cloud. Details on
how to extract the number of atoms from TOF images is described in Tom Purdy’s
dissertation [50].

4.6.2 Parametric heating

A well-known method to characterize potential traps in atomic physics is paramet-
ric heating. The technique relies on modulating the source of the trap (e.g. magnetic
field amplitude or light intensity). When tuning the modulation to exactly twice the
trap’s harmonic oscillation frequency, 2× ωm, the motion of each atom is parametri-
cally excited until their exponentially growing motional amplitude carries them out
of the trap.

This technique was applied throughout the experiments described in this disser-
tation to determine ωm,A and ωm,B. The process consisted of loading atoms into a
single-color FORT of interest, either A or B, applying a small modulation at fre-
quency ω on the intensity stabilization signal of the laser light for a time td, and
measuring both the number of remaining atoms and the cloud’s final transverse size
in TOF. The process would then be repeated several more times, varying ω at every
iteration.

Fig. 4.8 shows a typical result obtained from such a measurement. Atoms mini-
mally responded when the modulation was set above 2ωm, leading to a narrow imaged
cloud containing nearly all atoms. Atoms responded most strongly when the drive
was tuned just below 2ωm due to the trap’s anharmonic potential curvature. Atoms
had again little response to the applied drive when driving far below 2ωm. Although
the number of surviving atoms and the cloud’s spatial size in the direction transverse
to the cavity axis pointed towards a similar ωm, measurements of the cloud size gen-
erally gave more precise results. Results were found to be most accurate when weakly
modulating the trap light, but doing so for a long time (td ≥ 100 ms).
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Figure 4.8: Example of measured atom number (red) and cloud size (blue) following
parametric heating of optically trapped atoms. Data points shown here were done
using laser A and indicate ωm,A = 2π × 121 kHz. Lines only serve as guides for the
eye.

4.6.3 Dispersive contrast measurements

As shown in Eq. 2.14, atoms positioned along the probe’s standing wave collec-
tively shift the effective resonance frequency of the science cavity. Experimentally,
when loading a gaussian distribution of magnetically trapped atoms at a particular
location along the cavity axis, the observed shift is dependent on both the atoms’
gaussian full-width at half maximum (FWHM), σw, and the distribution of CQED
coupling rates, g(z), in the overlapping lattice sites. By mapping the cavity resonance
shift, ∆N , as a function of loading location, za, a measurement which has become com-
monly termed “contrast measurement,” locations of maximum linear optomechanical,
as well as parameters N and σw can be determined.

Consider first a single-color FORT, e.g. an optical trap formed only by laser A. For
sufficiently weak probes, atoms are dominantly trapped by laser A at locations given
in Eq. 4.22. Each lattice site has a unique probe-atom coupling rate, parametrized
by φj = kpzj, since the lattice site spacing, a = λA/2 = 425 nm, is incommensurate
with the period of the probe’s intensity standing wave, λp/2 = 390 nm (Fig. 4.9).
During the magnetic-to-optical trap handoff, magnetic and optical fields are ramped
faster than the site-to-site tunneling timescale, though adiabatically relative to a
trap oscillation period. Each optical lattice site thus acquires a population of atoms
proportional to its overlap with the magnetically trapped atomic ensemble. Under
ideal experimental conditions, where the initial cloud’s location za can be controlled
with arbitrary precision, lattice site j, located at zmin,j (Eq. 4.22), has an atom
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Figure 4.9: Example of the squared CQED coupling rate distribution over an entire
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population of

Nj =

∫ zmin,j+a/2

zmin,j−a/2

N

σw

√
2π
e−

1
2( z−zaσw

)
2

dz, (4.37)

=
N

2

[
erf

(
zmin,j + a/2− za√

2σw

)
− erf

(
zmin,j − a/2− za√

2σw

)]
. (4.38)

The overall cavity resonance frequency shift (Eq. 2.14) as a function of loading position
za is therefore given as

∆N(za) =
∑
j

Ng2
o sin2(kpzmin,j)

2∆ca

×[
erf

(
zmin,j + a/2− za√

2σw

)
− erf

(
zmin,j − a/2− za√

2σw

)]
, (4.39)

where j runs over all lattice sites, contrary to Eq. 2.14 where i spanned all atoms. In
the limit of an infinitely narrow initial atomic distribution (σw → 0), all atoms would
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Figure 4.10: Model of the atom-induced science-cavity resonance frequency shift, ∆N ,
at each lattice site based on the spatial distribution of squared CQED coupling rates
and optical potentials. Three separate FORT structures are considered: laser A (blue
squares, λA = 862 nm) andB (red dots, λB = 843 nm) alone, and a balanced two-color
optical trap (gold diamonds, ωm,A,B = 2π × (127, 128) kHz). The black dashed circle
in the lower panel highlights the “kink” in the two-color-FORT ∆N distribution due to
offsetting potentials from lasers A and B. The relative positions are the same as those
used in the published preprint on multi-oscillator cavity optomechanics (Ref. [39]).
The model applies to the experimental results shown in Fig. 4.11.

be inserted into the same lattice site zmin, that nearest to za, leading to

∆N →
Ng2

o sin2(kpzmin)

∆ca

. (4.40)

The atom-induced cavity shift would consequently vary in a step-like fashion as a
function of za, where steps would correspond to transitions in nearest potential mini-
mum, from site zmin,j to site zmin,j+1. When the initial cloud distribution extends over
multiple sites (σw & a), the weighted sum of each site’s contribution to ∆N (Eqs. 4.37
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Figure 4.11: Experimentally recorded distribution of the atom-induced science-cavity
resonance frequency shift as a function of the calculated loading locations relative
to the input mirror. Three separate contrast measurements were taken: atoms con-
tained in traps A (blue, λA = 862 nm) and B (red, λB = 843 nm) alone, and in a
balanced FORT (ωm,A,B = 2π × (127, 128) kHz). Loading locations were determined
based on a model of the magnetic trap produced by the atom chip and the chip’s ap-
proximate distance from the input mirror. Atom-induced shifts have negative values
since ∆ca < 0. The black dashed circle highlights the “kink” in the two-color-FORT
∆N distribution due to offsetting potentials from lasers A and B.

and 4.39) can be approximated by an overlap integral:

∆N(za) =
Ng2

o

∆ca

∫ ∞
−∞

sin2 ((kp − kA)z) · 1

σw

√
2π
e−

1
2( z−zaσw

)
2

dz, (4.41)

=
Ng2

o

2∆ca

[
1− e−2((kp−kA)σw)2 · cos (2(kp − kA)za)

]
. (4.42)

Eq. 4.42 shows that the cloud’s width effectively washes out the predicted steps in
∆N , yielding instead a sinusoidal shape. To date, no experimental observation of
the predicted steps in ∆N when transitioning from one lattice site to the next has
been made using the science cavity; all measurements of the distribution of ∆N in a
single-color FORT have demonstrated sinusoidal dependence on za.

Parameters N and σw can be readily extracted from contrasts measurements:

N = ∆N,1/2 ×
2∆ca

g2
o

(4.43)

e−2((kp−kA)σw)2 =
∆N,max −∆N,min

∆N,max + ∆N,min

(4.44)

where ∆N,min, ∆N,max and ∆N,1/2 are the minimum, maximum, and mid-point values
of ∆N ’s spatial distribution. Loading locations yielding ∆N,1/2, za,1/2, are ideal for
maximum linear optomechanical coupling for a particular pair of probe and trap
wavelengths since kpza,1/2 = π/4.
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In experiments involving both lasers A and B, contrast measurements were ex-
tensively used to characterized the relative phase between each trap light’s potential
structure. The distribution of ∆N using each trap laser individually was measured
first (Fig. 4.11 and lower panel of Fig. 4.10). A final contrast was then taken in
a balanced superlattice (|UA| = |UB|) over one full superlattice period, where ∆N

inevitably displayed a sharp kink at the locations where traps A and B were ex-
actly out of phase (Fig. 4.11 and lower panel of Fig. 4.10). The spatial position of
the kink together with the single-color-FORT contrast measurements were used to
approximately determine φA and φB (Section 4.4).
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Optical frequencies and wavelengths
ωa : 87Rb |2, 2〉 → |3, 3〉 transition frequency . . . 2π× 384.228 THz
λA : Wavelength of laser A . . . . . . . . . . . . . . . . . . . . 850 nm (single-osc.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862 nm (multi-osc.)
λB : Wavelength of laser B . . . . . . . . . . . . . . . . . . . . 843 nm

∆ca : Cavity-atom detuning . . . . . . . . . . . . . . . . . . . . ωc − ωa
∆ta : Trap light-atom detuning . . . . . . . . . . . . . . . . . 2π c/λA,B − ωa

Science cavity properties - near-planar cavity
R : Radius of cavity mirrors . . . . . . . . . . . . . . . . . . 5 cm
L : Cavity length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 µm
w0 : Cavity mode waist . . . . . . . . . . . . . . . . . . . . . . . . 25 µm
T1,2 : Transmission of cavity mirrors 1 and 2 . . . . (1.5, 12) ppm
L : Total optical losses in cavity mirrors . . . . . . 25 ppm

FSR : Free spectral range . . . . . . . . . . . . . . . . . . . . . . . c/ (2L) = 2π × 600 GHz
F : Finesse at 87Rb D2 transition . . . . . . . . . . . . . 2π/ (T1+T2+L)=163, 000
κ : HWHM of the cavity resonance . . . . . . . . . . . FSR/(2F)=2π×1.82 MHz

Transfer cavity properties - confocal cavity
L : Cavity length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 cm

FSR : Free spectral range . . . . . . . . . . . . . . . . . . . . . . . c/ (4L) = 2π × 600 GHz
F : Finesse at all relevant wavelengths . . . . . . . . 500
κ : HWHM of the cavity resonance . . . . . . . . . . . FSR/(2F) ∼ 2π × 1 MHz

CQED and optomechanical parameters
m : Mass of 87Rb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.44 ×10−25 kg
Γ : FWHM of 87Rb D2 transition . . . . . . . . . . . . 2π × 6.07 MHz
go : Maximum atom-cavity coupling rate . . . . . . 2π × 13.1 MHz
C : CQED cooperativity . . . . . . . . . . . . . . . . . . . . . . C = g2

o/κΓ = 15.7
ωm,A : Trap frequency produced by laser A . . . . . . 2π × 110 kHz (single-osc.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2π × 127 kHz (multi-osci.)
ωm,B : Trap frequency produced by laser B . . . . . . 2π × 128 kHz

Table 4.1: Experimental parameters
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Chapter 5

The quantum collective motion of
atoms

This chapter discusses key concepts surrounding the optical detection of ground-
state collective motion of an ensemble of atoms. Its aim is to complement the results
presented in Ref. [38].

When probing a cavity optomechanical system on cavity resonance (∆ = 0), the
mechanical object’s motion couples to the light field’s phase. The coupling results
from inelastic scattering of probe photons. This process is known as Raman scatter-
ing. In perturbation theory, the Raman effect is understood as an absorption and
subsequent emission of a photon that changes the internal state of the absorbing
material. In the context of optomechanics, the mechanical object can either gain
energy from the light by emitting a photon of lower frequency than the absorbed
probe photon (Stokes Raman scattering), or lose energy to the light field by emitting
a photon of higher frequency than the absorbed probe photon (anti-Stokes Raman
scattering). This process is not strictly limited to probe photons; in principle, Ra-
man scattered photons could themselves be inelastically scattered by the mechanical
object. However, producing a cascade of Raman scattered photons require highly
nonlinear optomechanical interactions and has therefore not yet been experimentally
demonstrated1.

Raman scattering rates can be calculated from Fermi’s golden rule. For an op-
tomechanical system in which the mechanical oscillator is in a coherent mechanical
state, with a mean phonon occupation of ν̄, the Stokes and anti-Stokes scattering
rates are | 〈 ν + 1|ẑ|ν 〉 |2 ∝ ν̄ + 1 and | 〈 ν − 1|ẑ|ν 〉 |2 ∝ ν̄, respectively. An oscillator
in its ground motional state (ν̄ = 0) will therefore only produce Stokes photons (see
Fig. 5.1). More generally, asymmetry between the number of Stokes and anti-Stokes
scattered photons is indicative of the zero-point motion of the mechanical object.

1The Stamper-Kurn group’s observation of ponderomotive squeezing [37] suggests that such non-
linear interactions might have been present in our system.



54

anti-Stokes

Stokes

Stokes α  ν
anti-Stokes α  ν+1

Probe

ωm−ωm

a) b)

Figure 5.1: Raman scattering from the collective CM motion of atoms. (a) Schematic
of the lowest three energy levels of a harmonic potential. Raman scattering from the
ground state can only lead to to Stokes photons. (b) Spectrum of light following Ra-
man scattering from the collective motion of atoms oscillating at ωm. The asymmetry
between Stokes and anti-Stokes sidebands reflects the motional mode’s near-ground-
state occupation. Red and blue colors emphasize that the Stokes and anti-Stokes
sidebands are red-detuned and blue-detuned from the probe, respectively.

This asymmetry is most pronounced when the object is near its ground state.
This concept of asymmetric Stokes and anti-Stokes sidebands was used to show

that the center-of-mass (CM) mode of motion of an ensemble of ultracold atoms,
trapped in a single-color FORT, is dominantly in its ground state (ν̄ < 1). The spec-
trum of Raman scattered photons was also used as a bolometer (i.e. heat-flow meter)
to measure the level of backaction heating, that is the amount of energy deposited into
the CM motional mode by the optical probe itself. Strictly speaking, the ensemble
of atoms that constituted this collective CM mode was not all the optically trapped
atoms, but rather a weighted sum of these atoms based on their individual linear
coupling to the light field (recall Eq. 2.28). However, since atoms were distributed
among only three adjacent sites, all of which had nearly maximal linear coupling to
the probe field (φ ∼ π/4), the mechanical element was approximated as the entire
gas’ CM mode.

5.1 Raman scattering spectrum in cavity optome-

chanics

This section’s discussion of a moving object’s signature in the optical spectrum is
not limited to an atoms-based realization of optomechanics; it applies generally to all
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linear optomechanical systems.

The mechanical excitation spectrum of a harmonically bound object’s motion lin-
early interacting with light inside an optical cavity is related to the spectrum of optical
and mechanical inputs. The connection between the inputs and the object’s phonon
field follows from the transfer matrices developed as part of the linear optomechanical
amplifier model (see Appendix A, Eq. A.9):(

ˆ̃b(ω)
ˆ̃b†(−ω)

)
= U (I− FbTFaT)−1 ×[

FbTFaU
−1
√

2κ

(
ˆ̃αin(ω)

ˆ̃α†in(−ω)

)
+ FbU

−1
√

Γm

(
ˆ̃ηin(ω)

ˆ̃η
†
in(−ω)

)]
, (5.1)

where I is the identity matrix, Fa and Fb are matrices that capture the lorentzian
response of the optical cavity and mechanical oscillator, respectively, T is the op-
tomechanical system’s transduction matrix, and U is a normalized rotation matrix
to convert quadrature operators into corresponding creation and annihilation opera-
tors. The latter four matrices are defined in Appendix A. Since the optical field was
modeled in a frame rotating at the probe carrier frequency, ωp, frequency ω for the
optical operators corresponds to the frequency detuning from ωp; optically induced
excitations of the object’s motion in a linear model come from beats between the
probe, at frequency ωp, and the spectrum of optical fluctuations, at frequency ωp+ω.
The probe’s delta-function tone at ω = 0 was deliberately neglected since the focus of
this section is to establish the mechanical object’s signature in the optical spectrum,
which is expected to be near ω = ±ωm.

In its current form, Eq. 5.1 is not particularly informative. However, the equation
can be applied to a particular set of input conditions to yield the power spectral
density (PSD) of the phonon field, Sbb(ω), which corresponds to the mechanical
object’s excitation spectrum. For the experiments described in this chapter, three
assumptions are relevant:

• the optical probe is parked on cavity resonance (∆ = 0),

• the optical input spectrum is dominated by zero-point vacuum fluctuations

(
〈

ˆ̃α†in(ω) ˆ̃αin(ω)
〉

= 0 and
〈

ˆ̃αin(ω′) ˆ̃α†in(ω)
〉

= δ̃(ω′ − ω)),

• the mechanical object is in physical contact and thermal equilibrium with a
large reservoir at temperature T , leading to a base mean motional quantum

number (i.e. mean phonon occupation) of ν̄th =
[
e~ωm/(kBT ) − 1

]−1
. Mechanical

inputs from the reservoir are typically described by the Caldeira-Leggett model

under Markov approximation (
〈

ˆ̃η
†
in(ω′)ˆ̃ηin(ω)

〉
= ν̄thδ̃(ω

′ − ω) - see Appendix

A).
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Under these assumptions, Sbb(ω) is found to be

Sbb(ω) =

〈
ˆ̃b†(ω′)ˆ̃b(ω)

〉
2πδ̃(ω′ − ω)

, (5.2)

=
1

2π

[
Γmν̄th + κg2

c/ (2(κ2 + ω2))

(Γm/2)2 + (ω − ωm)2

]
, (5.3)

where gc = 2gOM

√
n̄ is the effective optomechanical coupling rate. The mean phonon

occupation of the mechanical object’s motion, ν̄, is obtained by integrating Sbb(ω):

ν̄ =

∫ ∞
−∞

Sbb(ω)dω = ν̄th +
g2
c

Γ2
m + 2Γmκ

∼ ν̄th + COM/2, (5.4)

where the approximation κ� Γm is applied. Eq. 5.4 shows that ν̄ is the sum of the
mechanical object’s initial phonon occupation, ν̄th, and the probe’s quantum backac-
tion on the object’s motion, COM/2, where COM = g2

c/(κΓm) is the optomechanical
cooperativity. Much like the CQED cooperativity, COM parametrizes the rate of infor-
mation exchange between the mechanical and optical degrees of freedom, gc, relative
to the mechanical and optical decay rates, Γm and κ, respectively. The mechanical
object’s motion thus transitions from being dominated by its thermal environment
to its optical environment, a logical extension of Braginsky and Manukin’s original
finding [3]. However, here, the optical backaction does not come from a deliberately
applied modulation or some spurious noise on a laser, but rather from the intracav-
ity probe photons beating with the zero-point fluctuations at frequencies ωp ± ωm.
Controlling COM in an atoms-based optomechanical system can be achieved in two
ways: by adjusting n̄ and ∆ca. More details on the experimental methods employed
will follow in Section 5.2.

Optomechanical interactions also imprint the mechanical element’s motion onto
the circulating, intracavity light field (Eq. A.9, Appendix A). The optomechani-
cally colored intracavity photon spectrum, Saa(ω), follows from Eq. 9 and is linearly
proportional to Sbb:

Saa(ω) =

〈
ˆ̃a†(ω′)ˆ̃a(ω)

〉
2πδ̃(ω′ − ω)

, (5.5)

=
g2
c

4 (κ2 + ω2)

Sbb(ω) +

Sbb(−ω) +

〈[
ˆ̃b(−ω′), ˆ̃b†(−ω)

]〉
2πδ̃(ω′ − ω)

 , (5.6)

where 〈[
ˆ̃b(−ω′), ˆ̃b†(−ω)

]〉
=

Γmδ̃(ω
′ − ω)

(Γm/2)2 + (ω + ωm)2
. (5.7)
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The assumptions itemized above were included as part of Eqs. 5.6–5.7. Eq. 5.6 shows
obvious evidence of inelastic optomechanical scattering: the terms (Sbb(−ω) + com-
mutation relation) and Sbb(ω) correspond to Stokes and anti-Stokes scattered pho-
tons. Moreover, the Stokes and anti-Stokes scattering rates are asymmetric by exactly
the amount expected from Fermi’s golden rule: the former is proportional to ν̄ + 1,
while the latter, to ν̄. The intracavity photon spectrum thus forms a self-calibrated
“calorimeter” of the mechanical object’s mean motional energy, and hence its mean
phonon occupation, based on the rate of red (ω = −ωm) and blue (ω = ωm) scattered
photons:

ν̄ =
Saa(ωm)

Saa(ωm)− Saa(−ωm)
. (5.8)

An optical record of the mechanical object’s energy state can be detected at the
output of the cavity. For an ideal, one-sided cavity, the optical output field is given
by the cavity boundary condition [45]:(

ˆ̃αout(ω)
ˆ̃α†out(−ω)

)
=
√

2κ

(
ˆ̃a(ω)

ˆ̃a(−ω)

)
−
(

ˆ̃αin(ω)
ˆ̃α†in(−ω)

)
(5.9)

=
√

2κUFaTU−1

(
ˆ̃b(ω)

ˆ̃b†(−ω)

)
+
(
2κUFaU

−1−I
)( ˆ̃αin(ω)

ˆ̃α†in(−ω)

)
.(5.10)

The optical PSD at the cavity output is therefore

Sαα(ω) =

〈
ˆ̃α†out(ω

′) ˆ̃αout(ω)
〉

2πδ̃(ω′ − ω)
= 2κSaa(ω), (5.11)

=
1

2π

COM

2

κ2

κ2 + ω2
× (5.12)[

Γ2
mν̄

(Γm/2)2 + (ω − ωm)2
+

Γ2
m(ν̄ + 1)

(Γm/2)2 + (ω + ωm)2

]
,

or, in cyclical units, Sαα(f) = 2πSαα(ω). The more experimentally relevant form
of Eq. 5.12 includes the photon energy: Sζζ(f) = ~ωp · Sαα(f) (units of W/Hz).
The cavity output spectrum holds the same direct record of the mechanical object’s
phonon occupation as the intracavity field (Eq. 5.8). In addition, Sζζ(f) can also
be adapted as a bolometer for the energy exchange between the light field and the
mechanical object inside the cavity. The area contained under the Stokes and anti-
Stokes sidebands capture the energy deposited and removed from the mechanical
element, respectively, per unit time. The difference between both areas is therefore a
measure of the total power exchange:

POM =

∫ 0

−∞
Sζζ(f)df −

∫ ∞
0

Sζζ(f)df, (5.13)

=
Γm~ωmCOM

2

κ2

κ2 + ω2
m

, (5.14)
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where POM is the power deposited into the mechanical mode of motion during probing.

5.2 Calorimetry and bolometry of the quantum

collective motion of atoms

During experiments, an ensemble of 4000 ultracold 87Rb atoms was loaded into
three adjacent lattice sites of a single-color FORT, with ωm = 2π× 110 kHz, formed
by laser A alone. Given their common ωm, the dispersed atoms optomechanically
responded as a single effective mechanical element, with an observed inhomogeneous
mechanical full-linewidth Γinh = 2π× 3 to 4 kHz. Details on the atomic ensemble’s
Γinh and Γm are presented in Section 5.4.

The center of the atomic distribution was chosen to overlap with a maximum of the
probe’s standing-wave intensity profile (φ = π/4), and hence maximize the system’s
optomechanical coupling rate, gOM. Care was taken to minimize the amount of heat
delivered to the atoms during the magnetic-to-optical trap handoff. Absorption imag-
ing of the optically trapped cloud revealed its initial temperature to be T = 2.85µK,
yielding ~ωm/(kBT ) = 0.54. Atoms were then optomechanically probed. Stokes
and anti-Stokes photons, scattered by collective motion of atoms, were detected in
transmission of the cavity on a heterodyne detector.

The heterodyne detector’s signal field operator, as defined in Section 3.2, is directly
related to the probe field at the output of the cavity:

ˆ̃ζs(ω) = ˆ̃ζp(ω) =
√

~ωp
[
α̂p
√

2πδ̃(ω − ωp) + ˆ̃αout(ω − ωp)
]
, (5.15)

where the frequency-marking sidebands are neglected. Applying this field operator
to Eq. 3.28 yields a model of the experimentally detected PSD:

S
(het)
bal (ω + ∆LO,p)

G2PLO

=
~ωLO

2π
+ εPpδ̃(ω −∆LO,p) + ε~ωpSαα(ω), (5.16)

=
~ωLO

2π
+ εPpδ̃(ω −∆LO,p) +

ε~ωp
2π
× (5.17)

COM,eff

2

κ2

κ2+ω2

[
Γ2
mν̄(

Γm
2

)2
+(ω − ωm)2

+
Γ2
m(ν̄+1)(

Γm
2

)2
+(ω + ωm)2

]
,

where ∆LO,p = ωp − ωLO = 2π× 13.6 MHz was the LO-probe detuning during exper-
imental measurement (different from the 2π × 10 MHz quoted in Chapter 4, which
applied to the multi-oscillator experiments), Pp = 2κ~ωpn̄ the probe carrier power at
the output of the cavity, and COM,eff is the effective optomechanical cooperativity of
the entire distribution of atoms (see Section 2.1). Eq. 5.17 was used to extract ν̄ from
experimental measurements, and compare POM to measured integrated powers.
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Tuning COM,eff = 4n̄g2
OM,eff/(Γmκ) is typically done by controlling n̄. This is

particularly true in solid-state optomechanical systems, where the construction of
the mechanical oscillator and cavity permanently defines the other parameters. In
atomic cavity optomechanics however, gOM,eff = (Neffg

2
o/∆ca)kpZHO,eff can also readily

be tuned by adjusting ∆ca. This additional control knob is particularly sensitive since
COM,eff ∝ 1/∆2

ca. In experiments discussed here, in order to cover a sufficiently large
COM,eff range, optomechanical measurements were recorded at three different ∆ca:
2π× -12, -40, and -70 GHz. At each ∆ca setting, the collective atomic motion was
probed with different n̄ values, ranging from 0.4 to 2 photons.

5.3 Thermodynamics in optomechanics

In an atoms-based realization of linear cavity optomechanics with N atoms, there
are N longitudinal modes of motion2, one of which is the optically bright CM mode.
The remaining N − 1 motional modes are different collective “breathing” modes of
the ensemble that have the same mechanical oscillation frequency as the CM mode,
ωm, but, to linear order, are not sensed by the optical probe3. All N modes are
prepared at the same temperature and are physically isolated from the rest of the
world since atoms are levitated inside the cavity; they only interact with each other via
atom-atom collisions, which collectively define Γm. During optomechanical probing,
optical energy is exchanged exclusively with the CM mode via backaction, while the
remaining N − 1 modes effectively form a “thermal reservoir” with which CM mode
interacts.

Although unobserved by the optomechanical probe, the mean occupation of these
optically dark modes can nonetheless be measured via absorption imaging. Indeed,
absorption imaging at long TOF records the mean kinetic energy of an atomic en-
semble (Section 4.6.1), which for a large atomic cloud N � 1 is dominated by the
“breathing” modes. This ability to image the mean occupation of the CM mode’s
mechanical environment is unique to atomic optomechanical systems and allows the
probe’s backaction to be independently quantified. When probing for a time ∆ t,
an amount POM∆ t of energy is added to the collective CM motion. After turning
off the probe, the gas recovers thermal equilibrium, meaning the backaction-added
energy is distributed among all 3N modes of motion (N modes in each cartesian
direction), in a time 1/Γm. The gas’ mean temperature therefore rises by an amount

2These N modes refer to the mechanics of the system. They are not to be confused with the
N + 1 dressed-system eigenstates, involving both the photon field and the atoms’ internal energy
states, discussed in Section 2.1.

3The N − 1 optically dark modes correspond to the higher-order expansion terms in Eqs. 2.11–
2.13. Although in theory these motional modes are not sensed by the probe at locations of linear
optomechanical coupling, during experiments they were very weakly sensed because atoms populated
several adjacent lattice sites, none of which had exactly linear optomechanical coupling (i.e. φj ∼
π/4).
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∆T = POM∆ t/CV , where CV is the heat capacity at constant volume of the trapped
atomic ensemble, which can be observed in absorption imaging.

From statistical mechanics, one knows that CV = ∂Ugas/∂T . The internal energy
of an ideal gas trapped in a harmonic potential is given as Ugas = 3NkBT according
to the equipartition theorem, which yields CV = 3NkB. Although the FORT can be
approximated as a harmonic potential, the heat capacity of a collection of ultracold
87Rb atoms cannot blindly be assumed to be that of an ideal gas. A more careful
derivation begins with the statistical mechanics definition of the total energy and
mean quantum number of N bosons at temperature T contained in a one-dimensional
harmonic trap of frequency ωm:

U1D
gas = N~ωmν̄, (5.18)

ν̄ =
1

e
~ωm
kBT − 1

. (5.19)

The corresponding heat capacity along that direction is therefore

C1D
V =

(
∂U1D

gas

∂T

)
V

= NkB

(
~ωm
kBT

)2
e

~ωm
kBT(

e
~ωm
kBT − 1

)2 , (5.20)

= NkB ν̄
2
(
1 + ν̄−1

) [
ln
(
1 + ν̄−1

)]2
(5.21)

As stated earlier, atoms were cooled to T = 2.85µK and had a longitudinal oscillation
frequency of ωm = 2π× 110 kHz, leading to a classical occupation of ~ωm/(kBT ) =
0.54. The gas’ initial mean phonon occupation and heat capacity along the cavity
axis were therefore ν̄ = 0.19 and C1D

V = 0.76NkB. Along the radial directions, the
FORT oscillation frequencies were smaller than the longitudinal frequency by a factor
of kAw0/

√
2 ∼ 130, as explained in the dissertations of Kater Murch [49] and Tom

Purdy [50]. The atomic ensemble consequently behaved as an ideal gas along these
radial axes, with a heat capacity of C1D

V = NkB. Summing the results along all
three cartesian directions, one finds that the 87Rb gas had a total heat capacity of
CV = 2.76NkB before its motion was optically probed, but recovered the ideal gas
heat capacity, CV = 3NkB, after even short and weak probing. Since this variation
in CV from start to finish was less than 10%, the atomic ensemble’s heat capacity
was assumed to be that of an ideal gas for the purpose of experimental analyses.

5.4 The mechanical damping rate of collective atomic

motion

In an optomechanical system, observed and predicted dynamics are intimately
dependent on the mechanical element’s damping. Accurately calibrating the mechan-
ical damping is therefore important. Realizing such a calibration is easier said than
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done, particularly when working with a levitated cloud of atoms. One option for cal-
ibrating Γm is to measure the mechanical element’s impulse response function, that
is to give a brief, but powerful kick and observe its ensuing oscillatory motion decay.
That approach works well for systems with large mechanical Qs, where the motion
remains coherent for many oscillation cycles, and where the relative level of noise is
small. Unfortunately, a reliable “kick and watch” type measurement is very challeng-
ing with a cloud of ultracold atom [49]. First, the anharmonicity of the finite-depth
sinusoidal potential can distort measurements of Γm. Any kick must therefore be kept
sufficiently weak so as to dominantly generate harmonic collective motion. Second,
probing with an optimal probe power in this anharmonicity-limited regime, where
the coherent motional state occupation can only be slightly above unity, is difficult.
The cavity probe field can easily be too strong, such that its zero-point fluctuations
incoherently perturb the motion of atoms and mask the coherent motional decay,
or too weak, such that an unrealistic level of statistics and filtering is necessary to
reliably pick out the atoms’ motion. Despite these challenges, experimental attempts
at determining Γm in this way were made, but without success.

An alternative route is to rely on the optomechanical spring shift, Γopt, to deter-
mine Γm. According to linear cavity optomechanics, an optically driven mechanical
element can be stimulated to the point of unstable motion. Such an unstable mechan-
ical state has been dubbed “phonon lasing,” since, much like in a laser, the mechanical
element’s phonon occupation rapidly amplifies at the instability threshold [81, 82].
The onset of phonon lasing occurs when Γtot(ωtot) = Γopt(ωtot)+Γm = 0, that is when
the total mechanical damping rate of the system becomes null at the optomechan-
ically shifted oscillation frequency4, ωtot. By measuring ωtot at which the observed
optomechanical response suddenly shoots up, the corresponding Γopt(ωtot), and hence
Γm, can be determined using linear cavity optomechanics.

A calibration of this sort was done as part of the series of experiments detailed in
this chapter. A collection of 2,600 atoms were prepared in their collective motional
ground state, with ωm = 2π × 106 kHz. A probe tone parked near atomic resonance
(∆ca = 2π×−10.7 GHz) was inserted a full linewidth to the blue of cavity resonance
(∆ = 2π × 3.8 MHz ∼ 2κ). The number of intracavity probe photon was varied over
a series of experimental iterations. The atoms’ collective optomechanical response
was observed to rise nearly two orders of magnitude near ωtot = 2π × 114 kHz with,
amazingly, n̄ ∼ 1.2 photons (Fig. 5.2). Attributing this sharp rise to phonon lasing,
one would conclude from linear cavity optomechanics that

Γm = −Γopt(ωtot) =
−2κ

κ2 + ∆2 − ω2
tot

(
ω2
m − ω2

tot

)
= 2π × 360 Hz. (5.22)

As a self-consistent check that linear theory can be applied at the onset of such a non-
linear phenomenon, Γm is separately calculated based not on the observed ωtot at the

4ωtot is represented as ωeff in Appendix A. In the main body of this dissertation, symbol “eff” is
reserved for the effective CM mode of atoms that couples to the light field
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Figure 5.2: Plot of the atoms’ collective optomechanical response to a quantum-
limited optical drive as a function of the optomechanically shifted oscillation fre-
quency, ωtot, near the phonon lasing limit. Arrows point in the direction of increasing
n̄. The phonon lasing threshold appears as a sharp rise in the response height rela-
tive to ωtot (blue ellipse). Beyond the threshold, excited atoms explore a much larger
fraction of the anharmonic FORT and hence experience a lower ωtot.

onset of phonon lasing, but on other, independently known experimental parameters,
such as N and n̄. Starting with Eqs. A.17–A.18 in Appendix A,

Γm = −Γopt(ωtot) =
2κs(ωtot)

κ2 + ∆2 − ω2
tot

, (5.23)

which, in the unresolved sideband limit (ωtot � κ) reduces to

Γm =
8κωm∆n̄g2

OM,eff

(κ2 + ∆2)2 ∼ 8κωm∆n̄

(κ2 + ∆2)2

(
Ng2

o

∆ca

kp

√
~

2mNωm

)2

= 2π × 530 Hz. (5.24)

Although the two results do not exactly match, they are sufficiently consistent to
validate the linear theory and, on that basis, conclude that Γm ∼ 2π × 450 Hz.

The discrepancy between Γm and the full mechanical linewidth detected by the on-
resonance optical calorimeter and bolometer, Γinh, leads one to conclude that ẐCM,eff ,
the effective CM mode of the atomic cloud that couples to the probe field, dephases
into Γinh/Γm ∼ 7 to 8 normal modes of motion, each of which contains N/(Γinh/Γm) ∼
400 to 500 atoms. Causes of this dephasing include the slight dispersion in ωm between
populated lattice sites due to the probe’s non-zero trap potential (i.e. contributions



63

100

80

60

40

20

Re
la

tiv
e 

op
to

m
ec

ha
ni

ca
l r

es
po

ns
e 

(a
rb

.)

200180160140120
Optomechanical cooperativity

0

Figure 5.3: Phonon lasing threshold. Optomechanical response of two differently pre-
pared atomic ensemble: one prepared in its ground state of motion (beige square),
and one parametrically heated out of its motional ground state before probing (blue
dots). A sharp increase in the optomechanical response, characteristic of phonon
lasing, is observed at COM ∼ 150 and 200 for the ground-state and hot clouds, re-
spectively. The green dashed line indicates the expected threshold COM for phonon
lasing as predicted by linear cavity optomechanics theory, assuming Γm = 2π× 450
Hz. ∆ = 2π × 3.8 MHz, Neff = N = 2600, gOM,eff = gOM = 2π × 143 kHz, and
ωm = 2π × 106 kHz

from the quadratic term in Eq.2.13 when φi 6= π/4), the anharmonic nature of the
FORT, both along the cavity axis and transverse directions, and collisions between
atoms. Slight fluctuations in the intensity stabilization of laser A in transmission of
the science cavity, and hence ωm, also contribute to Γinh.

Another important factor in the discrepancy between Γm and Γinh is heating of
the atomic gas, both during the preparation stages, which leads to a hotter initial
cloud, and during probing. It is unclear how Γinh should change as a function of the
atom cloud’s temperature. On the one hand, hotter atoms occupy a larger volume
and therefore have a lower collision rate, which should reduce both Γm and Γinh.
On the other hand, hotter atoms are more susceptible to populate higher energy
states, leading to a broader distribution of oscillation frequencies in an anharmonic
potential and, consequently, increasing Γinh. Regardless of the end result, raising
the gas’ temperature should have a noticeable impact on the lasing threshold, which
was empirically verified to be true: a larger COM, as calculated based on known
experimental parameters and assuming Γm = 2π× 450 Hz, was required to initiate
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phonon lasing in clouds prepared with a higher temperature via parametric heating
(Fig. 5.3).

The Stamper-Kurn group’s understanding of damping (and dephasing) in optome-
chanical system remains incomplete. The answers to come will surely be tied with the
concept of other collective mechanical modes acting as a reservoir, with both ther-
mal and mechanical interactions. Answers might also be tied with more fundamental
aspects of the gas, such as its spin properties (e.g. bosons vs. fermions) and its ther-
modynamic state. For instance, in the limit Γm → 0, optomechanical probing one
particular collective mode, even at low n̄, should push the atomic system far out of
thermal equilibrium. The gas should remain out of equilibrium for a time 1/Γm →∞,
enabling time-resolved experimental observations of the non-equilibrium evolution of
the gas.

5.5 External means of exciting the atomic motion

In parallel to observations of probe-induced backaction, attempts were made to
excite the atomic motion by a means other than the probe. The motivation was of
two folds: the probe could be made to act as a “real” probe, with minimal back-
action relative to the externally applied motional kick, and the drive’s phase could
be controlled, enabling the detection of a coherent motional response. The approach
taken was to resonantly drive each atom via a large oscillating magnetic field gradi-
ent along the cavity axis, dB(z)/dz · cos(ωt), produced by the atom chip’s waveguide
wires. Details of the atom chip and the fields it generates are fully described in Tom
Purdy’s dissertation [50]. The oscillating force experienced by atom i at location zi
due to the applied magnetic field gradient was

Fi = mFgFµB
dB(z)

dz

∣∣∣∣
zi

· cos(ωdrt), (5.25)

where mF = 2 and gF = 1/2 are the trapped atoms’ magnetic sublevel and Landé g-
factor, respectively, µB is the Bohr magneton, and ωdr = ωm is the drive frequency. All
atoms, regardless of their distribution within the FORT, responded in-phase with the
applied drive, meaning only the collective CM mode of motion was excited. However,
the force varied from one occupied lattice site to the next since the applied magnetic
field was not linearly dependent on z [50]. This limitation was no different than the
probe-driven case, where each occupied lattice site had a different linear coupling to
the probe, φj.

Applying a strong, oscillating magnetic field gradient through the atom chip, it
turned out, not only drove the atoms, but also modulated the cavity length. This
collateral shaking of the cavity modulated the phase of resonant probe light in the
same way the atoms’ collective motion would optomechanically respond to the probe.
Moreover, the shaking cavity’s phase modulation magnitude exceeded that of the
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atoms, making any reliable measurement of collective atomic motion impossible. At-
tempts were made to compensate cavity vibrations caused by the atom-chip-based
magnetic fields by applying a corrective signal to one of the cavity mirrors’ PZT.
This meant determining the optimal magnitude and phase of the corrective signal of-
fline, in the absence of atoms, and feeding this information to the mirror PZT during
experimental sequences; the corrective signal could not be part of a feedback loop,
since atom-induced modulations would also have been canceled in this way. Unfor-
tunately, the cavity vibrations’ phase varied from one experimental iteration to the
next, meaning the corrective signal sometimes reduced the vibrations, but sometimes
added to them. Magnetic-field-gradient driving of the collective atomic motion as a
reliable experimental method was eventually dropped.
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Chapter 6

An array of quantum oscillators
using ultracold atoms

This chapter discusses key concepts surrounding the creation and detection of
an array of atoms-based mechanical oscillators prepared near their motional ground
states. Its aim is to complement the results presented in Ref. [39].

Recalling Eqs. 2.21–2.23, linear cavity optomechanics involving atoms distributed
among many lattice sites can be expressed as the sum of each site’s CM mode in-
dividually coupling to the probe field. When employing a single-color FORT, such
that all sites have the same ωm, this sum of individual interactions reduces to a single
effective mechanical element interacting with the light field (Eqs. 2.25–2.28). This
single-effective-element-type system was the subject of study in Chapter 5. However,
when employing a two-color FORT to create an optical superlattice in which each
populated site has a distinguishable mechanical frequency, the mechanical system
does not collapse into a single effective oscillator. Instead, each populated site’s CM
mode acts as an individual and distinguishable mechanical element. The distribution
of ultracold atoms thus becomes an array of quantum oscillators.

Optomechanical probing of an array of mechanically distinguishable atoms-based
mechanical elements was experimentally investigated. Asymmetry between Stokes
and anti-Stokes sideband pairs was used to demonstrate that every element within the
array was prepared near its ground state of motion. Further, as a first step towards
parallel quantum-level information storage in cavity optomechanics, it was shown
that energy could be communicated to one targeted oscillator, thereby changing its
motional state, while preserving other oscillators in their initial quantum state.
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6.1 Raman scattering from an array of mechanical

elements

This section’s discussion of optomechanical detection of an array of mechanical
elements is not limited to an atoms-based realization of optomechanics; it applies
generally to all linear optomechanical systems.

Modeling the dynamics of a single mechanical element in a cavity optomechanical
system involving an array of Nosc mechanical objects requires expanding the trans-
fer matrices defined as part of the optomechanical amplifier model (Appendix A,
Eq. A.9):(

ˆ̃a(ω)
ˆ̃a†(−ω)

)
= UFa

[
Nosc∑
j=1

TjU
−1

(
ˆ̃bj(ω)

ˆ̃b†j(−ω)

)
+ U−1

√
2κ

(
ˆ̃αin(ω)

ˆ̃α†in(−ω)

)]
, (6.1)(

ˆ̃bj(ω)
ˆ̃b†j(−ω)

)
= UFb,j

[
TjU

−1

(
ˆ̃a(ω)

ˆ̃a†(−ω)

)
+ U−1

√
Γm,j

(
ˆ̃ηin,j(ω)

ˆ̃η
†
in,j(−ω)

)]
, (6.2)

where Fa is optical cavity’s lorentzian response matrix, Fb,j and Tj are matrices that
capture the lorentzian response and optomechanical coupling rate of the jth mechani-
cal element, respectively, and U is a normalized rotation matrix to convert quadrature
operators into corresponding creation and annihilation operators (see Appendix A).
Eqs. 6.1–6.2 show that the mechanical elements communicate with each other only
via the light field; the light, in effect, places a spring between each mechanical oscil-
lator. These light-induced springs couple the oscillators together, thereby changing
the normal modes of the system and, in a larger picture, determining which mode(s)
the light senses.

The intracavity photon field’s contribution to each mechanical element’s phonon
field spectrum can be adiabatically removed by combining Eqs. 6.1–6.2:(

ˆ̃br(ω)
ˆ̃b†r(−ω)

)
= U (I− Fb,rTrFaTr)

−1 Fb,r × (6.3)[
TrFa

Nosc∑
j=1
j 6=r

TjU
−1

(
ˆ̃bj(ω)

ˆ̃b†j(−ω)

)

+TrFaU
−1
√

2κ

(
ˆ̃αin(ω)

ˆ̃α†in(−ω)

)
+ U−1

√
Γm,j

(
ˆ̃ηin,j(ω)

ˆ̃η
†
in,j(−ω)

)]
,

where I is the identity matrix. The second line of Eq. 6.3 reflects the effective springs
that binds the rth mechanical element and all other elements arrayed within the
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optical resonator. Obviously, each phonon field spectrum in its general form is quite
complex. However, when restricting the probe to be on cavity resonance (∆ = 0), Fa

becomes a diagonal matrix, which yields TrFaTj = 0 for all (r, j) combinations. This
means the light-induced springs have a spring constant of 0 when the probe is parked
on cavity resonance. Each mechanical element’s phonon field in this specialized case
is therefore independent of other phonon fields arrayed within the optical resonator:(

ˆ̃br(ω)
ˆ̃b†r(−ω)

)
= UFb,r

[
TrFaU

−1
√

2κ

(
ˆ̃αin(ω)

ˆ̃α†in(−ω)

)
+U−1

√
Γm,j

(
ˆ̃ηin,j(ω)

ˆ̃η
†
in,j(−ω)

)]
. (6.4)

This condition of on-resonance probing was applied during experiments treated in this
chapter. Moreover, the same assumptions regarding the optical and mechanical inputs
as those postulated for the single-oscillator experiments (Chapter 5) are relevant here:

• the optical input spectrum is dominated by zero-point vacuum fluctuations

(
〈

ˆ̃α†in(ω) ˆ̃αin(ω)
〉

= 0 and
〈

ˆ̃αin(ω′) ˆ̃α†in(ω)
〉

= δ̃(ω′ − ω)),

• the mechanical input spectrum follows the Caldeira-Leggett model under Markov

approximation:
〈

ˆ̃η
†
in(ω′)ˆ̃ηin(ω)

〉
= ν̄thδ̃(ω

′ − ω), where ν̄th is the mean phonon

occupation due to the gas’ finite temperature.

Following the same approach as that outlined in Section 5.1, the outgoing cavity
field’s PSD, composed of all Raman-scattered photons inside the cavity, is found to
carry a proportional copy of each mechanical element’s motional PSD:

Sαα(ω) =

〈
ˆ̃α†out(ω

′) ˆ̃αout(ω)
〉

2πδ̃(ω′ − ω)
= 2κSaa(ω), (6.5)

=
1

2π

κ2

κ2 + ω2
× (6.6)

Nosc∑
j=1

COM,j

2

[
Γ2
m,j ν̄j

(Γm,j/2)2 + (ω − ωm,j)2
+

Γ2
m,j(ν̄j + 1)

(Γm,j/2)2 + (ω + ωm,j)2

]
,

where COM,j, ν̄j, Γm,j and ωm,j are the optomechanical cooperativity, mean phonon
occupation, mechanical damping rate and mechanical resonance frequency of the jth

mechanical element. The analog to Sαα(ω) in units of W/Hz is given by Sζζ(f) =
2π ·~ωp ·Sαα(ω). Each element’s contribution to Sαα(ω) is peaked near its mechanical
resonance frequency. If every element r arrayed within the cavity has a unique me-
chanical frequency, such that |ωm,j−ωm,r| > (Γm,j+Γm,r)/2 for every j 6= r, then each
element’s motional spectrum can be distinguished from that of others. This condition
of distinguishability was applied during experiments. The number of populated op-
tomechanically bright lattice sites was determined based on the heterodyne-detected
distribution of Raman peaks. And each site’s ν̄j was individually and simultaneously
measured by comparing its distinguishable Stokes and anti-Stokes sideband pair.
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6.2 Creation, detection and control of an array of

quantum collective atomic oscillators

Experimental realizations of an array of atoms-based mechanical oscillators relied
on populating several potential minima of an optical superlattice formed by lasers A
(λA = 862 nm) and B (λB = 843 nm), with lattice spacing a ∼ 420 nm. An ensemble
of ultracold atoms was loaded into the superlattice, populating between 1 and 8 sites
depending on the ensemble’s size, which was controlled by tuning the end point of
the force radio-frequency (RF) evaporation applied at the science cavity (see Section
4.5.1). The temperature of the resulting, optically trapped gas was measured through
absorption imaging to be < 7µK for all evaporation settings. As detailed in Section
4.4.2, the intracavity intensities of lasers A and B were stabilized to nearly identical
values in order to maximize the variation in ωm from one site to the next; the stabilized
optical potentials had oscillation frequencies of ωm,A,B = 2π × (127 kHz, 128 kHz).
These settings satisfied the distinguishability criteria stated in the previous section,
meaning that the collective CM motion of atoms in each populated superlattice site
formed a distinguishable mechanical element that could be optomechanically probed.

In order to create an array of maximally distinguishable collective atomic os-
cillators, the spatial structure of the superlattice needed to be mapped first. This
was achieved experimentally using a method that was termed “mechanical resonance
imaging.” The method, explained in detail as part of the published experimental re-
sults (see Ref. [39]), consisted of sequentially measuring the distribution of mechanical
resonance frequencies over one full superlattice period; only one site was populated
and probed on each experimental iteration. The method relied heavily on the ability
to populate a single lattice site, which meant having a tight magnetic trap prior to
loading atoms into the FORT and controlling the minimum location of that magnetic
trap with nanometer-scale precision. Both requirements were experimentally achieved
thanks to the atom chip and an extensive model of the magnetic fields produced by
its embedded wires (see Dan Brook’s dissertation [80]).

Having characterized the superlattice and its distribution of mechanical reso-
nances, an array of collective atomic oscillators was prepared. A cloud of atoms with
gaussian FWHM σw ∼ 3.1µm, centered at a location of large mechanical-frequency
dispersion and maximal linear optomechanical coupling to the probe, was loaded
into the two-color FORT. The created array was then exposed to a weak probe
light (∆ca = −2π × 40 GHz and n̄ ∼ 1), with each site having COM ≤ 0.6, and
the spectrum of Raman-scattered photons were detected in transmission of the sci-
ence cavity. The asymmetry between corresponding Stokes and anti-Stokes sidebands
demonstrated that each site’s collective CM mode had a mean phonon occupation ν̄
near unity, indicating that every distinguishable mechanical element in the array was
near its motional quantum ground state. As many as six atoms-based oscillators
were simultaneously probed to be near their mechanical ground states, a remarkable
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achievement given that no other optomechanical architecture at the time contained
more than two mechanical elements and none of the two-oscillator optomechanical
systems [33, 83, 84, 85] could demonstrate that both oscillators simultaneously sat-
isfied ν̄ ∼ 1. This system’s ability to simultaneously probe the mechanical spectrum
of all the occupied sites stemmed from operating in the unresolved sideband regime
(ωm � κ). Eq. 6.6 shows that if the system had operated in the resolved side-
band regime (ωm � κ), as is the case for most other optomechanical architectures,
the probe’s sensitivity to the spectrum of Raman sidebands when parked on cavity
resonance would have been proportional to κ2/ω2

m � 1.

6.3 Exciting collective motion by force

With an array of distinguishable atoms-based mechanical elements near their
ground states of motion experimentally in hand, one attractive path forward aims
at exciting the collective motion of atoms at certain, targeted sites by harnessing
their spatial and mechanical isolation. This selective “addressing” of mechanical ele-
ments requires the ability to apply controllable position- and/or frequency-dependent
forces, which, in a system with as many as three colors of light illuminating atoms,
can be realized through optical forces.

As stated in Section 4.4.2, lattice sites in an optical superlattice are localized at
the intersection of equal-magnitude and oppositely oriented forces from the two trap
lasers. When probe light is added to the system, the potential minima are shifted
to locations of zero net force from all three light source. This probe-induced shift
is responsible for optical nonlinearity and bistability when large probe powers are
applied [28, 54]. For experimental conditions considered here, however, the probe
negligibly displaces the potential minima. The confining force applied by each laser
at the many lattice sites, zmin,j (Eq. 4.29), is equal to their respective local potential
gradient:

F̄A(zmin,j) = UAkA sin (2(kAzmin,j + φA)) , (6.7)

F̄B(zmin,j) = UBkB sin (2(kBzmin,j + φB)) , (6.8)

F̄p(zmin,j) = Upkp sin (2kpzmin,j) . (6.9)

These static optical forces are fixed for a particular array of atomic oscillators, with
desired spatial and mechanical frequency distribution, and a particular optomechan-
ical probe strength. Instead, controllable forces can be generated by modulating the
trap intensities about their stabilized, mean values.

For a modulation of the form Ar sin(ωmod,rt+ θr) on laser r, where r = A,B or p,
atoms trapped at site zmin,j experience an oscillating force given by

Fr(t, zmin,j) = F̄r(zmin,j)× Ar sin(ωmod,r t+ θr), (6.10)

F̃r(ω, zmin,j) = i
√

2π
F̄r(zmin,j)Ar

2

[
e−iθr δ̃(ω−ωmod)−eiθr δ̃(ω+ωmod)

]
, (6.11)
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where Fr(t, zmin,j) and F̃r(ω, zmin,j) are the time- and frequency-domain forms of the
applied force, respectively. Atoms at each populated lattice site collectively and
coherently respond to this force by a time-dependent change in their center-of-mass
momentum. Modeling this response draws upon the optomechanical amplifier model
introduced in Chapter 2.

As stated in Sec. 2.3, applied forces are related to ξ̂−, and their bosonic analog

η̂−. The frequency-domain position, ˆ̃Z
(F )
CM,j(ω), and momentum, ˆ̃P

(F )
CM,j(ω), coherent

response of atomic oscillator j to F̃r(ω, zmin,j) can be extrapolated from Eqs. 9 and
35 in Appendix A:〈

ˆ̃Z
(F )
CM,j(ω)

〉
=

−ωm,j(
Γm,j

2
− iω

)2

+ ω2
m,j

F̃r(ω, zmin,j)

Njmωm,j
, (6.12)

〈
ˆ̃P

(F )
CM,j(ω)

〉
=

−Γm,j
2
− iω(

Γm,j
2
− iω

)2

+ ω2
m,j

F̃r(ω, zmin,j). (6.13)

Unsurprisingly,
〈

ˆ̃Z
(F )
CM,j(ω)

〉
and

〈
ˆ̃P

(F )
CM,j(ω)

〉
are largest when ωmod = ωm,j. In other

words, atoms are most susceptible to the applied force modulation when driven on
resonance. In the context of a superlattice with mechanically distinguishable elements
(recall |ωm,j − ωm,r| > (Γm,j + Γm,r)/2), a targeted lattice site, labeled “tgt,” can be
selectively “addressed” by tuning ωmod to be resonant with ωm,tgt while, in principle,
leaving neighboring sites unperturbed.

When simultaneously pinging the atoms with an external force modulation and
optomechanically probing each site’s collective response, a delta-function like modu-
lation is imprinted on the light field. For the experimentally relevant case of ∆ = 0,
only the phase-quadrature of the intracavity light field is modulated by the coherent
response of atomic oscillators:

ˆ̃a
(F )
− (ω) =

√
κ

κ− iω

Nosc∑
j=1

√
COM,jΓm,j

2

〈
ˆ̃Z

(F )
CM,j(ω)

〉
ZHO,j

. (6.14)

The force-induced Raman scattering can also be observed in the intracavity light’s
phase-quadrature PSD. Accounting for the both coherent atomic response to the
applied force (“F”) and the incoherent collective motion of atoms at each site (“inh”),
with an incoherent phonon occupation of ν̄j, the total intracavity PSD (“tot”) is given
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by

S(tot)
a−a−(ω) =

〈
ˆ̃a

(tot)†
− (ω′)ˆ̃a

(tot)
− (ω)

〉
2πδ̃(ω′ − ω)

= S(inh)
a−a−(ω) + S(F )

a−a−(ω), (6.15)

S(inh)
a−a−(ω) =

〈
ˆ̃a

(inh)†
− (ω′)ˆ̃a

(inh)
− (ω)

〉
2πδ̃(ω′ − ω)

, (6.16)

=
1

2π

κ

κ2 + ω2

Nosc∑
j=1

COM,j

4

Γ2
m,j(2ν̄j + 1)

(Γm,j/2)2 + (ω − ωm,j)2
, (6.17)

S(F )
a−a−(ω) =

〈
ˆ̃a

(F )†
− (ω′)ˆ̃a

(F )
− (ω)

〉
2πδ̃(ω′ − ω)

, (6.18)

=
1

2π

κ

κ2 + ω2

Nosc∑
j=1

COM,jΓm,j
2

〈
ˆ̃Z

(F )
CM,j(ω

′)
〉† 〈 ˆ̃Z

(F )
CM,j(ω)

〉
Z2

HO,jδ̃(ω
′ − ω)

. (6.19)

When experimentally detecting S
(F )
a−a−(ω), the remaining delta function in Eq. 6.19,

1/δ̃(ω′ − ω), is replaced by ωBW, the measurement frequency bandwidth.
The total phase-quadrature PSD is, of course, also present at the output of the

cavity and can be detected downstream on the heterodyne detector. The heterodyne
photocurrent’s phase-quadrature PSD, S

(het)
dem (ω) is related to S

(tot)
a−a−(ω):

S
(het)
dem (ω)

G2PLO

=
1

2

~ωLO

2π
+ ε~ωp · 2κS(tot)

a−a−(ω) (6.20)

Looking specifically at the phase-quadrature PSD has the important advantage that
the relative signal-to-noise ratio (SNR) of both the force-induced and incoherent-
atomic-motion-produced modulations are maximal since only half of the total detected
shot-noise appears in each quadrature (see Section 3.2).

This method of producing an isolated mechanical response within an array of
atomic oscillators by controllably modulating one or more of the light beams, and
optomechanically detecting the response of each oscillator either during or after the
applied force, was applied in a variety of ways. Most of these experimental undertak-
ings were never reported in the literature, since they failed to meet their respective
intended objective. These unsuccessful investigations, described one-by-one in the
following subsections, did provide helpful lessons which eventually led to the exper-
imental demonstration that the collective motional state at one targeted lattice site
could be excited by several quanta while maintaining neighboring mechanical elements
near their ground states of motion (see Ref. [39]).
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Figure 6.1: Attempted elimination of a collective atomic oscillator. Figure shows
the measured optomechanical response from three initially distinguishable collective
atomic oscillators (ωm,(1,2,3) = 2π × (97, 110, 121) kHz) with (maroon) and without
(light red) an applied modulation on laser B at ωmod = 2π×102 kHz prior to probing.
The initially peaked response at ωm,2 = 2π × 110 kHz becomes shifted to lower
frequencies and broaden (dashed blue curve - a guide for the eye only), as atoms are
heated up the anharmonic ladder of motional modes by the force modulation. Site
ωm,3 is also unintentionally affected by the applied modulation.

6.3.1 Selective elimination of atomic oscillators

A first experimental objective following the creation of a superlattice-based ar-
ray of collective atomic oscillators was the selective removal of one oscillator without
altering the motional states of its neighbors. The motivation was to show that the
array structure, that is the distribution of mechanical elements in space, could be
controllably tailored. The proposed method consisted of resonantly exciting the col-
lective CM motion of atoms at a targeted lattice site by modulating one of the trap
potentials until atoms escaped from the optical potential. The remaining distribution
of atoms-based mechanical elements would then be optomechanically probed to show
that all neighboring elements were still near their motional ground states while no
photons were Raman scattered at the mechanical oscillation frequency of the elimi-
nated site. To confirm atoms were truly ejected from the superlattice, the number of
surviving atoms would be counted through absorption imaging.

Experimental attempts at single-site elimination began by populating three adja-
cent and distinguishable sites (ωm,(1,2,3) = 2π × (97, 110, 121) kHz) with most atoms
residing in the lower two sites. Intensity modulations were applied to laser B for a du-
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ration of ∼ 100 ms at ωmod = 2π×102 kHz in an attempt to forcefully eliminate atoms
from the middle site, with mechanical oscillation frequency ωm,tgt = ωm,2 = 2π × 110
kHz. The modulation frequency was deliberately red-detuned from mechanical reso-
nance in order to compensate for the trap’s anharmonic frequency distribution, that
is the reduction in oscillation frequency as atoms climb to higher motional energy
bands. A suppression of Raman-scattered photons at ωm,tgt was convincingly ob-
served by the optical probe, though with some impact to the motional state of atoms
in the highest-frequency site (Fig. 6.1). However, the ejection of atoms was not cor-
roborated by absorption images, which showed no noticeable change in atom number.
The combination of results instead indicated that the energy received by the targeted
CM mode was insufficient to eject atoms, but did excite atoms to many of the higher
motional bands and consequently reduced the CM mode’s coupling to the probe field.

Measurements with a frequency-chirped force modulation were also taken in an
attempt to follow atoms up their ladder of motional states. The chirp started at ωm,tgt

and ended at ωmod = 2π × 102 kHz, just before the mechanical resonance frequency
of the neighboring site. Unfortunately, no appreciable loss of atoms was observed
and the collective motional states in neighboring sites were perturbed. The idea
of single-site elimination was consequently dismissed as a worthwhile experimental
pursuit.

6.3.2 Single-site force modulation cancellation

The second experimental objective aimed to simultaneously modulate two optical
beams in such as way as to avoid exciting the collective CM motion of atoms at
one targeted location, a rather backwards application of force driving. By carefully
adjusting the relative phases and amplitudes of each laser’s modulation (see Eq. 6.10),
the net drive at one site could be exactly canceled, while being nonzero at adjacent
sites. In principle, the pair of forces could have originated from any two of the three
lasers present in the system. However, the site-to-site variation in force cancellation
was most pronounced when employing the probe as one of the two drive sources, since
its wavelength was the most incommensurate.

Atoms were dominantly loaded into two neighboring and distinguishable sites
of the superlattice. Optomechanical probing of their motion then followed, during
which modulations on the probe and on laser B were applied. The motional spectra
of both sites were simultaneously recorded at the output of the science cavity. The
magnitude and phase of the observed responses served as a guide to optimize the force
cancellation at one of the sites. Since the probe light both drove and recorded the
collective CM motion of atoms, its settings were kept fixed; laser B’s amplitude and
phase was instead iteratively adjusted. The optimization procedure was cumbersome
and lengthy as it involved navigating in a two-dimensional space. As many as one
hundred consecutive measurements were taken to optimize one parameter, say the
amplitude, as function of the other, in this case the phase (Fig. 6.2). This local
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Figure 6.2: Calibration of laser B’s modulation amplitude for force cancellation at a
targeted lattice site. Figures show the coherent optomechanical response from atoms
at that targeted site for various laser B amplitudes. Gray lines highlight optimal
amplitude for one particular modulation phase.

optimum would then be applied on the next hundred measurements to locally optimize
the phase (Fig. 6.3), and so forth. Optimizing the settings for force cancellation at
both sites typically took the better fraction of a day.

Experimental observations following the careful optimization of laser B’s mod-
ulation sadly did not demonstrate adequate force cancellation at either sites; the
collective phonon state at both locations were steadily high under both drive settings
(Fig. 6.4). Part of the blame was attributed to the lack of stability in the system. Op-
timal settings were found to vary slightly from one calibration to the next, enough to
impart substantial momentum kicks on the targeted site. Part of the blame was also
assigned to the insufficient level of site-to-site variation in each light’s linear coupling
to the collective atomic motion. In other words, the probe and trap lasers needed to
be much further apart in wavelength in order to hope for better results.

6.3.3 Force field detection

Having a chain of atomic oscillators spaced by half an optical wavelength (a ∼ 420
nm) offers a unique setting to detect sharply varying force fields. Potential applica-
tions include the detection of the short-range gravitational forces, a fundamental part
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at that targeted site for various laser B phases. Gray lines highlight optimal phase
for one particular modulation amplitude.

100 105 110 115 120
0

50

100

150

200

Detuning from carrier (kHz)

O
pt

om
ec

ha
ni

ca
l 

re
sp

on
se

 (p
ho

to
ns

)

Figure 6.4: Unsuccessful force modulation cancellation. Figure displays the spectrum
of optomechanically scattered probe photons (= S

(F )
a−a−(ω) × ωBW) under combined

resonant force driving from laser B and the probe at both occupied lattice sites,
ωm,(1,2) = 2π× (102.5, 114) kHz, simultaneously. Force parameters were optimized to
yield a null net force at site ωm,1 = 2π × 102.5 kHz (blue) and ωm,2 = 2π × 114 kHz
(green), respectively.
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of the Standard Model, and of the Casimir-Polder force. A much less ambitious goal
was put forward as a first demonstration of this capability: measuring the spatial
variation in the confining static force applied by one of the trap lasers, specifically
laser B (F̄B).

As shown in Eqs. 6.10–6.11, optical force modulations applied at each lattice
site are proportional to the local static optical forces. Resonant collective atomic
responses to a particular drive amplitude applied on laser B is therefore expected
vary between sites as the static optical force applied by B changes. Moreover, by
simultaneously applying several equal-amplitude modulations, each resonant with a
different lattice site’s oscillation frequency, the entire array of atomic oscillators can
be simultaneously driven and optomechanically probed, leading to parallel sensing of
laser B’s force field. The measurement can also be interpreted as sensing the summed
force distribution from all other sources that offset laser B at each lattice site, most
prominently laser A but also, to a limited extent, the probe’s static force and the
Earth’s gravitational field (science cavity was oriented vertically - see Ref.[50]).

Initial experimental efforts focused on parallel force sensing at three neighboring
and distinguishable lattice sites. A collection of ∼ 500 to 1000 atoms were loaded
at each site. The collective atomic motion at each site was then resonantly driven
at the same time by applying three calibrated intensity modulations on laser B.
The trio of oscillators were weakly probed while being driven. From the superlattice
model presented in Section 4.4, F̄B was predicted to change by ∼ 5% from one
site to the next. This relatively low site-to-site force variation was not surprising
considering λA and λB were relatively similar, meaning the lattice spacing a ∼ λB/2.
Unfortunately, the relative statistical uncertainties in the measured static forces at
all three locations, extracted from the optomechanical responses, were between 5%
and 10%. The predicted variation in F̄B could therefore not be distinguished from
the measurement noise.

Parallel force field sensing at three neighboring lattice site was abandoned in fa-
vor of sequential force sensing at three distant lattice sites, such that the expected
distribution in F̄B could be precisely resolved. One lattice site from three consec-
utive regions of the two-color FORT with maximal linear optomechanical coupling
to the probe field (φ(1,2,3) ∼ π/4) were chosen as targets. The targeted sites were
therefore spaced by ∼ 2.3µm, too far spaced to simultaneously load all three sites
with an atom-chip-prepared cloud (hence the need for sequential sensing). During
experiments, atoms were first loaded into the optical superlattice; the three targeted
sites were sequentially loaded over three experimental iteration. At each iteration,
the atoms were simultaneously driven by modulating laser B with a calibrated tone,
AB sin(ωmod,Bt), and optomechanically sensed. In order to avoid driving one site
slightly off from its mechanical resonance, ωmod,B was discretely scanned across each
site’s resonance over a series of nine measurements; the modulation frequency was kept
fixed at each measurement, but incremented by 2π×500 Hz < Γinh ∼ 2π×1 kHz from
one measurement to the next. A total of 10 scans across each targeted site’s resonance
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Figure 6.5: Sequential force field sensing. Figure shows the measured static per-
atom force applied by laser B, F̄B, applied at three distant lattice sites, as well as
the expected distribution of F̄B over many sites (black line). Each targeted site’s
location was modeled based on the atom-chip-produced magnetic trap and the chip’s
approximate distance from the input mirror, similarly to Fig. 4.10. (Insets) Measured
coherent displacement of each atomic oscillator in response to each of the applied force

modulations (=
〈

ˆ̃Z
(F )
CM,j(ωmod,B)

〉
· ωBW/AB).

were collected and averaged together. Both F̄B and
〈

ˆ̃Z
(F )
CM,j(ωmod,B)

〉
· ωBW/AB were

extracted from the average coherent response at each of the twenty seven modulation
frequencies.

The experimentally measured static forces did show a visible spatial variation, one
which agreed reasonably well with the modeled superlattice structure (see Fig. 6.5).
All three measured F̄B, however, were within statistical uncertainties of each other,
which somewhat limited the result’s impact. In addition, the measured variation was
approximately half as steeped as expected for reasons unknown. Due to both of these
limitations, as well as the narrow application of the method, these results were not
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included as part of Ref. [39].

6.4 Chasing down noise and excessive heating

When an optical superlattice was first formed inside the science cavity, atoms
were found to be hot. Their temperatures were recorded to be as much as ∼ 5 times
higher than in the single-color FORT. This initiated a long chase through the lock
chain’s forest of noise sources. The search for culprits is outlined below in roughly
chronological order. The eventual conclusion was that noise was due to a combination
of excessive noise on the trap lasers, caused primarily by secondary optical modes in
the laser diodes (i.e. nearby laser mode hops), the atoms’ linear susceptibility to
optical amplitude noise when confined in a two-color FORT, and the relative weak
confinement at regions of equal and opposite trap potentials in a balanced superlattice
(UA = UB).

Early in the process, heating was observed to be lower at certain “magical” wave-
lengths of trap light, both on laser A and B. There was, however, no trend to these
“magical” wavelengths. Moving as little as 1 GHz, about a FSR of the science cavity,
could yield a noticeably colder cloud, while moving a full nanometer would return the
cloud to an absurdly hot temperature. These wavelengths tests were primarily made
without locking to the transfer cavity in order to save time.

After finding a few reasonable pairs of operating wavelengths, the lock chain was
applied in full, with trap lasers locked to the transfer cavity. Surprisingly, initial mea-
surements showed atoms were hotter when the lasers were “narrowed” on the transfer
cavity. Investigative efforts immediately turned to the lasers and their locks. Sev-
eral routes were taken, including optimizing the optical feedback in both trap lasers’
housing, optimizing the various gains and frequencies used as part of their respective
closed-loop feedback circuit, and carefully adjusting the parameters of the science
cavity - laser B lock. The combination of changes only made marginal improvements
on the atoms’ temperature.

Faced with virtually no success after going down the list of obvious solutions, ran-
dom changes started being applied. One of them turned out to be particularly fortu-
itous. For a given pair of trap wavelengths and decent locking conditions, the loading
point of atoms into the superlattice was changed. Time-of-flight images showed drasti-
cally different temperatures both locations. After carefully modeling the superlattice
and conducting additional tests, the root causes of this variation in temperature were
attributed to variations in ωm across the superlattice and the atoms’ linear suscepti-
bility to trap noise. Superlattice sites with the largest ωm hold colder atoms not only
because they have deeper potentials with which to confine atoms, but also because
atoms inserted at these sites have minimal linear coupling to static optical forces
from the trap lasers. These conclusions seem obvious at this point of the chapter,
after detailing much of the experimental efforts, but unfortunately required much
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Figure 6.6: Added intensity-stabilization circuit, in transmission of the science cavity,
for laser A. An EOM was added to laser A’s cavity-bound path, with sidebands pro-
duced by mixing a direct-current (DC) voltage (Vbias) with a frequency modulation
(Vdrive - 200 MHz, 8.4 dBm). The EOM carrier was placed on science-cavity resonance
and served as A’s intracavity optical potential; laserA’s sidebands were both signif-
icantly detuned from science-cavity resonance. Intensity fluctuations above 2π × 3
kHz recorded by laser A’s APD in transmission of the science cavity were added to
Vbias and fed back to the EOM using the above circuit. Detected intensity increases
(decreases) were compensated by the feedback circuit by taking optical power out of
EOM carrier (sidebands) and into the EOM sidebands (carrier). Bw = bandwidth.

investigative work when first developing the experimental setup.
This important finding guided the remaining preparation work. Since the spectral

distribution of laser noise tends to fall off as a function of frequency, atoms with larger
ωm are typically less perturbed by trap laser noise. However, increasing each laser’s
power, i.e. UA and UB, so as to increase ωm (∝

√
UA,
√
UB) only helps alleviate

laser-induced heating if the noise spectral distribution drops faster than 1/ω2. A
balance was struck between the noise distribution of each laser, including known
technical noise spikes at certain frequencies, and the total trap light available, yielding
ωm,A,B = 2π × (127 kHz, 128 kHz). Laser A continued to transmit a significant
amount of heat to atoms. A direct intensity feedback loop (Fig. 6.6), involving only
passive electronic components with minimal cabling in order to maximize the feedback
bandwidth, was therefore added in parallel to laser A’s initial intensity-stabilization
circuit in transmission of the science cavity (see Fig. 4.4). The added construction
was found to have minimal impact on the atoms’ temperature and, consequently,
removed from the setup. What did have a substantial impact and finally ended the
noise chase was a slight adjustment of the laser diode A’s current, an indication that
the diode was operating near a mode hop.
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Chapter 7

Summary and future endeavors

This final chapter provides a brief summary of the major achievements emanat-
ing from the two experimental efforts discussed in this dissertation (Chapters 5–6).
Unanswered questions left behind by these experiments are also highlighted, leading to
a short list of possible future research avenues.

7.1 Summary

The single-oscillator and multi-oscillator experiments presented in this dissertation
provided one of the first in-depth looks at quantum features in cavity optomechanics.
Several important findings were reported, including the observation of zero-point
motion of a collective atomic mode of motion, the experimental validation of an
atom cloud’s thermodynamic evolution under constant probing, the demonstration of
quantum-limited optomechanical measurement backaction, i.e. the increase in ν̄ due
to the probe’s quantum optical fluctuations, and the ability to selectively transfer,
store and detect a coherent mechanical state in a single, targeted mechanical element
within an array of elements. However, perhaps the most important achievement, one
that connects both projects, is the experimental demonstration that an atoms-based
setup can reliably produce a tunable and near-ground-state mechanical system for
the purpose of quantum studies in cavity optomechanics. On any given day, the
experimental apparatus described herein could be tuned to produce one or many
mechanical elements, each near its motional ground state, with a desired site-to-
site variation in mechanical resonance frequency and optomechanical cooperativity.
Moreover, the type of coupling to the probe could also be selectively controlled, from
very dominantly linear (φ = π/4) to dominantly quadratic (φ = 0 orπ/2), as was
done in Ref. [54]. This versatility, unique to atoms-based systems, is in large part
responsible for the wide variety of distinctly quantum features in cavity optomechanics
reported by the Stamper-Kurn group.
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The many answers provided by the single-oscillator and multi-oscillator experi-
ments also brought upon several questions, both technical and fundamental, some of
which are still unanswered. Two of these remaining question marks are particularly
noteworthy: what physical characteristics define native mechanical damping rate, Γm,
and the observed, broadened mechanical linewidth, Γinh, and why does the observed
optomechanical response of atoms decay over time, becoming indistinguishable from
quantum fluctuations of the probe field at long times? Tying both of these loose
ends will be particularly important for future experiments that aim to build on the
results presented in Chapters 5–6. The challenge of resolving these issues is likely
technical rather than fundamental in nature, and will yield information specific to
the present experimental system. However, gaining experimental control over the
mechanical damping rate and the steady-state optomechanical response will be use-
ful for all future studies (i.e. system non-specific) of fundamental features of cavity
optomechanics.

7.2 Future endeavors

In this final section, I propose a series research paths that follow from the contents
of this dissertation. Each suggested topic is motivated by highlighting its relevance to
one or more active scientific communities. The topics are are approximately ordered
in a chronological form, from near-term priorities to longer-terms objectives.

7.2.1 The physics behind collective motional damping

In solid-state micro- and nanomechanical systems, understanding the physics be-
hind motional damping has received much scientific interest recently [86, 87]. Carry-
ing this interest over to atomic physics appears natural in the context of atoms-based
cavity optomechanics. Speculations are that Γm for a collectively moving ensemble
of atoms is predominantly defined by atom-atom collisions. In addition, numerous
possible sources of inhomogeneous broadening have been proposed to explain the ob-
served Γinh (see Section 5.4). Some of these sources of broadening are expected to be
asymmetric in frequency, favoring lower-frequency oscillation, such as the anharmonic
spacing between the FORT’s energy levels (see Sec. 7.2.3), and the radial spread of
atoms. The exact origins of Γm and Γinh likely lie at the intersection of cold-atoms
physics, many-body dynamics and nonlinear mechanics, making this a complex and
intriguing research topic, relevant to multiple atomic physics communities. Develop-
ing a reliable model for Γm and Γinh, one that would help predict the damping rates
for various experimental realizations (e.g. scaling with atom number), promises to
greatly benefit atoms-based cavity optomechanics by allowing future experiments to
be planned around a particular Γm and providing solutions to what is today a rather
limited mechanical quality factor (Q = ωm/Γm ∼ 250, Qinh = ωm/Γinh ∼ 50).
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Figure 7.1: Decay in optomechanical response over time. The figure shows a typical
example of the observed reduction in optomechanically scattered photons over time.
Five different time intervals following the injection of probe light into the cavity are
displayed: 1-2 ms (blue), 2-3 ms (green), 3-4 ms (red), 4-5 ms (turquoise), 5-6 ms
(pink).

7.2.2 Optomechanical responses at long times

As eluded in Section 7.1, optomechanical responses were observed to consistently
decay over time (Fig. 7.1) until, finally, being indistinguishable from the detected shot-
noise floor. The timescale over which optomechanical data was considered sufficiently
reliable for analysis was the first ∼ 10 ms of probing for COM ∼ 1. This observed
decay, unexplained by linear cavity optomechanics theory, has been a considerable
limitations, in particular causing a lengthy total acquisition time of adequate levels
of statistics, with a maximum yield of ∼ 10 ms of data for each ∼ 40-second-long
experimental iteration.

Exploring the reasons of this decay should fall high on the list of future experimen-
tal roads. Findings will not only improve the quality and reliability of experimental
data, but will also likely provide precious answers to fundamental questions. For
instance, what happens to atoms and their collective motion during the decay of
optomechanical response? Answers to this question might point to large motional
dephasing due to atom-atom interactions, effectively breaking up the collective CM
mode of motion, ẐCM, in favor of all other collective motional modes. Establishing this
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Figure 7.2: Possible evidence of anharmonic energy level spacing. This figure is a
copy of Fig. (3) in the published preprint on multi-oscillator cavity optomechanics
(Ref. [39]). The encircled “bump” in the observed spectrum is suspected to be Ra-
man scattered photons from mechanical element β’s first excited state, detuned to
lower frequency from ground-state-scattered photons because of the trap potential’s
anharmonic energy level distribution.

possible connection would contribute to the previously stated goal of understanding
the origins of Γm and Γinh. Answers might also point to optomechanically dependent
dynamics, such as an influence of the probe-cavity detuning ∆ on the observed de-
cay rate. In any case, the findings will enhance capabilities of future atoms-based
optomechanical experiments.

7.2.3 Anharmonic collective motion

The linear cavity optomechanical effects described in this previous chapters relied
on approximating the sinusoidal optical potential that traps and confines atoms as
a harmonic potential. However, a more complete model of the experimental system
must include the anharmonic features naturally present in the system. Evidences of
anharmonic effects have been indirectly observed in Fig. 5.2 and Fig. 6.1, and even
suspected as part of published results (Fig. 7.2). These observations remain sporadic
and poorly understood.

Acquiring a better handle on the anharmonicity present in atoms-based realiza-
tions of cavity optomechanics will considerably further explorations of quantum mo-
tion. First, signatures of nonlinear quantum motion could conceivably be detected.
Observations of anharmonic motion in time would of course be a prime objective,
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but one difficult to realize given the incoherent nature of quatum-driven oscillations.
Observations in the frequency domain, on the other hand, could be straightforward:
by having a distinguishable mechanical resonance for every motional energy state,
the occupation of each state within the collective nonlinear oscillator could be indi-
vidually detected, as proposed in Fig. 7.2. This would enable any superposition of
motional energy states to be directly imaged, thereby also enabling a new type of
optomechanical thermometer based on the relative occupation of each energy state r:

νr = e−r~ωm/kBT
(
1− e−~ωm/kBT

)
. (7.1)

Second, anharmonic motion could be harnessed for the purpose of quantum informa-
tion. Indeed, by spectrally isolating two motional energy levels, coherent exchange
of quantum information between these two states becomes possible, as was done for
superconducting qubits nearly 15 years ago [88]. Here, in the case of anharmonic
optomechanical systems with ground-state oscillators, bits of information would be
stored in the motional degrees of freedom, with the benefits of relatively small damp-
ing rates, and accessed by the light field. This would build on a recent experimental
demonstration of the ability to exchange one bit of quantum information between a
superconducting qubit and a nanomechanical resonator [34].

7.2.4 Quantum-limited measurements

As detailed in Chapter 1, the initial development of cavity optomechanics was
in large part motivated by the perspective of enhanced measurement sensitivity for
the purpose of gravitational wave detectors, in particular the ability to reach and
potentially surpass the “standard quantum limit” (SQL). Ironically, decades later,
the experimental demonstration of an optomechanical sensor operating at its optimal
quantum sensitivity (i.e. at the intersection of the shot-noise and backaction limits
- defined below) remains outstanding. This challenging demonstration, arguably the
Holy Grail of optomechanics, is now within experimental reach.

As discussed in Chapter 6 (see Eqs. 6.15–6.19), a mechanical element in a cavity
optomechanical is susceptible to externally applied forces as well as perturbations
from the optical probe and its surrounding thermal environment. In the context of
force detection, using the common “signal-to-noise ratio” (SNR) terminology, the op-

tomechanically imprinted response to an applied force, S
(F )
a−a−(ω), forms the “signal,”

while the additional response caused by incoherent perturbations, S
(pert)
a−a− (ω), consti-

tutes the “noise.” If the element’s native motion is dominantly driven by incoherent
quantum fluctuations, S

(pert)
a−a− (ω) = S

(inh)
a−a−(ω), then corresponding force measurements

are said to be at the SQL.
As with any quantum-limited measurements, SQL force measurements have a SNR

peaked at one particular optomechanical cooperativity, which sets the optomechanical
sensor’s optimal operating point. Below this optimal cooperativity, the mechanical
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Figure 7.3: Standard-quantum-limited force sensing. Shown in the figure are the de-
tection system’s susceptibility to the applied force, χ(ωdr) (top panel), the measured

atomic response to incoherent optical and mechanical noise, S
(het,inh)
dem (ωdr) (middle

panel), and the detection system’s overall noise-to-signal force measurement sensi-

tivity = S
(het,inh)
dem (ωdr)/χ(ωdr) (lower panel), as function of optomechanical cooper-

ativities, COM. Each experimental condition’s COM is determined from fits to the
observed incoherent response in order to account for possible fluctuations in exper-
imental conditions. Statistical uncertainties from these fits are used to derive error
bars on the quoted force sensitivities. Three different probe detunings from atomic
resonance were applied in order to cover a sufficient range of COM, : ∆ca = −70 GHz
(blue), ∆ca = −40 GHz (green), ∆ca = −12 GHz (red). The black line corresponds
to the predicted force-sensing SQL based on linear optomechanical theory.

element’s motion is too weakly sensed, leading to a sub-optimal S
(F )
a−a−(ω) that limits

the attainable SNR. This measurement regime is known as the “shot-noise-dominated
regime.” Above the optimal cooperativity, the probe becomes the dominant inco-
herent drive; the signal (S

(F )
a−a−(ω) ∝ COM) begins to scale less favorably than the
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probe-induced noise (S
(inh)
a−a−(ω) ∝ C2

OM), a measurement regime appropriately termed
“backaction-dominated regime.” Optimal detection thus sits at the intersection of
both measurement regimes.

Recent work in the Stamper-Kurn group has provided an initial indication that
quantum-limited force detection could be achieved using an atoms-based realization
of cavity optomechanics. Preliminary results show that an applied force modulation,
generated through intensity modulations of laser beam B in a two-color FORT (as
described in Section 6.3) and nearly resonant with one distinguishable atomic oscilla-
tor, can be optomechanically sensed at the SQL across the transition from shot-noise-
limited to backaction-dominated regimes using a single atomic oscillator (Fig. 7.3).
The findings are based on measurements of the atoms’ collective incoherent response,
S

(het,inh)
dem (ωdr), and the detection system’s susceptibility to the applied force, χ(ωdr),

at the modulation frequency, ωdr, using a cavity-resonant probe (∆ = 0):

S
(het,inh)
dem (ωdr) = ε~ωp · 2κS(inh)

a−a−(ωdr) =
ε~ωp
2π

COM

2

Γ2
m(COM + 2ν̄th + 1)

(ωdr − ωm)2 + (Γm/2)2
, (7.2)

χ(ωdr) =
S

(het,F )
dem (ωdr)× ωBW

F 2
RMS(ωdr)

=
ε~ωp × 4κS

(F )
a−a−(ωdr)× ωBW(

F̄B(zmin)AB
)2 , (7.3)

=
ε~ωpCOM

2Γm PHO

(Γm/2)2

(ωdr − ωm)2 + (Γm/2)2
. (7.4)

In Eqs. 7.2–7.4, the unresolved sideband limit, ωdr � κ was applied: κ2 + ω2
dr ∼ κ2.

Continued work to confirm these results and expand on the cavity’s role during mea-
surements (e.g. attempting such force measurements away from cavity resonance) is
bound to have a profound impact on the optomechanics community and the quantum
metrology community in general.

7.2.5 Longer-term experiments in a one-dimensional cavity-
based lattice

The creation of an array of atomic ensembles with near-ground-state collective
motion provided an important first exploration of quantum cavity optomechanics
with multiple mechanical elements. Framing the realization in a larger picture, one
that includes future applications of cavity optomechanics, such as tests of quantum
mechanics at “macroscopic” scales and the development of quantum devices, the
achievement was a relatively small step. As cavity optomechanics continues to make
small important steps towards big-picture goals, it could no doubt benefit from longer-
term involvement of cold-atoms-based constructions.

Examples of future experimental demonstrations that could potentially be achieved
using cold atoms include the optical detection of a non-classical motional state (e.g.
a motional Fock state), the ability to transfer quantum information between two
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mechanical oscillators using light as a communication link, and the generation of
entanglement between two “large size” mechanical objects, an important result for
the field of quantum optics at large. Having a distributed series of cold atomic sam-
ples within an optical cavity, where light-mediated interactions are effectively infinite
range, also enables optomechanics-type experiments relevant to atomic physics, in
particular many-body physics. For instance, an atoms-based Newton’s cradle could
be experimentally examined. The idea here would be to apply a displacement on one
collective atomic ensemble and examining the impact of this perturbation on other
mechanically resonant ensembles. Moving further away from optomechanics, the infi-
nite range interactions being considered need not be limited to the atoms’ mechanical
degree of freedom: they can include all fundamental aspects of the atoms, such as
their spin and their fermionic/bosonic nature.

Regardless of the set goals of future experiments, the physics at play is likely to be
completely different. After all, that is how the Stamper-Kurn group serendipitously
started what is now nearly a decade-long series of fruitful investigations on cavity
optomechanics.
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Appendix A

Linear optomechanical amplifier
model

The main text of the publication entitled “Linear amplifier model for optomechan-
ical systems” (Ref. [40]) is included below. This work describes some of the fun-
damentals behind optomechanical interactions and complements the theory present
in Chapter 2. The style format of the following appendix matches that the disser-
tation, not that of the published manuscript. However, the nomenclature, symbols
and definitions used in the original publication are repeated here. In particular, the
Fourier-transform and quadrature-operators definitions applied in this appendix are
not normalized, contrary to the definitions used in the main body of the dissertation
(see Section 2.2).

Cavity optomechanics [89, 90] describes the macroscale effects of radiation pressure
on moveable reflective and refractive media [3, 6] with cavity-based optical feedback.
Research in the field today is conducted on several fronts, from nano- [83, 91, 92]
and micro-fabricated [55, 93, 94] devices to atomic gases [29, 30] to kilogram-size
mirrors [95, 96], and from microwave to optical frequencies. Efforts to elucidate the
classical and quantum nature of optomechanical systems have led to demonstrations
of sideband cooling [25, 26, 27, 97, 98], amplification [25, 99] and backaction evasion
[100], observations of the optical spring effect [101], quantum-sensitive force detection
[31, 32], explorations of optical nonlinearity and bistability [54], and studies of pon-
deromotive squeezing [102] and classical analogs thereof [103, 104]. In the past year,
further experimental advances also generated the first ground-state oscillators [34, 35]
and led to the observation of mechanically induced optical transparency [59, 60].

To date, these varied research avenues have been modeled individually. Works
highlighting a particular aspect of optomechanics are often prefaced by extensive
derivations to set the context. This effectively isolates different aspects of the same
optomechanical interaction, making it difficult to establish the connections between
them.
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Here, we present a framework that treats these disparate phenomena in a unified
manner. Cavity-mediated interactions between a harmonic oscillator and a circulating
light field are modeled as a feedback circuit. This allows the use of concepts from
control theory. Optomechanical systems are therefore represented as linear optical
and mechanical amplifiers with frequency-dependent gain. We study the amplifier
response to optical and mechanical inputs for the general case of a two-sided cavity
with losses. Results include a connection between ponderomotive squeezing [20, 102,
103, 104, 105, 106] and optomechanically induced transparency (OMIT) [59, 60, 107].
The amplifier model is also used to set quantum limits on the transduction of external
mechanical drives.

A.1 Model of Optomechanical Interaction

We consider a two-sided optical cavity containing one optical element that is
moveable and harmonically bound. The element may be one of the cavity mirrors, or
an intracavity dispersive element placed at a linear gradient of the light field [108].
Light circulating inside the cavity couples parametrically with the position of the
harmonic oscillator. The system is described by the Hamiltonian

H = ~ωcâ†â+ ~ωmb̂†b̂+ ~ gom ẑâ
†â+ Ĥκ + Ĥγ , (A.1)

where ωc (ωm) and â (b̂) are the resonant frequency and the annihilation operator
of the cavity (oscillator) field, respectively. The first two terms of Eq. A.1 represent
the energy stored in the photon and phonon fields. The final two terms, Ĥκ and Ĥγ,
contain the connections to external photon and phonon baths, respectively. Constant
energy offsets are ignored.

The third term in Eq. A.1 captures the optomechanical interaction, where ẑ =
b̂+ b̂† is the dimensionless position operator of the oscillator and gom sets the coupling
strength. The interaction has a clear signature of three-wave mixing, with intermod-
ulation between two optical field operators and one mechanical field operator. This
fundamentally nonlinear (three-wave) coupling can be linearized about an equilibrium
position displacement z0 caused by a dominant optical pump field â0e

−iωpt rotating
at frequency ωp:

ẑ → z0 + ẑ , (A.2)

â → (a0 + â) e−iωpt .

For simplicity, we set a0 =
√
n to be real, with n being the mean intracavity pump

photon number. The resulting linearized optomechanical interaction energy can be
written in two parts:

Hstatic = ~gom

(
z0n+ nẑ +

√
n z0(â+ â†)

)
, (A.3)
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describing static changes in the cavity resonance frequency and the oscillator position,
and

Hdyn = ~gom

(√
n ẑ(â+ â†)

)
, (A.4)

corresponding to linearized dynamics. Eq. A.4 shows that the effective linear coupling
between ẑ and â is mediated by the pump field

√
n, with optical sidebands interpreted

as signals and phonon modes as idlers.
The exchange of information between the circulating light field and the oscil-

lator, captured by Hdyn, leads to dynamical backaction [90] or, in the language of
control-systems engineering, feedback. To model this feedback, we introduce conju-
gate quadratures for both field fluctuation operators:

b̂+ = ẑ = b̂+ b̂† , b̂− = p̂ = i(b̂− b̂†) , (A.5)

â+ = â+ â† , â− = i(â− â†) .

Operators ẑ and p̂ represent the dimensionless position and momentum fluctuation
operators of the oscillator, while â+ and â− are the amplitude modulation (AM) and
phase modulation (PM) quadratures of the intracavity optical field. Time evolution
of these operators is provided by the Heisenberg equations in a frame co-rotating with
the pump field: 

˙̂a+

˙̂a−
˙̂z
˙̂p

 = M


â+

â−
ẑ
p̂

+


√
γT α̂in+√
γT α̂in−√
Γm η̂in+√
Γm η̂in−

 , (A.6)

where

M =

(
Ma T
T Mb

)
=


−κ ∆ 0 0
−∆ −κ gC 0

0 0 −Γm
2
−ωm

gC 0 ωm −Γm
2

 . (A.7)

The frequency ∆ = ωp−ω′c corresponds to the pump detuning from cavity resonance
(ω′c includes the static shift contained in Hstatic), while gC = 2gom

√
n defines the

effective optomechanical coupling rate. Photonic and phononic perturbative inputs
(outputs) are symbolized by α̂in (α̂out) and η̂in (η̂out), respectively. Operator α̂in (α̂out)
groups inputs (outputs) from the left and right ends of the cavity, α̂in,L (α̂out,L) and
α̂in,R (α̂out,R), respectively, as well as from loss channels α̂in,V (α̂out,V ):

√
γT α̂in =

√
γL α̂in,L +

√
γR α̂in,R +

√
γV α̂in,V . (A.8)

The optical damping rates through each port, γL, γR and γV , collectively define the
cavity half-linewidth κ as 2κ = γL + γR + γV . Analogously, communication between
the mechanical oscillator and its environment takes place at a rate Γm.
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Eqs. A.6–A.7 show that the oscillator momentum is susceptible to fluctuations in
the intracavity photon number, while the induced phase shift on circulating photons
is dependent on the oscillator position. The mutual optomechanical transduction,
captured by the off-diagonal block matrix T, leads to closed-loop feedback. The
standard formalisms from control theory thus provide appropriate means to construct
a complete yet simple model for optomechanical systems.

First, Eqs. A.6–A.7 can be translated into a time-domain block diagram, as shown
in Fig. A.1(a). Such representations are analogous to earlier flow-chart depictions of
optomechanical interactions [109]. Optomechanical interactions are shown as vertical
lines of communication in Fig. A.1, between the otherwise freely evolving optical and
mechanical fields.

Second, insight into the gains of the optomechanical feedback loop can be obtained
by studying the evolution of field operators in frequency space, translating Eq. A.6
into a pair of governing equations1:(

ˆ̃a+

ˆ̃a−

)
= Fa

[
T

(
ˆ̃z
ˆ̃p

)
+
√
γT

(
ˆ̃αin+

ˆ̃αin−

)]
, (A.9)(

ˆ̃z
ˆ̃p

)
= Fb

[
T

(
ˆ̃a+

ˆ̃a−

)
+
√

Γm

(
ˆ̃ηin+

ˆ̃ηin−

)]
,

where

Fa =
1

(κ− iω)2 + ∆2

(
κ− iω ∆
−∆ κ− iω

)
, (A.10)

Fb =
1

(Γm
2
− iω)2 + ω2

m

(
Γm
2
− iω −ωm
ωm

Γm
2
− iω

)
.

In Eqs. A.9, the intracavity photon (phonon) field is the sum of an optomechan-
ical transduction of the intracavity phonon (photon) field and a cavity- (oscillator-)
induced filtering of the + and − optical (mechanical) input quadratures, captured
by Fa (Fb). Eqs. A.9 are collectively represented by the block diagram shown in
Fig. A.1(b).

By virtue of our approximations, the optomechanical amplifier model considered
here is entirely linear; amplifier inputs and outputs can be completely parametrized
by a set of transfer matrices. In typical optomechanics systems, only the optical field
is detectible, so we will only give those transfer matrices that connect the inputs to
the optical output. A key result of this paper is that many of the salient features of
optomechanics depend only on these transfer matrices, and not on the specific nature
of the drive fields or, among other possibilities, on the assorted experimental configu-
rations by which many phenomena of optomechanical systems have been uncovered.

1The following Fourier transform convention is used: f̃(ω) =
∫∞
−∞ f(t)eiω tdt
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Figure A.1: Block diagram model of linear optomechanics in the (a) time domain and
(b) frequency domain, as established in Eq. A.6 and Eq. A.9, respectively. The block
matrices of Eq. A.6 and Eq. A.9 are shown in their respective circuit. Symbols

∑
and

∫
represent the sum of two inputs and the time integral of an input, respectively.

Linear optomechanical feedback takes place via the two center blocks (red), which
connect the optical (blue) and mechanical (green) field evolution.

The optical output is(
ˆ̃a+

ˆ̃a−

)
= Hα

√
γT

(
ˆ̃αin+

ˆ̃αin−

)
+ Hη

√
Γm

(
ˆ̃ηin+

ˆ̃ηin−

)
. (A.11)
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The transfer matrices Hα and Hη have units of inverse frequency, and can be calcu-
lated by solving Eq. A.9. The result is

Hα =

(
1 +H+α 0
H−α 1

)
Fa, (A.12)

Hη =

(
H+α 0
H−α 0

)(
H+η H−η

0 0

)
. (A.13)

The individual matrix elements can be related to a common optomechanical gain
G. For systems with high mechanical quality factors, where the damping-induced
frequency pulling of the oscillator may be neglected, one finds:

G =
−s(ω)

ω2
m + s(ω)− ω2 − iω(Γm+Γopt(ω))

, (A.14)

H+α = G, H−α = G
κ− iω

∆
, (A.15)

H+η = − 1

gC

Γm/2− iω
ωm

, H−η =
1

gC
. (A.16)

In the above, s(ω) represents the stiffening of the oscillator due to optomechanics,
and Γopt(ω) represents an optomechanically induced damping rate:

s(ω) =
ωm∆g2

C

κ2 + ∆2 − ω2
, (A.17)

Γopt(ω) =
2κ

κ2 + ∆2 − ω2
(ω2

m − ω2). (A.18)

The stiffening shifts the oscillator’s resonant frequency to a value

ω2
eff =

1

2
(κ2+∆2+ω2

m)− 1

2

√
(κ2+∆2−ω2

m)2−4ωm∆g2
C

≈ ω2
m + s(ωm), (A.19)

where the approximation holds for small shifts of ωeff from ωm.
The properties of the amplifier can be parameterized by the optomechanical coop-

erativity, defined as Copt = g2
C/(κΓm). The cooperativity allows comparison between

optomechanical systems over a broad range of parameters. However, Copt does not
contain information about the detuning from cavity resonance. To draw comparison
between systems operating away from cavity resonance, it is more convenient to adopt
an “optomechanical damping parameter”, defined as Dopt = Γopt(ωeff)/Γm.

In line with our earlier assumptions, Eq. A.11 holds only for linear and stable sys-
tems. In optomechanics, this condition is always satisfied when the optomechanically
induced cavity resonance shift is small compared to the cavity linewidth (gC < κ)



95

and when pumping to the red of cavity resonance (∆ ≤ 0), where backaction cooling
dominates [19, 110, 111]; parametric instability can occur when pumping to the blue
of cavity resonance [22, 25, 112, 111]. Eq. A.11 is consequently invalid under optical
bistability, where the pump detuning can spontaneously transition between negative
and positive values due to changes in the instantaneous cavity resonance frequency.

Eq. A.11 represents cavity optomechanics as a phase-sensitive amplifier [113, 114].
The amplifier has intrinsic quantum noise due to zero-point optical and mechanical
fluctuations entering into the cavity. Furthermore, the amplifier can exhibit gain
below unity in certain quadratures and frequency bands. This feature leads to a
reduction of optical shot-noise below the level of Poissonian statistics [20, 105, 106],
as shown in following sections.

A.2 Intracavity Response

The amplifier model developed above is applied here to study the response of the
intracavity field to both optical and mechanical drives. Since the amplifier is linear,
its susceptibility to each input type is completely decoupled, and we therefore treat
the response to each input separately. In Section A.2.1, we consider the transduction
of the optical field, and show that OMIT and ponderomotive squeezing both arise
from the same physics. In Section A.2.2, we examine the transduction of mechanical
inputs onto the optical field.

A.2.1 Response to Optical Inputs - Ponderomotive Attenu-
ation and OMIT

The amplifier’s response to optical inputs is characterized by the optical transfer
matrix Hα, given in Eqs. A.12–A.15. This transfer matrix can be used to predict
experimental outcomes. Here, we consider two types of experiments. In the first,
modulation is applied to the pump (this applied modulation may be a coherent drive,
classical noise, or quantum fluctuations), and the response of the optomechanical sys-
tem is detected in the resulting amplitude or phase modulation of the optical field.
Such experiments have demonstrated both ponderomotive squashing [103, 104] (at-
tenuation of classical noise) and squeezing [102] (attenuation of quantum noise), as
well as the transduction of coherent signals [102, 104]. In the second type of experi-
ment, a weak probe at a single frequency accompanies the pump into the cavity and is
detected, yielding observations of OMIT and optomechanically induced amplification
[59, 60, 115, 116]. We show that both types of experiments are related via a simple
unitary rotation of the transfer matrix.

The first type of experiment is characterized by the transduction of AM and PM
from an optical input to the intracavity optical field. Because the static field a0 is
real, amplitude and phase modulation quadratures correspond identically to the â±
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Figure A.2: Square magnitude of the elements of the optical modulation transfer
matrix. The elements describe the transduction of amplitude and phase modulation
from input to output. Powers are normalized by the total intracavity attenuation in
the absence of optomechanics (G = 0). Each element is plotted for the unresolved
(ωm/κ = 0.2, solid red), intermediate (ωm/κ = 1, dashed blue), and resolved (ωm/κ =
5, dotted green) sideband cases, with the anti-Stokes mechanical sideband (∆ + ωm)
fixed at −0.5 κ from cavity resonance. Ponderomotive attenuation is observed in
the vicinity of ω = ωm, while ponderomotive amplification is prevalent only for the
unresolved sideband case, in the vicinity of ω = ωeff . For all plots, Dopt = 30 and
Q = 1000.

observables. However, because of the cavity phase rotation, the input field αin,0 has
a complex phase ψc = arctan(∆/κ), and the observables corresponding to AM and
PM are (

ˆ̃αin,A

ˆ̃αin,P

)
= R(−ψc)

(
ˆ̃αin+

ˆ̃αin−

)
, (A.20)

where R is a rotation matrix defined as

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (A.21)
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Figure A.3: Sum of the square magnitude of the ˆ̃α(ω) → ˆ̃a(ω) term in the single-
sideband spectral transfer matrix HSS

α . Probe frequencies ω are quoted in units of
κ relative to the pump frequency at ω = 0. Three cases are considered: unresolved
(ωm/κ = 0.2, red), intermediate (ωm/κ = 1, blue) and resolved (ωm/κ = 5, black)
sideband regimes, with the anti-Stokes mechanical sideband (∆+ωm) fixed at −0.5 κ
from cavity resonance for the first two cases, and fixed on cavity resonance for the
resolved sideband case. Solid lines indicate responses in the presence of an oscilla-
tor, while dashed lines apply to empty cavities. No normalization is performed (1
represents unity gain). For all plots, Dopt = 30 and Q = 1000.

The input-output relation is thus given by the modulation transfer matrix HMT
α as(

ˆ̃a+

ˆ̃a−

)
= HαR(ψc)

√
γT

(
ˆ̃αin,A

ˆ̃αin,P

)
, (A.22)

= HMT
α

√
γT

(
ˆ̃αin,A

ˆ̃αin,P

)
.

Fig. A.2 shows the power (square magnitude) of each element of HMT
α . For a pump

beam detuned to the red of cavity resonance, one sees an attenuation of modulation
in the vicinity of ω = ωm in the output AM spectra, caused by the destructive
interference of the input fluctuations with the mechanically transduced fluctuations.
When the system is driven by optical shot noise, this attenuation gives ponderomotive
squeezing of the optical field (see Section A.4.1). In the unresolved sideband case
(ωm � κ), one also observes amplification of transduced AM near ω = ωeff < ωm due
to constructive feedback. As ωm is increased above κ, the optomechanical damping
in the vicinity of ωeff increases, broadening and attenuating the amplified peak.

For the second experiment, we calculate the transduction of a single-tone probe
ˆ̃α(ω). The single-sideband transfer matrix relates the input and output of pure tones
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at ±ω: (
ˆ̃a(ω)

ˆ̃a†(−ω)

)
= HSS

α

√
γT

(
ˆ̃α(ω)

ˆ̃α†(−ω)

)
, (A.23)

HSS
α = UHαU

−1 , U =
1√
2

(
1 −i
1 i

)
.

Fig. A.3 shows the sum of the square magnitude of the HSS
α terms that link the

pure tone input ˆ̃α(ω) to the corresponding intracavity field ˆ̃a(ω). It reflects the
total intensity transduced in this single optical sideband (i.e. quadrature-insensitive
detection). In the resolved-sideband limit, with the pump anti-Stokes mechanical
sideband centered on the cavity resonance (ωm = −∆), a prominent dip at ωm is
visible. This feature is the hallmark of OMIT [59, 60].

This resolved-sideband probe spectrum changes when transitioning to the unresolved-
sideband limit and detuning the pump anti-Stokes sideband from cavity resonance
(ωm < −∆), with increased amplification at the effective oscillation frequency ωeff

and decreased attenuation at ωm.
Our linear feedback model reveals clearly that ponderomotive attenuation and

OMIT originate from the same physical phenomenon. Moreover, the model highlights
that OMIT can be reinterpreted as a classical analog of ponderomotive squeezing, in
that it demonstrates that certain matrix elements of the optical-to-optical transfer
matrix have magnitude well below unity.

A.2.2 Response to Mechanical Inputs

Next, the transduction of mechanical inputs onto the circulating light field is
studied. Fig. A.4 shows the power in each element of the mechanical to optical
transduction matrix Hη, multiplied by the input phonon coupling Γm. Expressed
in this manner, the matrix elements give the optomechanical conversion of flux of
phonon quanta into quanta of optical modulation. Transduction of η− into PM follows
a Breit-Wigner function, with response peaked at the effective oscillation frequency
ωeff . The AM response to η− is scaled by ∆/(κ − iω) relative to that of PM, and
the transduction of η+ into AM/PM carries an additional factor of (iω − Γm/2)/ωm
relative to η−.

A.3 Post-Cavity Detection

We now extend the model developed in section A.1 to consider the cavity output
field. Photons exiting the cavity through the right and left mirrors form the new
outputs of the optomechanical amplifier.
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transduction matrix

√
ΓmHη. The ordinate axis is in units of square modulation

quanta of the intracavity field â per square flux quanta of the mechanical input field
η̂. Each element is plotted for the unresolved (ωm/κ = 0.2, solid red), intermediate
(ωm/κ = 1, dashed blue), and resolved (ωm/κ = 5, dotted green) sideband cases, with
the anti-Stokes mechanical sideband (∆ +ωm) fixed at −0.5 κ from cavity resonance.
For all plots, Dopt = 30 and Q = 1000.

Transfer functions connecting optical and mechanical inputs to the optomechani-
cally colored cavity output light follow from Eq. A.11 according to cavity boundary
conditions [117]. For any of the ports l = L, R, or V , the boundary condition is

α̂in,l + α̂out,l =
√
γl â. (A.24)

The boundary condition leads to expressions for the transfer matrix connecting any
input α̂in,k (where k = L, R, V , or η) to light in output field α̂out,j (where j = L or
R):

Hj k =
j 6=k

√
γjγk Hk, Hj j = γjHα − 1, (A.25)

where Hk = Hα or Hη for k = L,R, V or η, respectively, and 1 is the identity matrix.
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An optical signal measured in reflection thus includes beats between the exiting
intracavity field and the reflected input beam. In contrast, both the optical signals
from transmitted light and from the mechanical input are determined by scaling the
intracavity field (see Section A.2). Both amplifier output ports can consequently
carry distinct signatures of a common optomechanical interaction.

Let us apply these results to determine the output field response in reflection to
applied pump modulations. As noted in Section A.2.1, the entering and exiting fields
carry separate complex phases relative to the static intracavity field a0 due to cavity
rotation. Both phase angles are linked by the cavity boundary condition. For a
one-sided, lossless cavity, the phase angles differ by φc = − arctan (2κ∆/ (κ2 −∆2)).
Input AM and PM at port j are transduced into observable AM and PM at the
output of that same port according to(

ˆ̃αout,jA

ˆ̃αout,jP

)
= HMT

j j

(
ˆ̃αin,jA

ˆ̃αin,jP

)
, (A.26)

HMT
j j = R(−ψc)R(−φc)Hj jR(ψc) .

Fig. A.5 shows the power (magnitude square) of each element of HMT
j j for a one-sided,

lossless cavity. The results are considerably different from those measured in trans-
mission or intracavity (see Fig. A.2). The differences are due to the combined effect
of cavity-induced phase rotation of the exiting intracavity field and its interference
with light reflecting off the input/output mirror.

A.4 Specific input conditions

We now turn to the optomechanical amplifier response to specific inputs: quantum
fluctuations of the mechanical and optical fields, a thermal mechanical bath, and
external forces.

To characterize the response, we determine the power spectral density (PSD) of
an output field quadrature X̂θj. The quadrature is defined by:

X̂θj ≡ α̂out,j+ cos θ + α̂out,j− sin θ . (A.27)

The PSD is defined as

Sθj(ω) ≡
〈∣∣∣ ˆ̃Xθj

∣∣∣2〉 (A.28)

=

〈∣∣∣∣∣∑
k

(
cos θ sin θ

)
Hj k

(
ˆ̃ζin,+

ˆ̃ζin,−

)∣∣∣∣∣
2〉

,

where ζ = α or η for k = L,R, V or η, respectively. If the inputs are incoherent, such

that 〈 ˆ̃ζ†in1
ˆ̃ζin2〉 = 0 along two distinct input ports k1 and k2, the PSD can be rewritten
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Figure A.5: Square magnitude of the elements of HMT
j j , the optical modulation matrix

connecting inputs and outputs in reflection. The elements describe the transduction of
amplitude and phase modulation. Each element is plotted for the unresolved (ωm/κ =
0.2, solid red), intermediate (ωm/κ = 1, dashed blue), and resolved (ωm/κ = 5, dotted
green) sideband cases, with the anti-Stokes mechanical sideband (∆ + ωm) fixed at
−0.5 κ from cavity resonance. For all plots, Dopt = 30 and Q = 1000.

as a sum of transduced powers:

Sθj(ω) =
∑
k

〈∣∣∣∣∣(cos θ sin θ
)
Hj k

(
ˆ̃ζin,+

ˆ̃ζin,−

)∣∣∣∣∣
2〉

(A.29)

(assuming incoherent inputs) .

Finally, the PSD of a real observable (e.g. Xθ) is necessarily symmetric in fre-
quency, so we quote the symmetrized PSD

Sθj,S(ω) ≡ 1

2
(Sθj(ω) + Sθj(−ω)) . (A.30)

A.4.1 Optical and Mechanical Vacuum Fluctuations

Applying quantum perturbations to drive the oscillator allows the quantum nature
of optomechanics to be probed. We study the case of quantum drives here by consid-
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Figure A.6: Ponderomotive amplification and squeezing. Each panel shows the noise
power (relative to shot-noise) of the optical field vs. frequency and quadrature for
a one-sided lossless cavity. Quadrature angles refer to θ in Eq. A.27 (θ = 0, π/2
correspond to +,− quadrature, respectively). Columns show, respectively, the unre-
solved (ωm/κ = 0.2), intermediate (ωm/κ = 1), and resolved (ωm/κ = 5) sideband
cases, with the anti-Stokes mechanical sideband (∆+ωm) fixed at −0.5 κ from cavity
resonance. For all plots, Dopt = 30 and Q = 1000.

ering a shot-noise-limited pump input, where the cavity noise spectrum is dominated
by optical and mechanical vacuum fluctuations. Under such a premise, optomechan-
ical interactions imprint these zero-point fluctuations on the circulating light field
with gain. Regions where the resulting fluctuations drop below the standard quan-
tum limit (SQL) yield quadrature-squeezed light, i.e. ponderomotive squeezing [20].
Such squeezing is particularly important for gravitational-wave detectors, such as
LIGO, where squeezed light sources provide enhanced detection sensitivity [12, 118].
Ponderomotive squeezing serves as an in-situ means to produce squeezed light at low
frequencies, where detectors are sensitive to gravitational-wave perturbations [119]. A
first experimental observation of ponderomotive squeezing has recently been reported
[102].

We start with the noise spectrum of light reflected from a one-sided lossless cavity
(γR = 2κ, γL = γV = 0). The general expression for the symmetrized PSD relative to
shot-noise in this ideal case is

S̄ideal
θR,S(ω) =

∑
k=R,η

∥∥(cos θ sin θ
)
HRk

∥∥2
. (A.31)

The overbar on S̄ideal
θR,S specifies that the symmetrized PSD is normalized by shot-

noise and is therefore dimensionless. In addition, ‖ . . . ‖2 represents the vector inner
product.

S̄ideal
θR,S is shown in Fig. A.6 for the case of sideband cooling (∆ < 0). With the anti-

Stokes mechanical sideband (∆ +ωm) held fixed at −0.5 κ, ponderomotive squeezing
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is found to be largest near the θ = π/4 quadrature at frequencies around ωeff . For
each sideband regime, the maximum squeezing quadrature and frequency are set by
the competition of optomechanically squeezed vacuum inside the cavity and uncor-
related vacuum reflecting off the transmissive mirror. The suppression of quantum
noise below the SQL results from the oscillator responding out of phase to vacuum
perturbations above its effective mechanical resonance ωeff . Quantum optical fluctu-
ations are also mechanically transduced between uncorrelated conjugate quadratures
(e.g. AM ↔ PM). This leads to shot-noise amplification at all frequencies in the
conjugate quadrature to that of maximum squeezing (near θ = 3π/4 in Fig. A.6).

For a two-sided or lossy cavity, shot noise reflecting off the output port adds
incoherently with vacuum fluctuations entering the cavity from other input ports. In
addition, loss channels replace colored vacuum exiting the cavity with uncorrelated
vacuum. Defining the relative photon extraction efficiency through the output port
as εout (γR = 2κ εout, γL + γV = 2κ (1 − εout)), and expressing the fraction of cavity
output field detected as εdet, one finds that the detected spectrum of noise relative to
shot-noise is [117]

S̄obs
θR,S(ω) = εtotS̄

ideal
θR,S(ω) + 1− εtot , (A.32)

where εtot = εout · εdet. If measurements are to be made on only one output port, any
departure from the ideal one-sided case therefore results in a reduction of observable
squeezing.

A.4.2 Mechanical Drive

Several noise models for mechanical disturbances have been proposed [120, 121,
122]. As done in earlier works [20, 105], here we study the Caldeira-Leggett model
[122] under the Markov approximation, where

〈η̂†in(t)η̂in(t′)〉 = nthδ(t− t′) , (A.33)

and Γm is constant across frequencies. The term nth = [e~ωm/(kBT )− 1]−1 corresponds
to the mean phonon number, determined by the mechanical bath temperature T . This
model is appropriate for oscillators with high mechanical quality factor Q = ωm/Γm.
Under this model, the total output noise due to mechanical fluctuations relative to
mechanical shot-noise is

Smech
±R,S =

2εtot

CoptfBW

ω2
m + ω2

ω2
m

(2nth + 1)|H±α|2, (A.34)

where fBW is the Fourier-transform bandwidth.
The drive source may also be an external force acting on the oscillator (e.g. a weak

force that one wishes to detect via optomechanics). Since forces impart a change in
momentum, a coherent force acting on the oscillator F̃ext = Fext/fBW is only related
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Figure A.7: External force sensitivity. Figure shows the optical power spectrum
from external force transduction normalized by the drive power vs. frequency and
quadrature. Quadrature angles refer to θ in Eq. A.27 (θ = 0, π/2 correspond to +,−
quadrature, respectively). Columns show, respectively, the unresolved (ωm/κ = 0.2),
intermediate (ωm/κ = 1), and resolved (ωm/κ = 5) sideband cases, with the anti-
Stokes mechanical sideband (∆ + ωm) fixed at −0.5 κ from cavity resonance. For all
plots, Dopt = 30 and Q = 1000.

to the quadrature input term ˆ̃ηin− as

√
Γm

〈
ˆ̃ηin−

〉
=
F̃ext

pho

. (A.35)

The term pho =
√

~Mωm/2 symbolizes the harmonic oscillator momentum of the
mechanical resonator, where M is the resonator’s mass.

The push provided by F̃ext is imprinted on the optical pump field via the mechanically-
applied phase shift (see Fig. A.1): optical sidebands at the drive frequencies are
promoted. The optical power spectrum on the cavity output field arising from an
external force, in units of square optical quanta per square force quanta, is given by

Sext
θR,S

|Fext|2
=

2εtot

Copt

∣∣∣∣cos θ +
κ− iω

∆
sin θ

∣∣∣∣2 |G|2

Γmf 2
BWp

2
HO

(A.36)

Fig. A.7 shows that the force transduction is peaked at the same frequency (ω = ωeff)
and quadrature (near θ = 3π/4 when ∆ +ωm is fixed at −0.5 κ) as that of maximum
shot-noise amplification (see Section A.4.1). The maximization of force detection
signal and quantum noise at the same point in parameter space motivates the question
of optimal force sensing quadrature and condition.

Temperature and force sensing have standard quantum limits (SQL) set by two
competing optomechanical effects: the transduction of external forces onto the light
field and the optomechanical gain of zero-point fluctuations. SQLs for the canonical
experiment of detection at ∆ = 0, ω = ωm, θ = π/2 and εtot = 1 have previously
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Figure A.8: Optimal force sensing with and without ponderomotive squeezing. The
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Eq. A.37) vs. force frequency, the middle panel shows Copt necessary to obtain optimal
force sensing, and the bottom panel shows the necessary quadrature angle. Each
plot shows the case without squeezing (∆ = 0, solid red line) and with squeezing
(∆ = −κ, dashed blue line). The optimal signal-to-noise ratio for the canonical force
detection experiment at ∆ = 0 and θ = π/2 is included for reference (i.e. extension
of Eqs. A.37–A.38 over all frequencies, dotted green line). For all plots, ωm/κ = 0.2
and Q = 1000.

been derived [113, 123]. The quantum limit on signal-to-noise ratio (SNR) for ex-
ternal force detection is reached when the cooperativity is tuned such that the noise
arising from backaction (transduction of optical noise along the θ = 0 quadrature) is
equal in magnitude to optomechanically colored optical shot noise along the θ = π/2
quadrature. Rederived using the linear amplifier model, the SNRs for sensing of ther-
mal motion and sensing of coherent external forces under these conditions are given
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as

Rtherm
SQL =

(
1 +

3

64

1

Q2
+O(Q−4)

)
nth , (A.37)

Rext
SQL =

(
1

4
− 5

256

1

Q2
+O(Q−4)

)
F 2

ext

ΓmfBWp2
HO

,

obtained using an optomechanical cooperativity of

CSQL
opt =

1

2

(
1 +

ω2
m

κ2

)
+O(Q−2). (A.38)

An adapted form of Eqs. A.37–A.38 is shown in Fig. A.8.
We now extend this work to consider force detection at frequencies away from the

mechanical resonance. The maximum SNR attainable in this case is given by

Rext
max =

1

( 1
2Q

)2 +
(

1 +
∣∣∣ ωωm ∣∣∣)2

F 2
ext

ΓmfBWp2
HO

, (A.39)

using the quadrature angle and optomechanical cooperativity

θmax = arctan

 1
Q

∣∣∣ ωωm ∣∣∣
( 1

2Q
)2 + (1− ω2

ω2
m

)

 (A.40)

Cmax
opt =

(1 + ω2

κ2
) |ω2

m + Γ2
m/4− ω2 − iΓmω|2

2 Γ2
mωm |ω|

,

These optimal solutions are shown in Fig. A.8. Results indicate that the optimal
cooperativity quickly diverges to experimentally unrealistic values as the measurement
frequency shifts away from mechanical resonance. In addition, we point out that these
optimal solutions are extremely fragile to optical losses; Rext

max is significantly reduced
at frequencies away from ωm for εtot . 1.

Can we improve on the force transduction SNR by detuning off cavity resonance
and benefitting from ponderomotive squeezing [124, 125, 126]? We provide an answer
to this question by applying a numerical optimization routine to identify Cmax

opt , θmax

and Rext
max for ωm/κ = 0.2 (unresolved sideband case) and various pump detunings

∆, ranging from −0.5 κ to −6 κ. The results under ωm/κ = 0.2 and ∆/κ = −1
are shown in Fig. A.8. When comparing the signal to the total noise in the reflected
optical field, we find that squeezing and detuning off cavity resonance do not increase
the signal-to-noise ratio above the maximum SNR found for ∆ = 0. However, re-
sults also indicate that there is a range of frequencies (ω . ωm) for which the optimal
level of force sensitivity is attainable off cavity resonance with realistic cooperativities.
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A.5 Conclusion

We have shown that linearized optomechanical systems can be modeled as linear
optical amplifiers with mechanical and optical inputs. In this new context, pondero-
motive squeezing, an entirely quantum effect, and OMIT are shown to be related:
the latter is a classical manifestation of the former. The optomechanical amplifier
model was extended to predict observable power spectra in cavity output field under
different drives. Our work indicates that ponderomotive squeezing is most visible
in the unresolved-sideband limit. It also highlights that optical squeezing cannot be
harnessed to surpass the maximum SNR for external force measurements on cavity
resonance.

The amplifier model offers a simple picture of optomechanical systems with in-
sights into the sources of gain and lines of communication between the mechanical
and optical degrees of freedom. As research in the field continues to diversify, we
hope it may serve as a tool to model different setups under a common language and
bridge separate concepts.

This work was supported by the AFOSR and NSF. T.B. acknowledges support
from Le Fonds Québécois de la Recherche sur la Nature et les Technologies.
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Tero T. Heikkilä, and Mika A. Sillanpää. Multimode circuit optomechanics near
the quantum limit. Nat Commun, 3:987, 2012.

[86] Quirin P. Unterreithmeier, Thomas Faust, and Jörg P. Kotthaus. Damping of
Nanomechanical Resonators. Phys. Rev. Lett., 105:027205, 2010.

[87] Garrett D. Cole, Ignacio Wilson-Rae, Katharina Werbach, Michael R. Van-
ner, and Markus Aspelmeyer. Phonon-tunnelling dissipation in mechanical res-
onators. Nat Commun, 2:231, 2011.

[88] V Bouchiat, D Vion, P Joyez, D Esteve, and M H Devoret. Quantum coherence
with a single Cooper pair. Physica Scripta, 1998:165, 1998.

[89] T.J. Kippenberg and K.J. Vahala. Cavity Opto-Mechanics. Optics Express,
15(25):17172, 2007.

[90] T. J. Kippenberg and K. J. Vahala. Cavity Optomechanics: Back-Action at
the Mesoscale. Science, 321:1172–1176, 2008.

[91] G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig,
M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg. Measuring nanome-
chanical motion with an imprecision below the standard quantum limit. Phys.
Rev. A, 82:061804, Dec 2010.



115

[92] M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter. A picogram-
and nanometer-scale photonic crystal opto-mechanical cavity. Nature, 459:550,
2009.

[93] J. Hofer, A. Schliesser, and T. J. Kippenberg. Cavity optomechanics with
ultrahigh-Q crystalline microresonators. Phys. Rev. A, 82(3):031804, 2010.

[94] D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble. Cavity Optomechanics
with Stoichiometric SiN Films. Phys. Rev. Lett., 103(20):207204, 2009.

[95] Thomas Corbitt, Yanbei Chen, Edith Innerhofer, Helge Müller-Ebhardt, David
Ottaway, Henning Rehbein, Daniel Sigg, Stanley Whitcomb, Christopher Wipf,
and Nergis Mavalvala. An All-Optical Trap for a Gram-Scale Mirror. Phys.
Rev. Lett., 98(15):150802, 2007.

[96] Thomas Corbitt, David Ottaway, Edith Innerhofer, Jason Pelc, and Nergis
Mavalvala. Measurement of radiation-pressure-induced optomechanical dynam-
ics in a suspended Fabry-Perot cavity. Phys. Rev. A, 74(2):021802, 2006.

[97] Florian Elste, S. M. Girvin, and A. A. Clerk. Quantum Noise Interference and
Backaction Cooling in Cavity Nanomechanics. Phys. Rev. Lett., 102(20):207209,
2009.

[98] Florian Marquardt, Joe P. Chen, A. A. Clerk, and S. M. Girvin. Quantum
Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion. Phys. Rev.
Lett., 99(9):093902, 2007.

[99] Max Ludwig, Bjrn Kubala, and Florian Marquardt. The optomechanical insta-
bility in the quantum regime. New Journal of Physics, 10:095013, 2008.

[100] J. B. Hertzberg, T. Rocheleau, T. Ndukum, M. Savva, A. A. Clerk, and K. C.
Schwab. Back-action-evading measurements of nanomechanical motion. Nature
Physics, 6:213–217, 2010.

[101] Benjamin S. Sheard, Malcolm B. Gray, Conor M. Mow-Lowry, David E. Mc-
Clelland, and Stanley E. Whitcomb. Observation and characterization of an
optical spring. Phys. Rev. A, 69(5):051801, 2004.

[102] D. W. C. Brooks, T. Botter, N. Brahms, T. P. Purdy, S. Schreppler, and D. M.
Stamper-Kurn. Observation of Ponderomotive Squeezing. arXiv:1107.5609,
2011.

[103] Francesco Marino, Francesco S. Cataliotti, Alessandro Farsi, Mario Siciliani
de Cumis, and Francesco Marin. Classical Signature of Ponderomotive Squeez-
ing in a Suspended Mirror Resonator. Phys. Rev. Lett., 104(7):073601, 2010.



116

[104] P. Verlot, A. Tavernarakis, T. Briant, P.-F. Cohadon, and A. Heidmann. Back-
action Amplification and Quantum Limits in Optomechanical Measurements.
Phys. Rev. Lett., 104(13):133602, 2010.

[105] K. Bjorkje, A. Nunnenkamp, B. M. Zwickl, C. Yang, J. G. E. Harris, and
S. M. Girvin. Observability of radiation-pressure shot noise in optomechanical
systems. Phys. Rev. A, 82(1):013818, 2010.

[106] A. Heidmann, Y. Hadjar, and M. Pinard. Quantum nondemolition measurement
by optomechanical coupling. Applied Physics B: Lasers and Optics, 64:173–180,
1997.

[107] J. D. Teufel, Dale Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker,
and R. W. Simmonds. Circuit cavity electromechanics in the strong-coupling
regime. Nature, 471:204–208, 2010.

[108] J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin,
and J. G. E. Harris. Strong dispersive coupling of a high finesse cavity to a
micromechanical membrane. Nature, 452:72–75, 2008.

[109] Mankei Tsang and Carlton M. Caves. Coherent Quantum-Noise Cancellation
for Optomechanical Sensors. Phys. Rev. Lett., 105(12):123601, 2010.

[110] Stefano Mancini, David Vitali, and Paolo Tombesi. Optomechanical Cooling of
a Macroscopic Oscillator by Homodyne Feedback. Phys. Rev. Lett., 80(4):688–
691, 1998.

[111] Florian Marquardt, J. G. E. Harris, and S. M. Girvin. Dynamical Multista-
bility Induced by Radiation Pressure in High-Finesse Micromechanical Optical
Cavities. Phys. Rev. Lett., 96(10):103901, 2006.

[112] V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin. Analysis of parametric
oscillatory instability in power recycled LIGO interferometer. Physics Letters
A, 305(3-4):111 – 124, 2002.

[113] Carlton M. Caves. Quantum limits on noise in linear amplifiers. Phys. Rev. D,
26(8):1817–1839, 1982.

[114] H. A. Haus and J. A. Mullen. Quantum Noise in Linear Amplifiers. Phys. Rev.,
128(5):2407–2413, 1962.

[115] Sumei Huang and G. S. Agarwal. Electromagnetically induced transparency
with quantized fields in optocavity mechanics. Phys. Rev. A, 83(4):043826,
2011.



117

[116] Sumei Huang and G. S. Agarwal. Electromagnetically induced transparency
from two-phonon processes in quadratically coupled membranes. Phys. Rev. A,
83(2):023823, 2011.

[117] D.F. Walls and G.J. Milburn. Quantum Optics. Springer, 1995.

[118] Jan Harms, Yanbei Chen, Simon Chelkowski, Alexander Franzen, Hen-
ning Vahlbruch, Karsten Danzmann, and Roman Schnabel. Squeezed-input,
optical-spring, signal-recycled gravitational-wave detectors. Phys. Rev. D,
68(4):042001, 2003.

[119] Thomas Corbitt, Yanbei Chen, Farid Khalili, David Ottaway, Sergey Vy-
atchanin, Stan Whitcomb, and Nergis Mavalvala. Squeezed-state source using
radiation-pressure-induced rigidity. Phys. Rev. A, 73(2):023801, 2006.

[120] I. Wilson-Rae. Intrinsic dissipation in nanomechanical resonators due to phonon
tunneling. Phys. Rev. B, 77(24):245418, 2008.

[121] B. L. Hu, Juan Pablo Paz, and Yuhong Zhang. Quantum Brownian motion in
a general environment: Exact master equation with nonlocal dissipation and
colored noise. Phys. Rev. D, 45(8):2843–2861, 1992.

[122] A. O. Caldeira and A. J. Leggett. Quantum tunnelling in a dissipative system.
Annals of Physics, 149(2):374 – 456, 1983.

[123] A. A. Clerk, M. H. Devoret, S. M. Girvin, Florian Marquardt, and R. J.
Schoelkopf. Introduction to quantum noise, measurement, and amplification.
Rev. Mod. Phys., 82(2):1155–1208, 2010.

[124] Thomas Corbitt and Nergis Mavalvala. Review: Quantum noise in
gravitational-wave interferometers. Journal of Optics B: Quantum and Semi-
classical Optics, 6(8):S675–S683, 2004.

[125] H. J. Kimble, Yuri Levin, Andrey B. Matsko, Kip S. Thorne, and Sergey P.
Vyatchanin. Conversion of conventional gravitational-wave interferometers into
quantum nondemolition interferometers by modifying their input and/or output
optics. Phys. Rev. D, 65(2):022002, 2001.

[126] O. Arcizet, T. Briant, A. Heidmann, and M. Pinard. Beating quantum limits
in an optomechanical sensor by cavity detuning. Phys. Rev. A, 73(3):033819,
2006.


