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Resonant Raman coupling between internal levels can create double-well momentum-space potentials for
multilevel “periodically-dressed” atoms. We develop a many-body formalism for a weakly interacting, trapped
periodically dressed Bose gas which illustrates how a tunable exchange interaction yields correlated many-
body ground states. In contrast to the case of a position-space double well, the ground state of stable
periodically-dressed Bose gases with repulsive interactions tends toward a macroscopic superposition state in
the regime where interactions dominate the momentum-space tunneling induced by the external trapping
potential. We discuss how real-time control of experimental parameters can be used to create macroscopic
quantum superpositions of either momentum or internal states, and how these states could be dynamically
controlled, opening the way toward highly sensitive interferometry and frequency metrology.
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Following our mastery over the internal and external
states of individual atoms, the scientific frontier advances to
the full control over the quantum states of many-body sys-
tems. Entangled states, in which the constituents of a many-
body system display nonclassical correlations, play a key
role in our developing understanding of quantum information
and decoherence, and may find practical use in quantum
communication[1], quantum computing, and high-precision
metrology [2–5]. Various techniques are being developed
that generate entanglement deterministically in, for example,
spin-squeezed atomic ensembles[6], trapped ions[7], the
electromagnetic field[8], and superconducting circuits
[9,10].

Ultracold neutral atoms offer a promising route to gener-
ating highly entangled many-body states. Schemes for gen-
erating such entanglement rely on interatomic interactions
which provide “nonlinear” elements as seen from the view-
point of single-particle dynamics. Such nonlinear terms are
provided naturally through binary collisions between
ground-state atoms, as utilized controllably by Mandelet al.
[11], and can be further enhanced through molecular reso-
nances or by the assistance of near-resonant photons[12,13].

A paradigmatic system in which interatomic interactions
induce entanglement is a collection of ultracold interacting
bosons in a parity-symmetric double-well potential[14–17].
The lowest-energy single-particle states are the parity-even
ground stateuc0l and parity-odd first excited stateuc1l, sepa-
rated in energy by the tunnel splittingJ. If tunneling and
interactions are weak with respect to the energy spacings to
other single-particle states, the many-body system may be
described by the two-mode Hamiltonian

H = −
J

2
sĉR

†ĉL + ĉL
†ĉRd − UN̂RN̂L, s1d

whence terms dependent only on the total number of atoms
in the system are omitted. HereĉR andĉL denote annihilation
operators for particles in the rightsuRl=fuc0l+ uc1lg /Î2d or
left suLl=fuc0l− uc1lg /Î2d well states, respectively. The

number operatorsN̂R= ĉR
†ĉR andN̂L= ĉL

†ĉL count particles in
the right and left wells, respectively, of the double-well
system. The parameterU gives the energy due to short-
range interactions of a pair of atoms located in the same
well.

This simple Hamiltonian leads to highly correlated many-
body ground states through the interplay of tunneling and
interaction. One finds three limiting behaviors. If the tunnel-
ing rate dominates, the many-body ground-state ofN bosons
is driven to the factorized, uncorrelated state in which allN
atoms are identically in the single-particle ground stateuc0l.
In the limit NuUu /J@1, the interaction energy dominates. For
repulsive interactionssU.0d, a many-body state divides it-
self evenly between the two potential minima, generating the
state uCl~ sĉR

†dN/2sĉL
†dN/2u0l, where u0l is the vacuum state.

Experimental evidence for such a “number-squeezed” state
has been obtained by Orzelet al. in a many-well potential
[18]. Similar physics is responsible for the observed
Mott-insulator phase in a three-dimensional periodic poten-
tial [19].

For attractive interactionssU,0d, the ground state is
quite spectacular: a macroscopic-quantum-superposition
(Schrödinger-cat) state uCl~ fsĉR

†dN+sĉL
†dNgu0l formed as a

superposition of states in whichall atoms are found in one of
the two wells. The generation of Schrödinger-cat states is a
tantalizing goal; at present, the largest atomic Schrödinger-
cat states contain just four atoms[7]. However, accomplish-
ing this goal by imposing a double-well potential on a col-
lection of bosons with attractive interactions is a daunting
task: such Bose-Einstein condensates are unstable to collapse
[20], implying that the number of bosons placed into the
superposition state will be small; moreover, exceptional spa-
tial control over trapping potentials and over the interaction
strength is required.

The above discussion pertains to atoms for which the
position-space potential is a double well, while the kinetic-
energy termp2/2m may be regarded as amomentum-space
harmonic potential. In this work, we point out that an analo-
gous many-body system can be crafted, in which the roles of
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position and momentum are interchanged. As discussed in
previous work[21–23], the dispersion relation of multilevel
atoms placed in a spatially periodic coupling between inter-
nal states can take the form of a momentum-space double-
well potential. Addition ofa harmonic position-space trap-
ping potentialproduces a double-well system dual to that
discussed above. Assessing the roles of interparticle interac-
tions in this situation, we find that the many-body ground
states for bosonic atoms in such a system are highly en-
tangled in both momentum and internal-state space. In oppo-
sition to the situation of bosons in position-space double
wells, maximally entangled states may be generated in the
case ofrepulsiveinteractions, allowing the creation of such
states starting with large, stable Bose-Einstein condensates
while obviating the need for exacting control over potentials
with extremely small spatial dimensions.

The roles of repulsive or attractive interactions in deter-
mining the behavior of interacting bosons in momentum-
space double-well potentials are reversed from those in the
case of position-space potentials. As discussed below, this
reversal is due to an exchange term which arises in the evalu-
ation of the interaction energy of a Bose gas that occupies
several distinct momentum states. For repulsive interactions,
for example, this exchange term disfavors a macroscopic oc-
cupation of more than one single-particle wave function(the
so-called fractionation of a condensate as discussed by Leg-
gett [24] and others), thus favoring a Schrödinger-cat super-
position. We find that the strength of the exchange term can
be dynamically varied by varying parameters of the periodic
coupling field which generates the double-well potential.

Following a derivation of the momentum-space double-
well potential(Sec. I), we develop a two-mode approximate
treatment of this system which provides expressions for the
interaction and tunneling energies and thereby clarifies their
dependence on experimental parameters(Sec. II). Similar
work by Montina and Arecchi[23] treats this system using
the Gross-Pitaevskii equation as the starting point, a numeri-
cal scheme which identifies the onset of correlated many-
body ground states. Their work appears to reproduce our
analytic approach in the limit of weak interactions, while the
validity of their approach(or, indeed, any extant treatment)
for stronger interactions is difficult to establish. Furthermore,
in Sec. III, we show that maximal entanglement can be gen-
erated purely between internal states or between momentum
states, offering a route to Heisenberg-limited atomic clocks
[3] or atomic interferometry[5], respectively.

I. ORIGIN OF THE MOMENTUM-SPACE POTENTIAL

We consider bosonic atoms of massm with two internal
statesuAl and uBl at energies"vA and "vB, respectively.
These atoms are exposed to laser fields of frequenciesv1 and
v2 sv=v1−v2d and wave vectorsk1 and k2 which induce
Raman transitions between the two internal states[see Figs.
1(a) and 1(b)]. Thus, a Raman process from stateuAl to uBl
imparts a momentum of"k ="sk1−k2d and kinetic energy of
"d="v−"svB−vAd. The continuous Raman coupling can be
regarded as a spatially periodic coupling field between the
internal states of the atoms, represented by an off-diagonal

potentialVR="V /2se−isk·r−vtduAlkBu+eisk·r−vtduBlkAud. HereV

is the two-photon Rabi frequency, taken to be real, which is
determined by dipole matrix elements, the detuning from in-
termediate resonances, and by the laser intensities.

It is convenient to analyze this constantly driven system
in terms of “periodically-dressed” states, which are coherent
superpositions of both internal and external(momentum)
states. As developed in Refs.[21,22], this treatment reveals
marked anisotropy and tunability in the superfluid character-
istics of a Bose-Einstein condensate formed of such a
dressed-state gas. Given a two-component spinor wave func-

tion c̃
W sr d=fcAsr d ,cBsr dg to describe single-atom states in the

huAl , uBlj basis, we transform to a frame which iscorotating
andcomovingwith the driving laser fields, yielding a spinor

wave functioncW sr d with componentsc̃A,Bsr d=expf±isk ·r
−vtd /2gcA,Bsr d. This transformation yields a Schrödinger
equation with two de Broglie wave solutions at each momen-
tum "q, which we call the periodically-dressed states. The
two-branch dispersion relation of the periodically-dressed at-
oms has the form(usingp for plus andm for minus)

FIG. 1. Creating a double-well momentum-space potential with
Raman excitation.(a) Laser beams of frequencyv1 and v2 may
induce Raman transitions between internal statesuAl and uBl. d
=sv1−v2d−v0 is the detuning from the Raman resonance.(b) Such
a Raman transition imparts a momentum transfer of"k ="sk1

−k2d, wherek1 andk2 are the wave vectors of the Raman coupling
lasers.(c) Atoms exposed to continuous Raman excitation can be
described by a two-branch dispersion relation. Energies(scaled by
Ek) for the lowers"vmd and uppers"vpd dressed states are shown
for wave vectors(scaled byk) in the direction of the Raman mo-
mentum transfer. In the case of exact Raman resonancesd=0d and
small Raman Rabi frequency(shown for"V /Ek=1/8), the lower
dispersion relation takes the form of a parity-symmetry double-well
potential.
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"vp,msqd = q2 +
1

4
±

1

2
Îs2q ·k − dd2 + V2, s2d

where energies and wave vectors are scaled by the Raman
recoil energyEk="2k2/2m and wave vectork, respectively.

Under the conditions of exact Raman resonancesd=0d
and sufficiently small Rabi frequencyV, a degeneracy of
momentum ground states occurs as the lower dispersion re-
lation takes the form of a double-well potential, with minima
at ±Q /2 sQ.kd [Fig. 1(c)]. This potential can be quickly
tuned by modifying the laser parameters. The detuning from
Raman resonanced breaks the ground-state degeneracy, fa-
voring the right- or left-well states. The spacing between the
potential wells is controlled by the Raman momentum trans-
fer "k, which can be varied by reorienting the laser beams.
Finally, the Rabi frequencyV changes both the height of the
barrier between the wells as well as the internal-state char-
acter of states on either side of the well[22].

In the case of a position-space double well, the kinetic
energy of the atoms forbids a complete localization of atoms
in either of the wells, thus introducing tunneling. Similarly,
in our case of the momentum-space double well, a tunneling
between well-defined momentum states can be induced by
adding a spatially dependent term to the Hamiltonian. We
consider adding an internal-state independent trapping poten-
tial of the form Vsr d=mvt

2r2/2 [25]. The Hamiltonian for
this system may be written in the basis of the periodically-
dressed states introduced earlier, using the expansion

c̃
W sr ,td =E d3q

s2pd3/2RsqdSpsqd
msqd

Deiq·r , s3d

where Rsqd=e−isyusqd/2, wheresy is a Pauli matrix and the
mixing angle usqd is defined by the relation cotusqd=sd
−"q ·k /md /V. The wave functionfW sqd=(psqd ,msqd) in
the space of periodically-dressed momentum eigenstates
obeys a Schrödinger equation with Hamiltonian

ĤPD = "Sv+sqd 0

0 v−sqd
D −

1

M2R†sqd¹q
2Rsqd. s4d

The position-space trapping potential is seen in momentum
space as a kinetic-energy-like termsinvolving ¹q

2d, which
accounts also for the variations withq of the periodically-
dressed eigenstate basis. The relevance of this kinetic-
energy-like term is measured by the dimensionless effective
mass parameterM, which is related to the Lamb-Dicke pa-
rameterh=Î"k2/2mvt as M =2h2. For weak spatial con-
finementsM @1d, the low-energy single-particle states are
restricted primarily to the lower periodically-dressed
states, with the two lowest states split by a small tunneling
energy J. For strong confinementsM !1d, the single-
particle states are admixtures of upper- and lower-
dispersion-relation periodically-dressed states, and a
simple double-well treatment is no longer adequate.

To introduce interatomic interactions, we make use of the
field operatorf̂sqd=(p̂sqd ,m̂sqd) the components of which
annihilate particles in the lowersmd or upper spd
periodically-dressed states. These operators obey Bose com-

mutation relations. We consider low-energy, binary, elastic
collisions with a state-independent scattering lengtha.

The interaction Hamiltonian then takes the formĤint
=sg/2dfed3qn̂sqdn̂s−qdg, neglecting terms dependent only on
the total number of atomsN, wheren̂sqd is the spatial Fou-
rier transform of the density operator, andg=8pka is the
properly scaled interaction parameter. The density operator is
given as[21,22]

n̂sqd =E d3k

s2pd3/2f̂†Sk +
q

2
DR†Sk +

q

2
DRSk −

q

2
Df̂Sk −

q

2
D .

s5d

II. THE TWO-MODE APPROXIMATION

To simplify our treatment, let us consider only the situa-
tion in which the two lowest-energy eigenvalues(in the ab-
sence of interactions) are well separated from the remaining
energies, and thus a two-mode description of the many-body
system is adequate. The two lowest-energy single-particle
states have wave functionsfW 0sqd andfW 1sqd, mode operators
ĉ0 and ĉ1, and energy splittingJ. We define the right- and
left-well states asfW R,Lsqd=ffW 0sqd±fW 1sqdg /Î2, and the mode
operators asĉR,L=sĉ0± ĉ1d /Î2. Under this approximation, we
can evaluate the density operatorn̂sqd by expanding the field
operatorsm̂sqd and p̂sqd in the basis of energy eigenstates,
and then truncating the expansion after the first two states.
We then express the density operator asn̂sqd
.oi,j Ni jsqdĉi

†ĉj with

Nsqdi j =E d3k

s2pd3/2fW i
†Sk +

q

2
DRSk +

q

2
DRSk −

q

2
D

3fW jSk +
q

2
D , s6d

with indices i , j P hR,Lj denoting either the right or left
states. Accounting for properties of the right- and left-well
states under parityf26g, we obtain

n̂sqd . NRRsqdN + NRLsqdĉR
†ĉL + NRLs− qdĉL

†ĉR, s7d

whereN is the total number of atoms in the system. Drop-
ping terms that depend only onN, one thus finds

Ĥint . − UN̂RN̂L +
J1

2
sĉR

†ĉL + ĉL
†ĉRd

+ J2sĉR
†ĉR

†ĉLĉL + ĉL
†ĉL

†ĉRĉRd, s8d

where the energiesU, J1, andJ2 are given as

U = − gE d3q N RL
2 , s9d

J1 = 2NgE d3qNRRsqdNRLsqd, s10d

GENERATING MACROSCOPIC-QUANTUM-… PHYSICAL REVIEW A 69, 053605(2004)

053605-3



J2 =
g

2
E d3q NRLsqdNRLs− qd. s11d

Before delving further into the implications of the inter-
action Hamiltonian given above, let us consider the weak-
confinement(largeM) limit at which the right- and left-well
states contain no population in the upperspd dressed states,
are Gaussian functions well localized(in q space) at the right
and left potential minima at ±Q /2, with rms widthssq
.s2Md−1/2, and have average density per particleknl
=sq

3/p3/2. In calculating the integrals of Eq.(6), we may thus
use local values of the rotation matricesRsqd at ±Q /2, as
appropriate. We then find

U = − gknlsin2 uSQ

2
D , s12d

J1 = 2Ngknlsin uSQ

2
De−Q2/16sq

2
, s13d

J2 =
g

2
knlsin2 uSQ

2
De−Q2/4sq

2
. s14d

These approximations can be further simplified by setting
Q=k, and thus sinusQ /2d.ÎV2/ s1+V2d.

Let us presume that the interaction-mediated tunneling
terms J1 and J2 are negligibly small. We thus recover the
many-body Hamiltonian of Eq.(1) which had applied to the
position-space double well. However, examining the interac-
tion energyU, we now find thatthe roles of attractive and
repulsive interactions are interchangedbetween the position-
space and momentum-space double-well treatments: for the
case of the momentum-space double-well potential, repulsive
interactionssg.0d yield U,0 and thus are the source of
Schrödinger-cat ground states, while attractive interactions
sg,0d yield U.0 and thus are the source of number-
squeezed ground states. This opens the door to the produc-
tion of Schrödinger-cat states for large, robust Bose-Einstein
condensates with repulsive interactions through the use of
binary collisions as a nonlinear coupling.

This reversal of roles for repulsive and attractive interac-
tions in momentum space can be understood in the context of
a single-component Bose-Einstein condensate in a harmonic
potential. Repulsive interactions lead the ground-state
condensate wave function to become larger spatially,
thus causing the momentum-space wave function to
contract—appearing as an attractive interaction in momen-
tum space. Equivalently, one may note that in a Hartree ap-
proximation to the many-body state of a Bose-Einstein con-
densate, the interaction energy is evaluated as an interaction
energy density proportional to the square of the density. The
density of a Bose gas occupying two distinct momentum
states would be spatially modulated by the interference be-
tween the momentum states, and, therefore, its interaction
energy~gn2 would be increased(decreased) for the case of
repulsive(attractive) interactions. Thus we find repulsive in-
teractions leading to Schrödinger-cat states, a superposition
of states in which only one single-particle state is macro-

scopically occupied, while attractive interactions would lead
to a “fractionation” of the condensate between distinct mo-
mentum states.

In the system we have described here, the interaction en-
ergy U is a tunable exchange termwhich, in the case of
repulsive interactions, suppresses the superposition of atoms
in two distinct momentum states and thereby favors the
maximally entangled state. The exchange term in the inter-
action Hamiltonian arises from the presence of atoms in
identical internal states, but different momentum states. By
adjusting the strength of the Rabi couplingV, the admixture
of internal statesuAl and uBl in the right- and left-well states
is varied. For smallV, atoms in the right-well state are al-
most purely in theuAl state, and atoms in the left-well state
are almost purely in theuBl state. Thus, the strength of the
exchange term is suppressedfsin2 usQ /2d!1g, and the
product stateuCl~ sĉR+ ĉLdNu0l remains energetically fa-
vored. For largerV, the right- and left-well states both con-
tain admixtures of the two internal states; e.g., the right-well
state contains atoms in stateuAl nearly at rest, while the
left-well state contains atoms in stateuAl at momentum
,−"k. Significant exchange terms now suppress the product
state in favor of the maximally entangled state.

The dependence of the many-body ground state on the
ratio U /J and the atom numberN has been worked out by
various authors[14,16,17] for the position-space double-well
potential. As we have obtained a Hamiltonian identical in
form to the position-space treatment, these predictions would
apply directly to our scheme. Significant deviations from the
factorized, noninteracting atom solution begin atuU /Ju
*1/N; for repulsive sU.0d or attractivesU,0d interac-
tions this would shift population either away from or towards
the state uNL=N/2 ,NR=N/2l, respectively. Perturbation
analysis shows that the many-body state will be well ap-
proximated by the Schrödinger-cat statesuN,0l+ u0,Nld /Î2
whenU /J.1/ÎN.

Now returning to Eq.(8), we see that two extra terms

appear inĤint which do not conserve the number of particles
in the right- and left-well states, representing a form of
interaction-mediated tunneling. The first, involvingJs1d,
modifies the tunneling energy between the right and left
wells. The effect of this term is to reduce the tunneling rate
for repulsive interactions, and increase it for attractive inter-
actions. This can be understood by noting that repulsive in-
teractions tend to raise the energy of the single-particle
ground state more than the first excited state since the ground
state has a higher density. Our previous analysis of the two-
mode approximation accommodates this term by a redefini-
tion of J asJ→J−Js1d, leading to no further complications.
The second tunneling term, involvingJs2d, describes colli-
sions which can redistribute two atoms from the right well to
the left well, and vice versa. While this term modifies the
conclusions of our simple treatment, we have seen that the
magnitudes of bothJs1d andJs2d are exponentially suppressed
with respect toU, and thus the dominant role of interactions
is to create the aforementioned many-body ground states.
These terms will, however, play an important role in deter-
mining the strength of interactions at which many-body cor-
relations begin to become evident; the scaling ofJ (indepen-
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dent ofg), Js1d, Js2d, andU with the control parameters(V, g,
M, etc.) are different and thereby provide more tunability to
the system.

We performed numerical calculations of the lowest-
energy single-particle states to verify the simple scaling be-
havior of various terms in the Hamiltonian described above.
The single-particle Hamiltonian of Eq.(4) is separable in the
three Cartesian coordinates defined so that one axis(say ẑ)
lies along the direction of the Raman momentum transferk.
We then have the lowest-energy eigenstates asfW 0,1sqd
=fW 0,1sqzdexpf−sqx

2+qy
2d /4sq

2g /Î2psq
2, a product of

harmonic-oscillator ground states in thex̂ and ŷ directions
and normalized solutionsfW 0,1sqzd to the one-dimensional,
two-component Schrödinger equation derived from Eq.(4).

These one-dimensional eigenstates, calculated using a re-
stricted basis set of Fourier components over the domain
−3øqø3, are shown in Fig. 2 for two different values of the
mass parameterM, and for the condition of exact Raman
resonanced=0 and Rabi frequency"V /Ek=1/8. Forweak
spatial confinement(large M =50), the lowest two energy
eigenstates are indeed nearly entirely composed of lower
dressed statesspsqzd.0d and are well approximated by the
sum or difference of Gaussian right- and left-well wave func-
tions centered at the potential minima nearqz/k. ±1/2. For
stronger spatial confinement(smaller M =8), the enhanced
“momentum-space tunneling” causes the wave functions to
become less confined in the potential minima. Concomi-

tantly, a significant population appears in the upper dressed
states.

Parameters which enter into the two-mode Hamiltonian
are derived from the numerically obtained wave
functions, and are shown in Fig. 3. One finds the scalingJ
,exps−M /4d as one expects[27]. The numerical results
confirm the scaling behavior forJs1d found in the weak-
confinement (large M) limit [Eqs. (12)–(14)], but differ
slightly from the scaling predicted forJs2d since the assump-
tion that the right-well state remains Gaussian in the vicinity
of the left-well potential minimum is incorrect. Nevertheless,
Js2d is strongly suppressed for largeM, approximately as
exps−M /3d. Also shown is the energy splitting between the
second and third lowest eigenenergies; one sees that for
weak spatial confinement the lowest two energy eigenstates
become well separated from the remaining eigenspectrum,
establishing the validity of the two-mode approximation.

Finally, we stress that the two-mode treatment presented
here becomes invalid in the Thomas-Fermi regime, where
the strength of atomic interactions dominates the zero-point
energy in the confining potential. In this situation, additional
single-particle states must be considered, resulting in a com-
plicated, self-consistent definition of the right- and left-well
states which depends on the number of atoms in these states.
How to properly treat such a situation remains an open ques-
tion, and therefore an important subject for experimental in-

FIG. 2. The two lowest-energy eigenfunctions(solid line for the
ground state and dashed for the excited state) which define the
right- and left-well modes for the two-mode approximation. Com-
ponent wave functions in the lowerfmsqzdg and upper[psqzd,
shown in insets] periodically dressed states are shown forM =8 and
M =50. As the spatial confinement is weakened(larger M), the
wave functions become further localized in the minima of the
double-well potential, and the population in the upper dressed state
diminishes. Note the different parity of them andp components, as
discussed in the text. Here"V /Ek=1/8, wavevectors are scaled by
k, and the one-dimensional wave functionsfW 0,1sqzd are shown.

FIG. 3. Numerical calculations of tunneling and interaction
strengths.(a) The tunnel splittingJ (open circles, solid line) be-
comes much smaller than the spacing between the second and third
excited states(open triangles, solid line) for moderate values ofM,
establishing the validity of the two-mode approximation for weak
confinement.(b) Tunneling energiesJ (open circles, solid line), Js1d

(open squares, dashed line), andJs2d (filled circles, dashed line) are
suppressed for weaker confinement(exponentially with largeM),
while the strength of the momentum exchange energyU (3’s, solid
line) remains large. This provides a route to creating correlated
many-body states adiabatically from uncorrelated states by gradu-
ally weakening the spatial confinement. The energies in(a) are
scaled byEk. Dimensionless interaction parameters are plotted as
−U /gknl, Js1d /2Ngknl, Js2d / sgknl /2d. A Rabi frequency"V /Ek

=1/8 is chosen.
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vestigation. In related work, Montina and Arecchi[23] ob-
tain right- and left-well states through use of the Gross-
Pitaevskii equation, but the validity of their treatment is
questionable for systems which are not completely interac-
tion dominated.

III. APPLICATION TO HEISENBERG-LIMITED
MEASUREMENT

Several theoretical works have pointed out the potential
for correlated many-body states for improving the precision
of atomic clocks[4] and interferometers[5,28], in which
phase shifts are measured at the Heisenberg limitDf~1/N,
rather than the standard quantum limitDf~1/ÎN, whereN
is the number of particles used in a single run of the experi-
ment. In particular, Bollingeret al. described the use of the
maximally entangled state in such a measurement[4]. In this
section, we point out how dynamical control over experi-
mental parameters can be used fruitfully to generate
Schrödinger-cat states suited for the implementation of both
Heisenberg-limited spectroscopy and interferometry.

In the system we have described, repulsive interatomic
interactions lead to lowest-energy many-body states which
are the even- and odd-superposition Schrödinger-cat states
uS±l=suCRl± uCLld /Î2. The statesuCRl and uCLl are distin-
guishable many-body states associated with the right and left
potential wells, respectively, which tend toward the limiting
casesuCRl→ u0,Nl and uCLl→ uN,0l for strong interactions.
The energy separation between these two states depends on
the residual overlap betweenuCRl and uCLl and the number
of atoms in the system(derived, e.g., in Ref.[15]). In the
weak-confinement limitM @1, these right- and left-well
states are composed of the lower dressed states, which are
superpositions in both internal and external degrees of free-
dom. Such a superposition appears to complicate the use of
these Schrödinger-cat states for measurement applications.

However, after these Schrödinger-cat states are formed,
the dressed right- and left-well statescan be converted to
pure internal or external states adiabatically, i.e., by modi-
fication of experimental parameters on a time scale which is
fast with respect to tunneling times so as to preserve en-
tanglement, but slow with respect to time scales relevant to
the Raman couplings1/Vd. If the Rabi frequencyV is adia-
batically lowered to zero(the Raman beams are slowly ex-
tinguished), atoms in the right-well state would be adiabati-
cally converted to stationary trapped atoms in theuAl internal
state, while atoms in the left well would be converted to
stationary trapped atoms in theuBl state. Thus would be pre-
pared a state ideal for Heisenberg-limited measurement of
the internal-state energy difference"v0, potentially on a use-
ful hyperfine clock transition. Alternately, one could adia-
batically ramp the detuning from the Raman resonance to
large positive or negative values. For example, an adiabatic
downward sweep of the frequency difference between the
Raman laser beamssd→−`d lowers the energy of theuAl
internal state with respect to theuBl internal state in the
rotating frame. This adiabatically converts the right- and left-
well states todistinguishable momentum stateswith identical
internal states(in this case theuAl state). One thereby pre-

pares a state ideal for Heisenberg-limited atomic interferom-
etry.

Furthermore, the timed application of Raman coupling in
this system can be used as a “magic beam splitter”[29] to
prepare the Schrödinger-cat state dynamically. For simplicity
let us make the identificationuCRl= u0,Nl and uCLl= uN,0l.
Consider a system prepared in theuCl= uN,0l state with no
Raman couplingsV=0d—this state corresponds to a zero-
temperature Bose-Einstein condensate ofN atoms in theuBl
internal state. The Raman coupling is then turned on adia-
batically, as discussed above. The initial stateuCl, being a
superposition of the two lowest-energy Schrödinger-cat en-
ergy eigenstates, is now led to oscillate coherently, and col-
lectively, between the right- and left-well states. This oscil-
lation is analogous to macroscopic quantum tunneling
observed, for example, in the Rabi oscillations of supercon-
ducting qubits[30]. If the Raman coupling is left on for a
duration which is 1/4 of the Bohr period between the even
and odd Schrödinger-cat states, the many-body stateuCl will
evolve as

uCl → uS+l − i uS−l
Î2

=
1 − i

2
uN,0l +

1 + i

2
u0,Nl. s15d

The Raman beams can be then switched off—with the trans-
formation of the state into a momentum space or internal-
state-space Schrödinger-cat state, as desired—for a duration
t, during which a relative phase can accrue between the two
distinguishable portions of the Schrödinger-cat state, i.e.,

uCl → 1 − i

2
uN,0l +

1 + i

2
e−iNDtu0,Nl. s16d

HereD is the difference in energy between the single-particle
states to which the right- and left-well states are connected
when the Raman beams are extinguished. For instance, if we
are following the implementation of a measurement of the
clock frequency between internal states,D=d.

Finally, this state must be analyzed. In the scheme of Bol-
linger et al. [4], a conventionalp /2 pulse is applied, and a
precise measurement is made of the difference between the
number of atoms in theuAl state and theuBl state—one must
establish whether this number difference is even or odd, thus
requiring single-atom precision in the number counting.

Alternately, one may apply asecondmagic beam splitter
pulse as before, thus preparing a state

uCl → − is1 − e−iNDtd
2

uN,0l +
s1 + e−iNDtd

2
u0,Nl. s17d

Measurements on this state would detectall atomsin either
the right- or left-well statesssay, internal statesuAl or uBld,
with probabilities which vary periodically with the free-
evolution timet with frequencyND which isN times higher
than for a single-particle Ramsey-type measurement. This is
the source of the enhanced Heisenberg-level sensitivity. This
sensitivity persists even in the presence of overall number
fluctuations, presuming that one’s goal is to ascertain
whetherD=0. However, the correct timing required to yield
a perfect magic beam splitter will depend onN f15g. Thus,
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attaining the highest precision will still require a highly ac-
curate determination of the total atom numberN, though per-
haps not necessarily at the single-atom level. A promising
avenue for precise atom-number determination and deter-
ministic initial-state preparation is the use of a high-finesse
optical cavity, whose spectrum depends sensitively on the
number of atoms in the cavityf31g. Alternativelysor equiva-
lently in the case of cavity enhancementd, the number could
be obtained nondestructively from phase-contrast imaging of
the atomic sample. Measuring the total number before entan-
gling the many-body state in the first beam splitter offers the
advantage of eliminating measurement-induced decoherence
as a limiting factor in the lifetime of the macroscopic super-
position. Its disadvantage is that the atom number may di-
minish subsequent to the initial measurement. Avoiding such
a decrease, however, is unlikely to impose any severe addi-
tional constraint on the number-loss rate, given that the
Schrödinger-cat states are already very sensitive to decoher-
ence via number loss. A further unexamined issue is how the
finite temperature of the atomic sample, which prevents the
initial stateuCl from being a pure Bose-Einstein condensate,
will affect the precision of these Schrödinger-cat-based mea-
surements.

In conclusion, we have presented an analytic model which
identifies the many-body ground states of a weakly interact-
ing Bose gas which is periodically dressed by continuous

Raman excitation and confined in a harmonic spatial poten-
tial. The system is analyzed in momentum space, wherein the
balance between tunneling and weak interactions dictates
whether the ground states are uncorrelated product states of
single-particle wave functions, or highly correlated states. It
is found that interactions in the physical system considered
here have the opposite effect as in the dual situation of a
position-space double-well potential, that is, repulsive inter-
actions will lead to Schrödinger-cat states while attractive
interactions will lead to number-squeezed states with equal
numbers of atoms in each well. Further, we show that experi-
mental parameters can be used to dynamically tune the inter-
action strength and tunneling rates. This degree of control
can be used to generate maximally entangled states directly
suitable for Heisenberg-limited metrology and interferom-
etry.
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