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Resonant Raman coupling between internal levels can create double-well momentum-space potentials for
multilevel “periodically-dressed” atoms. We develop a many-body formalism for a weakly interacting, trapped
periodically dressed Bose gas which illustrates how a tunable exchange interaction yields correlated many-
body ground states. In contrast to the case of a position-space double well, the ground state of stable
periodically-dressed Bose gases with repulsive interactions tends toward a macroscopic superposition state in
the regime where interactions dominate the momentum-space tunneling induced by the external trapping
potential. We discuss how real-time control of experimental parameters can be used to create macroscopic
guantum superpositions of either momentum or internal states, and how these states could be dynamically
controlled, opening the way toward highly sensitive interferometry and frequency metrology.

DOI: 10.1103/PhysRevA.69.053605 PACS nuni®er03.75.Gg, 05.30.Jp, 52.38.Bv

Following our mastery over the internal and externalpnymber operatorijzé‘@R andNLzé‘LreL count particles in
states of individual atoms, the scientific frontier advances tahe right and left wells, respectively, of the double-well
the full control over the quantum states of many-body syssystem. The parametds gives the energy due to short-
tems. Entangled states, in which the constituents of a manyange interactions of a pair of atoms located in the same
body system display nonclassical correlations, play a keyvell.
role in our developing understanding of quantum information  This simple Hamiltonian leads to highly correlated many-
and decoherence, and may find practical use in quantuinody ground states through the interplay of tunneling and
communication[1], quantum computing, and high-precision interaction. One finds three limiting behaviors. If the tunnel-
metrology [2-5]. Various techniques are being developeding rate dominates, the many-body ground-stathl tiosons
that generate entanglement deterministically in, for examples driven to the factorized, uncorrelated state in whichhall
spin-squeezed atomic ensembl|€3, trapped iong7], the ~ atoms are identically in the single-particle ground stap.
electromagnetic field[8], and superconducting circuits !N the limitN|U|/J>1, the interaction energy dominates. For
[9,10. repulsive interactionsU>0), a many-body state divides it-

Ultracold neutral atoms offer a promising route to gener-Self evenly between the two potential minima, generating the

. . N/2(aTyN/2
ating highly entangled many-body states. Schemes for gersfate| W) (Cg)"*(¢))""%0), where|0) is the vacuum state.
erating such entanglement rely on interatomic interaction&xperimental evidence for such a “number-squeezed” state
which provide “nonlinear” elements as seen from the view-has been obtained by Orzet al. in a many-well potential
point of single-particle dynamics. Such nonlinear terms ard18]. Similar physics is responsible for the observed
provided naturally through binary collisions between Mott-insulator phase in a three-dimensional periodic poten-
ground-state atoms, as utilized controllably by Maretedl. ~ tial [19]. o . _
[11], and can be further enhanced through molecular reso- FOr attractive interactiongU<0), the ground state is
nances or by the assistance of near-resonant phft@nk3.  quite spectacular: a macroscopic-quantum-superposition

A paradigmatic system in which interatomic interactions(Schrédinger-cat state [W) = [(€Q)N+(E)N]|0) formed as a
induce entanglement is a collection of ultracold interactingsuperposition of states in whicil atoms are found in one of
bosons in a parity-symmetric double-well potenfiad—17.  the two wells. The generation of Schrodinger-cat states is a
The lowest-energy single-particle states are the parity-evetantalizing goal; at present, the largest atomic Schrédinger-
ground statéyy) and parity-odd first excited stafé,), sepa- ~ cat states contain just four atorfi. However, accomplish-
rated in energy by the tunnel splitting If tunneling and ing this goal by imposing a double-well potential on a col-
interactions are weak with respect to the energy spacings tection of bosons with attractive interactions is a daunting
other single-particle states, the many-body system may bt&sk: such Bose-Einstein condensates are unstable to collapse
described by the two-mode Hamiltonian [20], implying that the number of bosons placed into the
superposition state will be small; moreover, exceptional spa-
tial control over trapping potentials and over the interaction
strength is required.

The above discussion pertains to atoms for which the
whence terms dependent only on the total number of atomgosition-space potential is a double welthile the kinetic-
in the system are omitted. Hetg and¢, denote annihilation energy termp?/2m may be regarded asraomentum-space
operators for particles in the righitR)=[|¢o)+|#)]/V2) or  harmonic potentialln this work, we point out that an analo-
left (|Ly=[|#oy—|1)]/V2) well states, respectively. The gous many-body system can be crafted, in which the roles of

J oo .
H=- E(CECL +¢8/8g) — UNRN,, (1)
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position and momentum are interchanged. As discussed iig
previous work[21-23, the dispersion relation of multilevel
atoms placed in a spatially periodic coupling between inter-
nal states can take the form of a momentum-space double
well potential. Addition ofa harmonic position-space trap-
ping potentialproduces a double-well system dual to that
discussed above. Assessing the roles of interparticle interac
tions in this situation, we find that the many-body ground
states for bosonic atoms in such a system are highly en
tangled in both momentum and internal-state space. In oppo
sition to the situation of bosons in position-space double
wells, maximally entangled states may be generated in the
case ofrepulsiveinteractions, allowing the creation of such
states starting with large, stable Bose-Einstein condensate
while obviating the need for exacting control over potentials
with extremely small spatial dimensions.

The roles of repulsive or attractive interactions in deter-
mining the behavior of interacting bosons in momentum-
space double-well potentials are reversed from those in the
case of position-space potentials. As discussed below, thi:
reversal is due to an exchange term which arises in the evalu
ation of the interaction energy of a Bose gas that occupies
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several distinct momentum states. For repulsive interactions, rig. 1. Creating a double-well momentum-space potential with
for example, this exchange term disfavors a macroscopic 0Gzaman excitation(a) Laser beams of frequenay; and w, may

cupation of more than one single-particle wave functite

induce Raman transitions between internal staf¢sand |B). &

so-called fractionation of a condensate as discussed by Leg{w; - w,)—w, is the detuning from the Raman resonar(bg Such
gett[24] and othery thus favoring a Schrédinger-cat super- a Raman transition imparts a momentum transferikt=fi(k,
position. We find that the strength of the exchange term cark,), wherek, andk, are the wave vectors of the Raman coupling
be dynamically varied by varying parameters of the periodidasers.(c) Atoms exposed to continuous Raman excitation can be

coupling field which generates the double-well potential.

described by a two-branch dispersion relation. Ener¢gealed by

Following a derivation of the momentum-space double-Ey) for the lower(fw,) and upperfiw,) dressed states are shown
well potential(Sec. ), we develop a two-mode approximate for wave vectorgscaled byk) in the direction of the Raman mo-
treatment of this system which provides expressions for th&entum transfer. In the case of exact Raman resonafw8) and
interaction and tunneling energies and thereby clarifies theigmall Raman Rabi frequendghown for7Q/E,=1/8), the lower

dependence on experimental paramei{&sc. ). Similar

dispersion relation takes the form of a parity-symmetry double-well

work by Montina and Arecchj23] treats this system using Potential.

the Gross-Pitaevskii equation as the starting point, a numeri-

cal scheme which identifies the onset of correlated many- . _ ikr—of) i r—at)

body ground states. Their work appears to reproduce odpotentialVg=7€/2(e [AXB|+¢€ [B)AI). HereQ)
analytic approach in the limit of weak interactions, while theis the two-photon Rabi frequency, taken to be real, which is
validity of their approach(or, indeed, any extant treatmgnt determined by dipole matrix elements, the detuning from in-
for stronger interactions is difficult to establish. Furthermore termediate resonances, and by the laser intensities.

in Sec. lll, we show that maximal entanglement can be gen- It is convenient to analyze this constantly driven system
erated purely between internal states or between momentuin terms of “periodically-dressed” states, which are coherent
states, offering a route to Heisenberg-limited atomic clocksuperpositions of both internal and extergaiomentuny

[3] or atomic interferometry5], respectively.

I. ORIGIN OF THE MOMENTUM-SPACE POTENTIAL

We consider bosonic atoms of masswith two internal
states|A) and |B) at energieshw, and fwg, respectively.
These atoms are exposed to laser fields of frequengiesnd
w, (0=w;—w,) and wave vectorg, and k, which induce
Raman transitions between the two internal stgteg Figs.
1(a) and Xb)]. Thus, a Raman process from stié to |B)
imparts a momentum dfk =f(k,—k,) and kinetic energy of

states. As developed in Ref®1,22, this treatment reveals
marked anisotropy and tunability in the superfluid character-
istics of a Bose-Einstein condensate formed of such a
dressed-state gas. Given a two-component spinor wave func-

tion Tp(r)z[sz(r) , g(r)] to describe single-atom states in the
{|A),|B)} basis, we transform to a frame whichderotating
andcomovingwith the driving laser fields, yielding a spinor
wave function z,Z(r) with components?//A,B(r):exp{ii(k-r
—wt)/2]iap(r). This transformation yields a Schrodinger
equation with two de Broglie wave solutions at each momen-

hé=hw—h(wg—ws). The continuous Raman coupling can betum #q, which we call the periodically-dressed states. The
regarded as a spatially periodic coupling field between théwo-branch dispersion relation of the periodically-dressed at-
internal states of the atoms, represented by an off-diagon@ms has the forngusing 7 for plus andu for minusg
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s 1l mutation relations. We consider low-energy, binary, elastic
hwg (@) ="+ 7 £5N(29 -k - 87+ 07, (2 collisions with a state-independent scattering length
. The interaction Hamiltonian then takes the forf;,
whe(e energies and wave vectors are scaled by t_he Ramang/2)[ fd3qf(q)A(-q)], neglecting terms dependent only on
recoil energyE,=/%?/2m and wave vectok, respectively.  he total number of atom, wheref(q) is the spatial Fou-
Under the conditions of exact Raman resonat@e0) jer transform of the density operator, age:8mka is the

and sufficiently small Rabi frequenc2, a degeneracy of qnerly scaled interaction parameter. The density operator is
momentum ground states occurs as the lower dispersion rgiven as[21,22

lation takes the form of a double-well potential, with minima
at #Q/2 (Q=k) [Fig. 1(c)]. This potential can be quickly A3k - 9\ q q)- q
tuned by modifying the laser parameters. The detuning fronf(Q) =f (2—)3/2¢ (K+ > RY| «+ > R\ «- > | k= 5/
Raman resonancé breaks the ground-state degeneracy, fa- &
voring the right- or left-well states. The spacing between the (5)
potential wells is controlled by the Raman momentum trans-
fer 7k, which can be varied by reorienting the laser beams.
Finally, the Rabi frequenc§2 changes both the height of the Il. THE TWO-MODE APPROXIMATION
barrier between the wells as well as the internal-state char- A . .
i . To simplify our treatment, let us consider only the situa-

acter of states on elther_s_|de of the wfalb]. .. tionin thi)cr];ythe two lowest-energy eigenvaIL(mythe ab-

In the case of a position-space double well, the kinetic

energy of the atoms forbids a complete localization of atomgoNc€ of interactionsare well separated from the remaining

in either of the wells, thus introducing tunneling. Similarl énergies, and thus a two-mode description of the many-body
: ’ g 9. Y system is adequate. The two lowest-energy single-particle
in our case of the momentum-space double well, a tunneli

n a Z
between well-defined momentum states can be induced t%}ates have wave functior(q) and ¢4(q), mode operators
adding a spatially dependent term to the Hamiltonian. Webo @nd €y, and energy splittingl. We define the right- and
consider adding an internal-state independent trapping potefgft-well states aghg, (q) =[ $o(q) £ #1(q)]/+2, and the mode
tial of the form V(r)=mw?r?/2 [25]. The Hamiltonian for ~operators agg, =(Ey*¢;)/ V2. Under this approximation, we
this system may be written in the basis of the periodically-can evaluate the density operaifidg) by expanding the field
dressed states introduced earlier, using the expansion operatorsu(q) and 7r(q) in the basis of energy eigenstates,
R 3 and then truncating the expansion after the first two states.
Zb(r,t) :J d q3/2R(q)<7T(q) )eiq-r, 3) We then express the density operator &%q)

(2m) () =% Nji(@)&[e; with
where Rq)=e"v"92 whereo, is a Pauli matrix and the e q q q
mixing angle 6(q) is defined by the relation cdi(q)=(5 M) :J 2—3/2¢>I<K+ §)R<K+ E)R(K—E)
-%q-k/m)/Q. The wave functiong(q)=(m(q),x(q)) in (2m)
the space of periodically-dressed momentum eigenstates ><<Z>-<K+g> 6)
obeys a Schrddinger equation with Hamiltonian ] '

HPD:ﬁ< >_WRT(q)V§R(Q)' (4) with indicesi,j e {R,L} denoting either the right or left

0 wI(q) states. Accounting for properties of the right- and left-well
" : - . states under parit}26], we obtain
The position-space trapping potential is seen |2n momentum
space as a kinetic-energy-like ter(imvolving Vg, which A(q) :NRR(q)N+NRL(q)6TRéL+NRL(_ q)éléR, )

accounts also for the variations with of the periodically-

dressed eigenstate basis. The relevance of this kinetiGyhereN is the total number of atoms in the system. Drop-
energy-like term is measured by the dimensionless effectivsing terms that depend only dt, one thus finds
mass parametdvl, which is related to the Lamb-Dicke pa-

rameter n=\Ak?/2mw, as M=277. For weak spatial con-

A A A I oatn ata
finement(M> 1), the low-energy single-particle states are Hint =~ UNgN_ + E(CECL +C.Cr)
restricted primarily to the lower periodically-dressed
states, with the two lowest states split by a small tunneling +J(ekete & + &g ereR), (8)

energy J. For strong confinementM <1), the single-

particle states are admixtures of upper- and lowerWhere the energies, J;, andJ, are given as

dispersion-relation periodically-dressed states, and a

simple double-well treatment is no longer adequate. U= _gfdsq N2 (9)
To introduce interatomic interactions, we make use of the R

field operatorg(q)=(7(q), z(q)) the components of which

annihilate particles in the lower(u) or upper (m)

periodically-dressed states. These operators obey Bose com- Ji = ZNQJ dPgNRRQDNrUQ), (10
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g 3 scopically occupied, while attractive interactions would lead
=3 f d°q Nru(@Nru(=1). (1) to a “fractionation” of the condensate between distinct mo-
mentum states.
Before delving further into the implications of the inter-  In the system we have described here, the interaction en-

action Hamiltonian given above, let us consider the weakergy U is a tunable exchange terwhich, in the case of
confinementlarge M) limit at which the right- and left-well  repulsive interactions, suppresses the superposition of atoms
states contain no popu|ation in the upme-b dressed states, in two distinct momentum states and thereby'favorss' the
are Gaussian functions well localizéd q spacg at the right ~Maximally entangled state. The exchange term in the inter-
and left potential minima at @/2, with rms widthsg, ~ action Hamiltonian arises from the presence of atoms in
=(2M) Y2 and have average density per partigle) identical internal states, but different momentum states. By
=63/ 732, In calculating the integrals of E¢6), we may thus adjusting the strength of the Rabi couplifyg the admixture

use local values of the rotation matricB{q) at +Q/2, as  Of internal state$A) and|B) in the right- and left-well states
appropriate. We then find is varied. For small), atoms in the right-well state are al-

most purely in thgA) state, and atoms in the left-well state
) Q are almost purely in théB) state. Thus, the strength of the
U= - g(n)sir® 9(5) (120 exchange term is suppressédin® 6(Q/2)<1], and the
product state|W) o« (Gg+¢)N0) remains energetically fa-
vored. For largeK), the right- and left-well states both con-
J, = 2Ng(n)sin 0(9>e—Q2/16a§, (13) tain admixtures of the two internal states; e.g., the _right-well
2 state contains atoms in stat@) nearly at rest, while the
left-well state contains atoms in statd) at momentum
Q Qa2 ~—hik. Significant exchange terms now suppress the product
5 )€ 7. (14)  state in favor of the maximally entangled state.
The dependence of the many-body ground state on the
These approximations can be further simplified by settingatio U/J and the atom numbeN has been worked out by
Q=k, and thus sirg(Q/2) = 02/ (1+0?). various author$14,16,17 for t_he position-space dquble_—well.
Let us presume that the interaction-mediated tunnelin otential. As we have obtained a Ham|It0n|an_|d§nt|caI in
termsJ; and J, are negligibly small. We thus recover the Tormto 'the position-space treatment, these p_redmtlons would
many-body Hamiltonian of E¢(1) which had applied to the apply'dlrectly to'our scheme. Slgnlflcan't dewaﬂqns from the
position-space double well. However, examining the interacfactorized, noninteracting atom solution begin |at/J|
tion energyU, we now find thatthe roles of attractive and = 1/N; for repulsive (U>0) or attractive(U<0) interac-
repulsive interactions are interchangéetween the position- tions this would shift population either away from or towards
space and momentum-space double-well treatments: for t8e state [N =N/2,Ng=N/2), respectively. Perturbation
case of the momentum-space double-well potential, repulsiv@nalysis shows that the many-body state will be well ap-
interactions(g>0) yield U<0 and thus are the source of Proximated by the Schrodinger-cat sta,0)+[0,N))/+2
Schrédinger-cat ground states, while attractive interaction&henU/J>1/N.
(g<0) yield U>0 and thus are the source of number- Now returning to Eq.(8), we see that two extra terms
squeezed ground states. This opens the door to the produappear irfH,;,; which do not conserve the number of particles
tion of Schrodinger-cat states for large, robust Bose-Einsteiin the right- and left-well states, representing a form of
condensates with repulsive interactions through the use dhteraction-mediated tunneling. The first, involving?,
binary collisions as a nonlinear coupling. modifies the tunneling energy between the right and left
This reversal of roles for repulsive and attractive interac-wells. The effect of this term is to reduce the tunneling rate
tions in momentum space can be understood in the context ¢dr repulsive interactions, and increase it for attractive inter-
a single-component Bose-Einstein condensate in a harmonactions. This can be understood by noting that repulsive in-
potential. Repulsive interactions lead the ground-stateéeractions tend to raise the energy of the single-particle
condensate wave function to become larger spatiallyground state more than the first excited state since the ground
thus causing the momentum-space wave function tatate has a higher density. Our previous analysis of the two-
contract—appearing as an attractive interaction in momenmode approximation accommodates this term by a redefini-
tum space. Equivalently, one may note that in a Hartree aption of J asJ—J-J?, leading to no further complications.
proximation to the many-body state of a Bose-Einstein conThe second tunneling term, involving?, describes colli-
densate, the interaction energy is evaluated as an interacti®ions which can redistribute two atoms from the right well to
energy density proportional to the square of the density. Thénhe left well, and vice versa. While this term modifies the
density of a Bose gas occupying two distinct momentumconclusions of our simple treatment, we have seen that the
states would be spatially modulated by the interference bemagnitudes of botd¥ andJ® are exponentially suppressed
tween the momentum states, and, therefore, its interactiowith respect tdJ, and thus the dominant role of interactions
energyegn? would be increaseecreasexfor the case of is to create the aforementioned many-body ground states.
repulsive(attractive interactions. Thus we find repulsive in- These terms will, however, play an important role in deter-
teractions leading to Schrodinger-cat states, a superpositianining the strength of interactions at which many-body cor-
of states in which only one single-particle state is macro+elations begin to become evident; the scalind ¢hdepen-

J,= gm)sin2 6(

053605-4



GENERATING MACROSCOPIC-QUANTUM.-.. PHYSICAL REVIEW A 69, 053605(2004)

a

=

a

Rl

M=8 1
1.0 N - 10-1 .
] ’ Q > -
’ 2 10°
? 0.0 ~ l’ 4 i 5 ]
E \\ 1’ \ - * % 10- :
-1.04 tes ——r—~s— 0.0 7(q,) & 107 -
+ -0.4 10-9 ]
'20 T T T 1
-2 -1 0 1 2 b)
wave vector q, =
b) ; 510 7
1.0 M=50 2 10° 7
B 10°
— - (v - 1
%"j 0.0 ) 0.01 &3 107
\ ]
) i md,) 9 ]
1.0 \ ! St 0.00 10
|’ L
: -0.01
'20 T T T 1
-2 -1 0 1 2

FIG. 3. Numerical calculations of tunneling and interaction
strengths.(a) The tunnel splittingd (open circles, solid linebe-

FIG. 2. The two lowest-energy eigenfunctiaiselid line for the ~ cOmes much smaller than the spacing between the second and third
ground state and dashed for the excited ytathich define the — €Xcited stategopen triangles, solid linefor moderate values dfl,
right- and left-well modes for the two-mode approximation. Com- establishing the validity of the two-mode approxma}mn for weak
ponent wave functions in the lowdiu(q,)] and upper[m(g,),  confinement(b) Tunneling energied (open circles, solid Iln)eJ(1>
shown in insetsperiodically dressed states are shownNbe8 and ~ (OPen squares, dashed linandJ® (filled circles, dashed lineare
M=50. As the spatial confinement is weakengarger M), the suppressed for weaker confineméakponentially with Iargel\/l),
wave functions become further localized in the minima of theWhile the strength of the momentum exchange energi’s, solid
double-well potential, and the population in the upper dressed statéN€) remains large. This provides a route to creating correlated
diminishes. Note the different parity of theand = components, as Many-body states adiabatically from uncorrelated states by gradu-
discussed in the text. Hef&)/E,=1/8, wavevectors are scaled by aIIyleezkening_ the s_paltial confinement. The energlei{aer]ared

: : 2 scaled byE,. Dimensionless interaction parameters are plotted as
k, and the one-dimensional wave functiofg,(d,) are shown. Ulginy, I0/2Ngn), I/ (g(ny/2). A Rabi frequencyfQ/E,
dent ofg), JV, 3@, andU with the control parameter§), g,  =1/8 ischosen.

M, etc) are different and thereby provide more tunability to N i )
the system. tantly, a significant population appears in the upper dressed
We performed numerical calculations of the lowest-States. _ _ o
energy single-particle states to verify the simple scaling be- Param_eters which enter into th_e two-mode_ Hamiltonian
havior of various terms in the Hamiltonian described above@® derived from the numerically obtained wave
The single-particle Hamiltonian of E¢4) is separable in the functions, and are shown in Fig. 3. One finds the scaling
three Cartesian coordinates defined so that one (aaig?)  ~ €XP(~M/4) as one expect$27]. 1The numerical results
lies along the direction of the Raman momentum trankfer confirm the scaling behavior fog found in the weak-

: - y confinement(large M) limit [Egs. (12—(14)], but differ
We then have the lowest-energy eigenstates ¢gs(q) slightly from the scaling predicted faf? since the assump-

:¢o,1(qz)exl{j(Q>2<+q>2/)/4o'§]/VZWOZ’_ a product  of jon that the right-well state remains Gaussian in the vicinity
harmonic-oscillator ground states in theand y directions  of the left-well potential minimum is incorrect. Nevertheless,
and normalized solutiongb, 5(g,) to the one-dimensional, J@ is strongly suppressed for largd, approximately as
two-component Schrédinger equation derived from &g. exp(-M/3). Also shown is the energy splitting between the
These one-dimensional eigenstates, calculated using a reecond and third lowest eigenenergies; one sees that for
stricted basis set of Fourier components over the domaiweak spatial confinement the lowest two energy eigenstates
—-3=q=3, are shown in Fig. 2 for two different values of the become well separated from the remaining eigenspectrum,
mass parametel, and for the condition of exact Raman establishing the validity of the two-mode approximation.
resonanced=0 and Rabi frequency()/E,=1/8. Forweak Finally, we stress that the two-mode treatment presented
spatial confinementlarge M=50), the lowest two energy here becomes invalid in the Thomas-Fermi regime, where
eigenstates are indeed nearly entirely composed of lowehe strength of atomic interactions dominates the zero-point
dressed statear(q,) =0) and are well approximated by the energy in the confining potential. In this situation, additional
sum or difference of Gaussian right- and left-well wave func-single-particle states must be considered, resulting in a com-
tions centered at the potential minima negik=+1/2. For  plicated, self-consistent definition of the right- and left-well
stronger spatial confinemeigmaller M =8), the enhanced states which depends on the number of atoms in these states.
“momentum-space tunneling” causes the wave functions télow to properly treat such a situation remains an open ques-
become less confined in the potential minima. Concomition, and therefore an important subject for experimental in-

wave vector q,
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vestigation. In related work, Montina and Arecdli3] ob-  pares a state ideal for Heisenberg-limited atomic interferom-
tain right- and left-well states through use of the Gross-etry.

Pitaevskii equation, but the validity of their treatment is  Furthermore, the timed application of Raman coupling in
questionable for systems which are not completely interacthis system can be used as a “magic beam splift2®] to

tion dominated. prepare the Schrodinger-cat state dynamically. For simplicity
let us make the identificatiop'g)=|0,N) and |¥,)=|N,0).
IIl. APPLICATION TO HEISENBERG-LIMITED Consider a system prepared in the)=|N,0) state with no
MEASUREMENT Raman couplingQ2=0)—this state corresponds to a zero-

temperature Bose-Einstein condensatélaftoms in theB)

Several theoretical works have pointed out the potentiainternal state. The Raman coupling is then turned on adia-
for correlated many-body states for improving the precisiorbatically, as discussed above. The initial stal®, being a
of atomic clocks[4] and interferometer$5,2§], in which  superposition of the two lowest-energy Schrodinger-cat en-
phase shifts are measured at the Heisenberg linpitt 1/N,  ergy eigenstates, is now led to oscillate coherently, and col-
rather than the standard quantum limi$ o 1/\N, whereN lectively, between the right- and left-well states. This oscil-
is the number of particles used in a single run of the experilation is analogous to macroscopic quantum tunneling
ment. In particular, Bollingeet al. described the use of the observed, for example, in the Rabi oscillations of supercon-
maximally entangled state in such a measurerf@nin this  ducting qubits[30]. If the Raman coupling is left on for a
section, we point out how dynamical control over experi-duration which is 1/4 of the Bohr period between the even
mental parameters can be used fruitfully to generatand odd Schrodinger-cat states, the many-body sigtevill
Schrddinger-cat states suited for the implementation of botlevolve as
Heisenberg-limited spectroscopy and interferometry.

In the system we have described, repulsive interatomic IS)-ils) 1
. . . W) — o =
interactions lead to lowest-energy many-body states which V2
are the even- and odd-superposition Schrodinger-cat states
IS =(WRy£|W ) /2. The states¥g) and|¥,) are distin- The Raman beams can be then switched off—with the trans-
guishable many-body states associated with the right and lefermation of the state into a momentum space or internal-
potential wells, respectively, which tend toward the limiting State-space Schrédinger-cat state, as desired—for a duration
case§¥r)—|0,N) and|¥,)— [N, 0) for strong interactions. 7 dyrmg which a rellatlve phase can accrue between t.he two
The energy separation between these two states depends @#tinguishable portions of the Schrodinger-cat state, i.e.,
the residual overlap betweéWg) and|¥,) and the number 1-i 1+
of atoms in the systenderived, e.g., in Ref[15]). In the ¥y — —||N,0>+ _'e—iNAf|o,N>_ (16)
weak-confinement limitM>1, these right- and left-well 2 2
states are composed of the lower dressed states, which Ao

superpositions in both internal and external degrees of free- is the difference in energy between the single-particle

o : tes to which the right- and left-well states are connected
dom. Such a superposition appears to complicate the use §v¥ﬁen the Raman beams are extinguished. For instance, if we

these Schrddinger-cat states for measurement applications, . ) :
g re following the implementation of a measurement of the
However, after these Schrédinger-cat states are formed

the dressed right- and left-well statean be converted to dog:(ngl? ql;ﬁinscgt:tiwrﬁirt] tl)r:at(;rr?sll ;tea(;ﬁ fhe scheme of Bol-
pure internal or external states adiabaticallye., by modi- Y. yz€ea.

fication of experimental parameters on a time scale which ig?Sgrsgtrra:le.a[llsl]lj’r:rr?grq;/?smrlr?g(?:i) ? t%uelsoﬁfirgﬁglelegé&lder? the
fast with respect to tunneling times so as to preserve ert

\ : number of atoms in thiA) state and théB) state—one must
tanglement, but slow with respect to time scales relevant tQ ; . X ;
. : : . establish whether this number difference is even or odd, thus
the Raman couplingl/Q). If the Rabi frequency) is adia- o . O X
batically lowered to zergthe Raman beams are slowly ex- requiring single-atom precision in the number counting.
L ) . . . Alternately, one may apply secondmagic beam splitter
tinguished, atoms in the right-well state would be adiabati- ulse as before. thus preparing a state
cally converted to stationary trapped atoms in [#einternal P ' preparing
state, while atoms in the left well would be converted to —i(1 - NAT (1 +¢eNAT
stationary trapped atoms in th) state. Thus would be pre- |¥) — > IN,0) + T|0,N>- (17)
pared a state ideal for Heisenberg-limited measurement of
the internal-state energy differente,, potentially on a use- Measurements on this state would detaittatomsin either
ful hyperfine clock transition. Alternately, one could adia- the right- or left-well stategsay, internal stateg\) or |B)),
batically ramp the detuning from the Raman resonance twith probabilities which vary periodically with the free-
large positive or negative values. For example, an adiabatievolution timer with frequencyNA which isN times higher
downward sweep of the frequency difference between théhan for a single-particle Ramsey-type measurement. This is
Raman laser beams— -=) lowers the energy of théd)  the source of the enhanced Heisenberg-level sensitivity. This
internal state with respect to th®) internal state in the sensitivity persists even in the presence of overall number
rotating frame. This adiabaticall