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The transmission spectrum of a high-finesse optical cavity containing an arbitrary number of trapped atoms
is presented in the zero-temperature, low saturation limit. We take spatial and motional effects into account and
show that in the limit of strong coupling, the important spectral features can be determined for an arbitrary
number of atoms,N. We also show that these results have important ramifications in limiting our ability to
determine the number of atoms in the cavity.
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I. INTRODUCTION

Cavity quantum electrodynamics(CQED) in the strong-
coupling regime holds great interest for experimentalists and
theorists for many reasons[1–3]. From an applied perspec-
tive, CQED provides precise tools for the fabrication of de-
vices which generate useful output states of light, as exem-
plified by the single-photon source[4–6], the N-photon
source[7], and the optical phase gate[8]. Conversely, CQED
effects transform the high-finesse cavity into a sensitive op-
tical detector of objects which are in the cavity field. Viewed
simply, standard optical microscopy is made more sensitive
by having a probe beam pass through the sample multiple
times and by efficiently collecting scattered light. In the
weak-coupling regime, this has allowed for nanometer-
resolution measurements of the positions of a trapped ion
[9,10]. In the strong-coupling regime, the presence and posi-
tion of single atoms can be detected with high sensitivity by
monitoring the transmission[11,12], phase shift[13], or spa-
tial mode[14] of probe light sent through the cavity.

In this paper, we consider using strong-coupling CQED
effects to precisely count the number of atoms trapped inside
a high-finesse optical microcavity. The principle for such de-
tection is straightforward: the presence of atoms in the cavity
field splits and shifts the cavity transmission resonance. A
preciseN-atom counter could be used to prepare the atoms-
cavity system for generation of optical Fock states of large
photon number[7], or to study ultracold gaseous atomic sys-
tems[15] in which atom number fluctuations are important,
such as number-squeezed[16] and spin-squeezed[17–19]
systems.

A crucial issue to address in considering such a CQED
device is the role of the spatial distribution of atoms and their
motion in the cavity field. AnN-atom counter(or any CQED
device) would be understood trivially if theN atoms to be
counted were held at known, fixed positions in the cavity
field. This is a central motivation for the integration of
CQED with extremely strong traps for neutral atoms[20,21]
or ions [9,10]. The Tavis-Cummings model[22], which ap-
plies to this case, predicts that the transmission spectrum of a
cavity containingN identically coupled(with strengthg),
resonant atoms will be shifted from the empty cavity reso-
nance by a frequencygÎN at low light levels. Atoms in a

cavity can then be counted by measuring the frequency shift
of the maximum cavity transmission and distinguishing the
transmission spectrum ofN atoms from that ofN+1 atoms in
the cavity. However, to assess the potential for precise
CQED-aided probing of a many-body atomic system, we
consider here the possibility that atoms are confined at length
scales comparable to or indeed larger than the optical wave-
length.

In this paper, we characterize the influence of cavity mode
spatial dependence and atomic motion on the transmission
spectrum for an arbitrary number of atoms in the limit of low
temperature, low light intensity, and low atomic recoil en-
ergy. The impact of atomic motion on CQED has been ad-
dressed theoretically in previous work[23–26], although at-
tention has focused primarily on the simpler problem of a
single atom in the cavity field. We show that when spatial
dependence is included, the intrinsic limits on atom counting
change significantly. The organization of this paper is as fol-
lows. In Sec. II we introduce the system Hamiltonian, define
our notation, and derive an explicit expression for the intrin-
sic transmission function. In Sec. III, we introduce the
method of moments, and use this method to calculate the
shape of the intrinsic transmission function. Conclusions and
implications for atom counting are presented in Sec. IV.

II. TRANSMISSION

Let us consider the Hamiltonian forN identical two-level
atoms in a harmonic potential inside an optical cavity which
admits a single standing-wave mode of light. We consider
atomic motion and the spatial variation of the cavity mode
only along the cavity axis, assuming that the atoms are con-
fined tightly with respect to the cavity mode waist in the
other two dimensions. The Hamiltonian for this system is

H = "vca
†a + o

i=1

N

"vaueilkeiu + H0 + V, s1d

wherevc is the frequency of the cavity mode andasa†d is the
annihilationscreationd operator for the cavity field. The mo-
tional Hamiltonian H0=oiH0,i is a sum over single-atom
HamiltoniansH0,i =pi

2/2m+mv0
2xi

2/2, wherem is the atomic
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mass andv0 the harmonic trap frequency. The atomic
ground and excited internal states,ugl and uel, respectively,
are separated by energy"va. The dipole interaction with the
light field V=oiVi is a sum over interactions with the dipole
moment of each atomVi ="g cosskxidsueilkgiua+ugilkeiua†d,
whereg is the vacuum Rabi splitting, which depends on
the atomic dipole moment and the volume of the cavity
mode. In this paper we assume the cavity mode frequency
to be in exact resonance with the atomic transition fre-
quency,vc=va.

Since the Hamiltonian[Eq. (1)] commutes with the total
excitation operator,nT=a†a+oiueilkeiu, the eigenspectrum of
H breaks up into manifolds labeled by their total excitation
number. In this work, we are concerned with excitation spec-
tra of the atoms-cavity system at the limit of low light inten-
sity, and we therefore restrict our treatment to the lowest two
manifolds, withnT=h0,1j.

We consider here the excitation spectra from the ground
state(motional and internal) of the atoms-cavity system. This
represents the simplest system that can be treated analyti-
cally and provides a basis for more realistic treatments of the
initial state. In practice, scattering of a few photons or finite
temperatures would excite the system to a higher motional
state. These effects can be minimized experimentally by
working at low light intensity(highest signal to noise per
spontaneously emitted photon) and low temperature. The ini-
tial stateuC0l is given simply as a product of motional and
internal states,uC0l= uFIl ^ u0c;g1,g2, . . . ,gNl. In the un-
coupled internal-state notation, the 0c symbol indicates there
are zero photons in the cavity and thegi symbol indicates
that atomi is in the ground state. The motional stateuFIl
=pi=1

N uf0sxidl is a product of single-atom ground states of the
harmonic trap.

Let us calculate the low light intensity transmission spec-
trum of the cavity. We assume that the system is pumped by
a near-resonant linearly coupled driving field such that the
cavity excitation Hamiltonian isHI =Esa†e−ivt+aeivtd, where
E is the product of the external driving electric-field strength
and the transmissivity of the input cavity mirror andv is the
driving frequency. To determine the cavity transmission
spectrum, we determine the excitation rate to atoms-cavity
states in thenT=1 manifold from the initial ground state. The
atoms-cavity eigenstates decay either by cavity emission,
with the transmitted optical power proportional tokkNcl,
wherek is the cavity decay rate andNc=a†a is the intracav-
ity photon number operator, or by other processes(spontane-
ous emission, losses at the mirrors, etc.) at the phenomeno-
logical rate constantg. Neglecting the width of the
transmission spectrum caused by cavity and atomic decay
sk ,g→0d, we use Fermi’s golden rule to obtain the trans-
mission spectrumIsvd:

Isvd ~ o
j ,nT=1

ukC jua†uC0lu2dsv j − v0 − vd

= o
j ,nT=1

ukC juCIlu2dsv j − v0 − vd, s2d

whereuCIl=a†uC0l. In the summation over all atoms-cavity
eigenstates, we make the simplification that only states with

nT=1 need be included since only these states are coupled to
the ground state by a single excitation. To simplify notation,
we make this implicit assumption throughout the remainder
of this paper. We denote byIsvd the “intrinsic transmission
spectrum.” In the limit ofk ,g→0 this is composed ofd
functions in frequency, while an experimentally observed
transmission spectrum would be convolved by nonzero line-
widths.

To proceed further, we introduce the basis stateshu0l ; uilj
which span the space ofinternal statesin thenT=1 manifold.
The stateu0l= u1c;g0,g1, . . . ,gNl has one cavity photon and
all atoms in their ground state. The stateuil
= u0c;g0,g1, . . . ,ei , . . . ,gNl is the state in which the cavity
field is empty, while a single atom(atom i) is in the excited
state. Restricted to thenT=1 manifold, the Hamiltonian[Eq.
(1)] is written asH=H0+VnT=1, where

VnT=1 = o
i

"g cosskxid ^ suilk0u + u0lki ud. s3d

To gain intuition regarding the behavior of the system, let
us define the operatorVsxd as the optical potential operator
VnT=1 for which the position operators are replaced by defi-
nite positionsx. In the sN+1d-dimensional space of internal
states for thenT=1 manifold, the operatorVsxd has two non-
zero eigenvalues, ±"gxsxd= ±"gÎoi cos2 kxi with corre-
sponding eigenstates

uD±sxdl =
1
Î2
Su0l ±

1

xsxdoi

coskxiuilD . s4d

We will refer to theuD−sxdl and uD+sxdl eigenstates of the
potential matrix as the red and blue internal states, respec-
tively, in reference to their energies being red or blue de-
tuned from the empty cavity resonance. The remainingN
−1 eigenvalues of the optical potential matrix are null val-
ued. These correspond to dark states having no overlap with
the excited cavity internal state,u0l, and which, therefore,
cannot be excited by the cavity excitation interactionHI.
Note thatkNcl=1/2s0d for all bright sdarkd states, hence the
cavity transmission spectrum is equivalent to the excitation
spectrum in this treatment. We can now write the optical
potential operatorVnT=1 as

VnT=1 = gE dxxsxduxlkxu ^ suD+sxdlkD+sxdu

− uD−sxdlkD−sxdud. s5d

We also note that the initial stateuCIl can be written as a
superposition of bright states,

uCIl =
1
Î2

sufIsxd ^ D−sxdl + ufIsxd ^ D+sxdld. s6d

Our treatment allows us to recover easily results of the
Tavis-Cummings model[22] in which a collection of fixed
two-level atoms are coupled to a single-mode cavity with
fixed, identical dipole coupling. ConsideringVsx0d with all
atoms at the originfx0=s0,0, . . . ,0dg, we find a spectrum
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composed ofd functions at ±gÎN [see Fig. 1(a)] correspond-
ing to the two bright statesuD±sx0dl. The clear dependence of
the frequency of peak transmission on the integer number of
atoms in the cavity provides the background for a basic,
transmission-based atom-counting scheme. “Extrinsic” line
broadening, due to cavity decay and other losses, will smear
out these sharp transmission peaks[see Fig. 1(b)], and will
determine the maximum number of atoms that can be
counted at the single-atom level by discriminating between
the transmission spectra forN and N+1 atoms. For the re-
mainder of the paper, we focus on intrinsic limitations to
atom counting, i.e., those due to atomic localization and mo-
tion.

III. METHOD OF MOMENTS

To analyze the transmission characteristics of the atoms-
cavity system in the presence of spatial dependence and
atomic motion, we shall assume that the key features of the
spatially independent limit discussed above are maintained
(Fig. 2). Specifically, the transmission spectrum will still be
described by two sidebands, one red shifted and one blue
shifted from the empty cavity resonance by some frequency
on the order ofg. In determining the cavity transmission
Isvd, we may thus divide the bright excited stateshuC jlj of
the nT=1 manifold into redhuC j ,−lj and bluehuC j ,+lj states.
From these red and blue states, we determine the transmis-
sion line shapesI−svd and I+svd of the red and blue side-
bands, respectively.

The validity of this approach is made more exact by the
following considerations. We have already obtained the lo-
cally defined internal-state eigenbasis for thenT=1 manifold
as eigenstates of the operatorVsxd, namely, the statesuD±sxdl
and the remainingN−1 dark states. LetÛsxd be the rotation
operator which connects the uncoupled internal states
hu0l , u1l , . . . ,uNlj to the eigenstates ofVsxd at a particular set
of coordinatesx (the “coupled internal-state basis”). Now,
consider applying this local choice of “gauge” everywhere in

the system. Since the dipole interaction operatorV is diago-
nalized in the coupled internal-state basis, it is convenient to
examine the full HamiltonianH in this basis. Defining the

spatially dependent rotation operatorÛ=edxuxlkxuÛsxd, we

therefore consider the transformed HamiltonianH8=ÛHÛ†.
Returning to Eq.(1), the only portion of the Hamiltonian

H which does not commute with the operatorÛ is the kinetic
energy. Considering the transformation of the momentum op-
erator for atomi,

ÛpiÛ† = pi +
"

i
Û d

dxi
Û† = pi + Ai s7d

the transformed HamiltonianH8 can be expressed asH8
=Had+DH, where

Had = o
i
S pi

2

2m
^ I +

1

2
mv0

2xi
2

^ ID
+ "gxsxduD+lkD+u − uD−lkD−u, s8d

DH =
1

2m
o

i

spiAi + Aipi + AiAid. s9d

The operatorHad describes the behavior of atoms which
adiabatically follow the coupled internal-state basis while
moving through the spatially varying cavity field andDH
represents the kinetic energy associated with this local gauge
definition.

We assume we are working in the limit of small atomic
recoil energy, i.e.,"g@"2k2/2m, and therefore treatDH as a
perturbation and expand the eigenvalues and eigenstates of
H8 as

Ej ,± = Ej ,±
s0d + Ej ,±

s1d + ¯ , s10d

uC j ,±l = uC j ,±
s0dl + uC j ,±

s1dl + ¯ . s11d

We define projection operators onto the red and blue and
dark internal states,P−,P+,Pd, respectively, with the ex-
plicit forms

P± =E dxuxlkxu ^ uD±sxdlkD±sxdu. s12d

These projection operators commute withHad. Hence the
bright eigenstates ofHad, which are simultaneous eigenstates
of P± andPd, can be written as

uC j ,±
s0dl = uf j ,±

s0d
^ D±l ; E dxf j ,±

s0dsxduxl ^ uD±sxdl. s13d

FIG. 1. (a) Intrinsic transmission spectrum of atoms-cavity sys-
tem neglecting spatial dependence of potential and atomic motion.
(b) Transmission spectrum of spatially independent case including
cavity decay.

FIG. 2. (a) Intrinsic transmission spectrum of atoms-cavity sys-
tem including spatial dependence of potential and atomic motion.
(b) Corresponding transmission spectrum including cavity decay.
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We now assign an eigenstate,uC jl, of H8 to the red or
blue sideband if its zeroth-order componentuC j

s0dl belongs,
respectively, to theuD−l or uD+l manifold. We can therefore
define the sideband transmission spectraI±svd as the separate
contributions of red/blue sideband states to the total trans-
mission spectra[see Eq.(2)]:

I±svd ~ o
j

ukC j ,±uCIlu2dsv j ,± − v0 − vd. s14d

Determining the exact form ofI±svd is equivalent to solving
for all the eigenvalues"v j ,± of the full Hamiltonian. This is
a difficult problem, particularly as the number of atoms in
the cavity increases. In practice, given the potential extrinsic
line-broadening effects which may preclude the resolution of
individual spectral lines, it may suffice to simply character-
ize the main features of the transmission spectra. As we
show below, general expressions for the various moments of
the spectral line can be obtained readily as a perturbation
expansion inDH. These moments allow one to assess the
feasibility of precisely counting the number of atoms con-
tained in the high-finesse cavity based on the transmission
spectrum.

In general, we evaluate averageskv±
nl weighted by the

transmission spectral distributionsI±svd. We make use of the
straightforward identification(for notational clarity, shown
here explicitly for the case of the blue sideband)

"kv+l =

"E dvI+svdv

E dvI+svd
s15d

=

o
j

Ej ,+kCIuC j ,+lkC j ,+uCIl

o
j

kCIuC j ,+lkC j ,+uCIl
s16d

=

o
j

Ej ,+kCIusP+ + P−duC j ,+lkC j ,+usP+ + P−duCIl

o
j

kCIusP+ + P−duC j ,+lkC j ,+usP+ + P−duCIl
,

s17d

where we have made use of the facts thatP++P−+Pd= I and
PduCIl=0. To zeroth order, Eq.s15d becomes

"kv+ls0d =

o
j

Ej ,+
s0dkCIuC j ,+

s0dlkC j ,+
s0duCIl

o
j

kCIuC j ,+
s0dlkC j ,+

s0duCIl
= 2kCIuP+HadP+uCIl.

s18d

The first-order correction to this result is given by,

"kv+ls1d = 2skCIuP+DHP+uCIl + kCIuP−o
j

Ej ,+
s0duC j ,+

s1dlkC j ,+
s0duP+uCIl + kCIuP+o

j

Ej ,+
s0duC j ,+

s0dlkC j ,+
s1duP−uCIld

− 4kCIuP+HadP+uCIlskCIuP−o
j

uC j ,+
s1dlkC j ,+

s0duP+uCIl + kCIuP+o
j

uC j ,+
s0dlkC j ,+

s1duP−uCIld. s19d

To evaluate the sums over the first-order corrections to the
eigenstates,uC j ,±

s1dl, we approximate the energy denominator
in the first-order perturbation correction as the difference be-
tween the average energies of the red and blue sidebands,

kCIuP−o
j

uC j ,+
s1dlkC j ,+

s0duP+uCIl

= kCIuo
j

o
k

uCk,−
s0dlkCk,−

s0d uDHuC j ,+
s0dl

"v j ,+
s0d − "vk,−

s0d kC j ,+
s0duP+uCIl,

s20d

<
1

k"v+
s0dl − k"v−

s0dl
kCIuP−DHP+uCIl. s21d

It is valid to approximate the denominator by the differ-
ence between the average energies of the red and blue side-
bands when the eigenstates in the different sidebands are
well separated in energy. In the exceptional case in whichv0
is sufficiently large, some states in theuD+sxdl (red) manifold
may have high motional contributions to their energy which
cause their energy to be comparable with states in the
uD+sxdl (blue) manifold. However such states will have neg-
ligible overlap with the initial state and therefore should not
contribute to Eq.(20). Using this approximation, we can
evaluate Eq.(15) to first order in the perturbation, yielding

"kv+l=2kP+HP+l +
1

k"v+
s0dl − k"v−

s0dl
s4kP+HadDHP−l

− 8kP+HadP+lkP−DHP+ld, s22d

where all expectation values are calculated over the initial
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stateuCIl. We can also calculate the second moment of the
distribution using the same technique. To first-order, we ob-
tain

"2kv+
2l = 2kP+sHad

2 + DHHad + HadDHdP+l

+
1

k"v+
s0dl − k"v−

s0dl
s4kP+Had

2 DHP−l

− 8kP+Had
2 P+lkP−DHP+ld. s23d

In order to evaluate these expressions, we must calculate
expectation values of the formP±Had

j DHkP± over the initial
stateuCIl. To simplify matters, we note that we can act with
the projection operators on the initial stateuCIl, which is
equivalent to operating in theuD±l internal-state basis. Since
Had is diagonal in the uD±l basis, and fIsxd is the
N-dimensional harmonic-oscillator ground state, it is
straightforward to obtain

HadufIsxdD±l = fE0 ± "gxsxdgufIsxdD±l. s24d

Using the definition in Eq.s9d, we find that theuD±l matrix
elements ofDH are given by the matrix

DH =
"2k2zsxd

4m
^ S 1 − 1

− 1 1
D , s25d

where we have defined

zsxd = −
N − 1

x2 + 1 −o
i=1

N
cos4skxid

x4 . s26d

Combining Eqs.s22d and s23d with Eqs. s24d and s25d, we
obtain to first order inDH,

"kv+l − E0 = "gkxl +
1

2

"2k2

2m
kzl +

1

2

"2k2

2m

1

kxl

3s− kzxl + kzlkxld, s27d

"2skv+
2l − kv+l2d = "2g2skx2l − kxl2d + "g

"2k2

2m
S 1

kxl
skzx2l

+ kzlkx2ld − 2kzlkxlD . s28d

Here all expectation values are taken over the spatial state
fIsxd. Although the functionfIsxd is simply the product ofN
harmonic-oscillator ground states, the presence of various
powers of xsxd and zsxd in the above expectation values
makes their analytic evaluation very difficult for arbitraryN.
To determine the dependence of these integrals on atom
numberN, one may expand the integrand as a Taylor series
in x2, leading to approximate analytic solutions for the inte-
gral as a series in 1/N. After some tedious algebra, we find
the average positions of the red- and blue-transmission side-
bands to be

"kv±l − E0 = ±"gÎNÎ1 + e

2
S1 −

1

N

s1 − ed2

16
D

−
"2k2

2m
S 1 − e

2s1 + edD + OS 1

N
D . s29d

Here we quantify the relative length scales of the initial har-
monic trap as compared to the optical interaction potential
through the parametere=exps−k2s2d, which is related to
the Lamb-Dicke parameterh by Î2h=ks and s
=Î" /mv0. Note that we recover the zeroth-order result
that the sideband expectation value scales asÎNg.

Next, we obtain an expression for the width of the red and
blue sidebands by evaluating the second moment of the side-
bands. Expanding Eq.(28) as a series in 1/N, we obtain

"2skv±
2l − kv±l2d =

1

16
"2g2s1 − ed2s1 + ed

± "g
"2k2

2m

1

4ÎNÎ2s1 + ed

3s1 − ed2s3 + ed + OS 1

N
D . s30d

To gain some physical insight into these results, we con-
sider two important regimes: the tight- and loose-trap re-
gimes. These different regimes are reflected in the corre-
sponding values of the parametere, which tends towards 1 in
the extreme tight-trap limit and to 0 in the extreme loose-trap
limit. In the tight regime, the length scale of the trapping
potential is much smaller than the wavelength of the light,
i.e.,ks!1. This is equivalent to the Lamb-Dicke regime and
is applicable to current experiments for trapped ions in cavi-
ties [9,10], or for neutral atoms held in deep optical poten-
tials [20]. In the loose-trap regime,ksù1 and atoms in the
ground state of the harmonic-oscillator potential are spread
out over a distance comparable to the optical wavelength. As
atoms in this regime sample broadly the cavity field, one
expects, and indeed finds, a significant inhomogeneous
broadening of the atoms-cavity resonance.

In the extreme loose-trap limitse→0d, we find

kv±l − E0/" = ± gÎN

2
S1 −

1

16N
D +

1

2

"k2

2m
+ OS 1

N
D ,

s31d

ksDv±d2l =
1

8
g2 ± g

"k2

2m

3

4Î2N
+ OS 1

N
D . s32d

In the loose-trap limit, the center of the red sideband is now
located atgÎN/2 instead of atgÎN as we obtained for the
spatially independent case. This difference is due to the
spatial dependence of the standing mode; the atoms no
longer always feel the full strength of the potential, but
are sometimes located at nodes of the potential. We also
see that the sidebands have an intrinsic width of<g/Î8.
This width will play an important part in limiting our
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ability to count the number of atoms in the cavity in the
limit of a loose trap.

Considering the tight-trap limit, we expand in the small
parameterks and obtain

kv±l − E0/" = ± gÎNS1 −
1

4
k2s2D −

1

4

"k2

2m
k2s2 + Osk4s4d,

s33d

ksDv±d2l =
1

8
g2k4s4 ± g

"k2

2m

1

2ÎN
k4s4 + Osk6s6d. s34d

In the limit ks→0, the atoms are confined to the origin
and we recover the Tavis-Cummings result discussed earlier,
wherein the transmission sidebands ared functions at ±gÎN
away from the empty cavity resonance. As the tightness of
the trap decreases, the atoms begin to experience the weaker
regions of the optical potential and the centers of the side-
bands move towards the origin. In addition, the sidebands
develop an intrinsic variance which scales ask4s4.

An important feature of both regimes is the intrinsic line-
width of both the red and blue sidebands[see Fig. 2(a)]. This
linewidth has a magnitude of approximatelygÎs1−ed /8
when the vacuum Rabi splitting is much larger than the
atomic recoil energy, i.e.,g@"k2/2m. It is unrelated to line-
width due to cavity decay or spontaneous emission which we
have not addressed here and results purely from the spatial
dependence of the atom-cavity coupling. Thus, it will pro-
vide an intrinsic limit to our ability to countN atoms, regard-
less of the quality of the cavity that is used. Our expression
for the intrinsic linewidth also highlights an asymmetry be-
tween the red and blue sidebands. To first order, increasing
the atomic recoil energyreducesthe linewidth of the red
sideband but increases the linewidth of the blue sideband.
Consequently probing the red sideband of the atoms-cavity
system rather than the blue sideband would facilitate count-
ing atoms. In addition, these results suggest that the ability to
tune both the atomic recoil energy"k2/2m and the coupling
strengthg (this can be done, for instance, using CQED on
Raman transitions) would be beneficial. We attribute the
asymmetry between the sidebands to the different effective
potentials seen by states within the red and blue sidebands. A
detailed analysis of this aspect will be provided in a future
publication.

IV. CONCLUSIONS

We have found that the transmission spectrum of the cav-
ity containingN atoms trapped initially in the ground state of
a harmonic potential will consist of distinct transmission
sidebands which are red and blue detuned from the bare-
cavity resonance, when the vacuum Rabi splitting dominates
the atomic recoil energy. Analytic expressions for the first
and second moments of the transmission sidebands were de-
rived, and evaluated in the limits of tight and loose initial
confinement. These expressions include terms containing the
vacuum Rabi splitting"g and the recoil energy"2k2/2m.
The former can be regarded as line shifts and broadenings
obtained by quantifying inhomogeneous broadening under a

local-density approximation, i.e., treating the initial atomic
state as a statistical distribution of infinitely massive atoms.
The latter quantifies residual effects of atomic motion, in
essence quantifying effects of Doppler shifts and line broad-
enings. We surmise that this understanding of our results
should allow them to be applied directly to a finite-
temperature sample, characterized by some thermal size
(leading to inhomogeneous broadening) and velocity(lead-
ing to Doppler effects).

These results can be applied to assess the potential for
precisely counting the number of atoms trapped in a high-
finesse optical cavity through measuring the transmission of
probe light, analogous to the work of Hoodet al. [11] and
Münstermannet al. [11,12] for single-atom detection. To set
the limits of our counting capability, we assume that atoms
are detected through measuring the position of the mean of
the red sideband. In order to reliably distinguish betweenN
and N+1 atoms in the cavity, the difference between the
means forN andN+1 atoms must be greater than the width
of our peaks, i.e.,ukv±sNdl−kv±sN+1dlu.Dv± (see Fig. 3).
Let us consider that, in addition to the intrinsic broadening
derived in this paper, there exists an extrinsic widthk8 due to
the finite cavity finesse and other broadening mechanisms.
Evaluated in the limitg@"k2/2m and assuming largeN,

kv−sNdl − kv−sN + 1dl . gÎ1 + e

8N
. s35d

We thus obtain an atom counting limit of

Nmax.
1 + e

8
k82

g2 +
1

2
s1 − ed2s1 + ed

, s36d

FIG. 3. Plot of kv−l as a function of the trap tightnesse
=exps−k2s2d for N=8 andN=9 and small ratio of atomic recoil
energy to vacuum Rabi splitting,"k2/2mg=0.01. The shaded re-
gions indicate the intrinsic width of the red sideband,
±ÎksDv−d2l /2. In the tight-trap limit,N=8 andN=9 can be distin-
guished. In the loose-trap limit, the intrinsic width of the spectra
render determination of atom number difficult.
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where we have assumed that the intrinsic and extrinsic
widths add in quadrature. This atom counting limit ranges
from Nmax=g2/4k82 in the tight-trap limit toNmax=1/s1/2
+8k82/g2d in the loose-trap limit. Figure 4 showsNmax as a
function of e for various values ofk8. In general, atom
counting will be limited by extrinsic linewidth when
16k82.g2s1−ed2 and by intrinsic linewidth when
16k82,g2s1−ed2.

These results demonstrate that atom counting using the
transmission spectrum is best accomplished within the tight-
trap limit. Certainly, in the loose-trap limit, atom counting
will be rendered difficult as the intrinsic linewidth of the
sidebands is increased. However, several questions regarding
the feasibility of atom-counting experiments remain. First,

although atom counting by a straightforward measurement of
the intensity of the transmitted light may be difficult, it is
possible that the phase of the transmitted light may be less
affected by motional effects[13]. Dynamical measurements
(possibly using quantum feedback techniques) might also
yield higher counting limits. Second, atomic cooling tech-
niques could be used in the loose-trap limit to cool the atoms
into the wells of the optical potential, thereby decreasing the
observed linewidth[27–30]. In addition, cavity-cooling-
based detection would naturally stabilize the problems of
heating atoms during the measurement of their number. Fi-
nally, the state dependence of spontaneous emission has not
yet been taken into account. Although the loose-trap regime
leads to an intrinsic linewidth which limits atom counting, it
may also suppress the extrinsic linewidth as a result of con-
tributions from superluminescence. On the other hand, in the
Lamb-Dicke limit, the atoms are all highly localized, which
could lead to enhanced spontaneous emission due to coop-
erative effects. Future work will investigate alternative meth-
ods of atom counting and will explore complementary tech-
niques of reducing the intrinsic linewidth in atom-cavity
transmission spectra.
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