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The transmission spectrum of a high-finesse optical cavity containing an arbitrary number of trapped atoms
is presented in the zero-temperature, low saturation limit. We take spatial and motional effects into account and
show that in the limit of strong coupling, the important spectral features can be determined for an arbitrary
number of atomsN. We also show that these results have important ramifications in limiting our ability to
determine the number of atoms in the cavity.
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I. INTRODUCTION cavity can then be counted by measuring the frequency shift

Cavity quantum electrodynami¢€QED) in the strong- of the maximum cavity transmission and distinguishing the
coupling regime holds great interest for experimentalists andfansmission spectrum &f atoms from that oN+1 atoms in
theorists for many reasorfé—3]. From an applied perspec- the cavity. However, to assess the potential for precise
tive, CQED provides precise tools for the fabrication of de-CQED-aided probing of a many-body atomic system, we
vices which generate useful output states of light, as exenonsider here the possibility that atoms are confined at length
plified by the single-photon sourcpt—6], the N-photon  scales comparable to or indeed larger than the optical wave-
source]7], and the optical phase gd&@j. Conversely, CQED length.
effects transform the high-finesse cavity into a sensitive op- In this paper, we characterize the influence of cavity mode
tical detector of objects which are in the cavity field. Viewed spatial dependence and atomic motion on the transmission
simply, standard optical microscopy is made more sensitivépectrum for an arbitrary number of atoms in the limit of low
by having a probe beam pass through the sample multipltemperature, low light intensity, and low atomic recoil en-
times and by efficiently collecting scattered light. In the ergy. The impact of atomic motion on CQED has been ad-
weak-coupling regime, this has allowed for nanometerdressed theoretically in previous wofk3-24, although at-
resolution measurements of the positions of a trapped iotention has focused primarily on the simpler problem of a
[9,10. In the strong-coupling regime, the presence and posisingle atom in the cavity field. We show that when spatial
tion of single atoms can be detected with high sensitivity bydependence is included, the intrinsic limits on atom counting
monitoring the transmissiofi1,17, phase shiff13], or spa-  change significantly. The organization of this paper is as fol-
tial mode[14] of probe light sent through the cavity. lows. In Sec. Il we introduce the system Hamiltonian, define

In this paper, we consider using strong-coupling CQEDour notation, and derive an explicit expression for the intrin-
effects to precisely count the number of atoms trapped insideic transmission function. In Sec. lll, we introduce the
a high-finesse optical microcavity. The principle for such de-method of moments, and use this method to calculate the
tection is straightforward: the presence of atoms in the cavitghape of the intrinsic transmission function. Conclusions and
field splits and shifts the cavity transmission resonance. Amplications for atom counting are presented in Sec. IV.
preciseN-atom counter could be used to prepare the atoms-
cavity system for generation of optical Fock states of large
photon numbef7], or to study ultracold gaseous atomic sys-
tems[15] in which atom number fluctuations are important, Let us consider the Hamiltonian f&t identical two-level
such as number-squeez¢t6] and spin-squeezefil7-19 atoms in a harmonic potential inside an optical cavity which
systems. admits a single standing-wave mode of light. We consider

A crucial issue to address in considering such a CQEDatomic motion and the spatial variation of the cavity mode
device is the role of the spatial distribution of atoms and theironly along the cavity axis, assuming that the atoms are con-
motion in the cavity field. ArN-atom countefor any CQED  fined tightly with respect to the cavity mode waist in the
device would be understood trivially if th& atoms to be other two dimensions. The Hamiltonian for this system is
counted were held at known, fixed positions in the cavity
field. This is a central motivation for the integration of
CQED with extremely strong traps for neutral atofe,2]]
or ions[9,10. The Tavis-Cummings mod¢R2], which ap-
plies to this case, predicts that the transmission spectrum ofwherew, is the frequency of the cavity mode aath’) is the
cavity containingN identically coupled(with strengthg), annihilation(creatior) operator for the cavity field. The mo-
resonant atoms will be shifted from the empty cavity resotional HamiltonianHy=2;Hy; is a sum over single-atom
nance by a frequencgyN at low light levels. Atoms in a HamiltoniansHo;=p?/2m+mawix?/2, wherem is the atomic

II. TRANSMISSION

N

H=thoa'a+ X, hwle)e|+Ho+V, (1)
i=1
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mass andwy the harmonic trap frequency. The atomic ny=1 need be included since only these states are coupled to
ground and excited internal statég) and |e), respectively, the ground state by a single excitation. To simplify notation,
are separated by energw,. The dipole interaction with the we make this implicit assumption throughout the remainder
light field V=2,V; is a sum over interactions with the dipole of this paper. We denote byw) the “intrinsic transmission
moment of each atonV;=fg cogkx)(|e)gila+|gi)ela’),  spectrum.” In the limit ofx,y—0 this is composed of
whereg is the vacuum Rabi splitting, which depends onfunctions in frequency, while an experimentally observed
the atomic dipole moment and the volume of the cavitytransmission spectrum would be convolved by nonzero line-
mode. In this paper we assume the cavity mode frequencwidths.
to be in exact resonance with the atomic transition fre- To proceed further, we introduce the basis stfi@s |i)}
quency,w.= w,. which span the space ofternal statesn the ny=1 manifold.
Since the HamiltoniafEq. (1)] commutes with the total The state|0)=|1;;dy,0:,...,dy) has one cavity photon and
excitation operatomy=a'a+X|e)(e/, the eigenspectrum of all atoms in their ground state. The statéi)
H breaks up into manifolds labeled by their total excitation=|0;;0,,9;, -...&,...,dy) is the state in which the cavity
number. In this work, we are concerned with excitation specfield is empty, while a single atorfatomi) is in the excited
tra of the atoms-cavity system at the limit of low light inten- state. Restricted to the-=1 manifold, the HamiltoniafiEq.
sity, and we therefore restrict our treatment to the lowest tw@1)] is written asH=Ho+V; -1, where
manifolds, withny={0, 1}.
We consider here the excitation spectra from the ground V=1 = > #ig cogkx) ® (|i)0] + |0)il). (3)
state(motional and internalof the atoms-cavity system. This i
represents the simplest system that can be treated analyti-

cally and provides a basis for more realistic treatments of th%s define the operator(x) as the optical potential operator

initial state. In practice, scattering of a few ph(_)tons or f|.n|teYn _, for which the position operators are replaced by defi-
temperatures would excite the system to a higher motional. t= @ e In the (N+1)-dimensional space of internal
state. These effects can be minimized experimentally byI posit ) : : P :

working at low light intensity(highest signal to noise per states fpr theyr=1 manifold, the OM ha§ two non-

spontaneously emitted photoand low temperature. The ini- 260 eigenvalues, 7gx(x)=££igyZ; cos kx with corre-

tial state|W) is given simply as a product of motional and SPonding eigenstates

internal states|Vy)=|®)®|0;01,05, ...,0y)- In the un- 1 1

coupled internal-state notatiqn, thgymbol indica}tes there ID.(x)) = —r(|o> > cosk>q|i)). (4)

are zero photons in the cavity and tgesymbol indicates V2 ()5

that atomi is in the ground state. The motional stade) ) ]

=ITN,| (%)) is a product of single-atom ground states of theWe Will refer to the|D_(x)) and D.(x)) eigenstates of the

harmonic trap. potenngl matrix as the req and b!ue mtc_arnal states, respec-
Let us calculate the low light intensity transmission spec-tively, in reference to their energies being red or blue de-

trum of the cavity. We assume that the system is pumped b{pned from the empty cavity resonance. The remairfing

a near-resonant linearly coupled driving field such that the 1 €igenvalues of the optical potential matrix are null val-

cavity excitation Hamiltonian i$1,=E(a’e ! +ad®!), where ued. Th_ese Corr_esp_ond to dark states haV|r_1g no overlap with

E is the product of the external driving electric-field strengthth€ excited cavity internal stat¢0), and which, therefore,

and the transmissivity of the input cavity mirror ands the ~ c@nnot be excited by the cavity excitation interactidp

driving frequency. To determine the cavity transmissionNOte that(Ne)=1/2(0) for all bright (darK states, hence the

spectrum, we determine the excitation rate to atoms-cavitf@vity transmission spectrum is equivalent to the excitation

states in ther;= 1 manifold from the initial ground state. The SPectrum in this treatment. We can now write the optical

atoms-cavity eigenstates decay either by cavity emissiorPotential operatol, _; as

with the transmitted optical power proportional #N,),

To gain intuition regarding the behavior of the system, let

wherex is the cavity decay rate ard.=a'a is the intracav- Vg = gf dXx(X)[x)(X| ® (|D+(X)){D+(X)]
ity photon number operator, or by other procegsg®ntane- T
ous emission, losses at the mirrors, e#t. the phenomeno- — ID_(X)XD_(X))). (5)

logical rate constanty. Neglecting the width of the

transmission spectrum caused by cavity and atomic decaye also note that the initial statd”,) can be written as a
(k,y—0), we use Fermi’s golden rule to obtain the trans-superposition of bright states,

mission spectruni(w):

1
OEDD |<\I’j|aT|\I’0>|25(a)j - wp— W) |¥)) = E(|¢|(X) ® D_(x)) +[(x) ® D(X))). (6)
j.nr=1
_ ) Our treatment allows us to recover easily results of the
= E (W[ ¥[8 w; — wo ~ @), 2 Tavis-Cummings mod€ll22] in which a collection of fixed
hor=t two-level atoms are coupled to a single-mode cavity with
where|¥)=a'|¥). In the summation over all atoms-cavity fixed, identical dipole coupling. Consideringx,) with all
eigenstates, we make the simplification that only states wittatoms at the origifx,=(0,0,...,0], we find a spectrum
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the system. Since the dipole interaction operatas diago-
o) nalized in the coupled internal-state basis, it is convenient to
‘ > examine the full HamiltoniaH in this basis. Defining the
spatially dependent rotation operafdr [dx|x){x|U/(x), we
therefore consider the transformed Hamiltonki=1/H{".
FIG. 1. (a) Intrinsic transmission spectrum of atoms-cavity sys- ~Returning to Eq(1), the only portion of the Hamiltonian
tem neglecting spatial dependence of potential and atomic motiorH which does not commute with the operators the kinetic
(b) Transmission spectrum of spatially independent case includingnergy. Considering the transformation of the momentum op-
cavity decay. erator for atom,

X
o)

-o\N +\N o -g\N +\N @

composed of functions at N [see Fig. {a)] correspond- o had .

ing to the two bright statel®. (xy)). The clear dependence of UpU =p+ - U—U" =p; + A (7)
the frequency of peak transmission on the integer number of iodx

atoms in the cavity provides the background for a basic,

transmission-based atom-counting scheme. “Extrinsic” linghe transformed Hamiltoniafd’ can be expressed as’
broadening, due to cavity decay and other losses, will smeatH, +AH, where

out these sharp transmission pegkse Fig. 1b)], and will

determine the maximum number of atoms that can be 5
counted at_thga single-atom level by discriminating between Hag= S o7+ M3 e T
the transmission spectra fof and N+1 atoms. For the re- T \2m 2
mainder of the paper, we focus on intrinsic limitations to
atom counting, i.e., those due to atomic localization and mo- +hgx(x)|D.){D,| = [D_)D], (8)
tion.
1
ll. METHOD OF MOMENTS AH= %E (piA +Ap +AA). (9)
1

To analyze the transmission characteristics of the atoms-
cavity system in the presence of spatial dependence an . . .
atomic motion, we shall assume that the key features of th-el%e operatorHag describes the behavior of atoms which

spatially independent limit discussed above are maintainegdiabatically follow the coupled interal-state basis while
(Fig. 2). Specifically, the transmission spectrum will still be moving through the spatially varying cavity field antH

described by two sidebands, one red shifted and one bkgpf)resents the kinetic energy associated with this local gauge
efinition.

shifted from the empty cavity resonance by some frequenc . _ .
on the order ofg. In determining the cavity transmission We assume we are Zvv;)rklng in the limit of small atomic
|(w), we may thus divide the bright excited sta{¢¥,)} of recoil energy, I.e.ng> A%/ 2m, f?‘”d therefore trea_kH asa
the ny=1 manifold into red{|\lfj,_>} and que{|\Ifj,+>} states. ﬂ(?rturbatmn and expand the eigenvalues and eigenstates of
From these red and blue states, we determine the transmis-
sion line shapes$_(w) andl,(w) of the red and blue side-
bands, respectively. Ej+= Ej(oi + Ej(li) o (10)

The validity of this approach is made more exact by the
following considerations. We have already obtained the lo-
cally defined internal-state eigenbasis for the1 manifold W0 =W+ WD+ - (11)
as eigenstates of the operatx), namely, the state®.(x))

and the remaining\—1 dark states. Let(x) be the rotation \ve define projection operators onto the red and blue and

operator which connects the uncoupled intgrnal statégark internal states[I_,IL, 11, respectively, with the ex-
{10),[2), ... [N)} to the eigenstates of(x) at a particular set picit forms

of coordinatesx (the “coupled internal-state basjs™Now,
consider applying this local choice of “gauge” everywhere in

= [ ool e D)0l (2
a. b. Vi + (Aw)?
() I(w) "
= These projection operators commute whhy Hence the
P o i pora bright eigenstates dfl .4, which are simultaneous eigenstates

of I, andIly, can be written as

FIG. 2. (a) Intrinsic transmission spectrum of atoms-cavity sys-
tem including spatial dependence of potential and atomic motion. © © ©
(b) Corresponding transmission spectrum including cavity decay. WD =]d2®Ds) = | dxe(x)[x) ® [Ds(x)). (13)
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We now assign an eigenstaliei{j), of H’ to the red or
blue sideband if its zeroth-order componét®) belongs, hfd“’h(“’)"’
respectively, to théD_) or |D,) manifold. We can therefore #i{w,)=——"—""— (15
define the sideband transmission spetita) as the separate f dol (o)

contributions of red/blue sideband states to the total trans-
mission spectrisee Eq(2)]:

2 Ej «(W)|¥; N¥ L)
j

= (16)
() o >, (W [ W)]28(w; 2+ — 0o~ o). (14 2 (W[} X054 W)
j i
. o . 20 Ej (W (I + T [ W (T, + T1) W)
Determining the exact form df,(w) is equivalent to solving O
for all the eigenvalued w; . of the full Hamiltonian. This is - W (IL + T MW (I + 1) W
a difficult problem, particularly as the number of atoms in $< (L + TP )| (L, + TR
the cavity increases. In practice, given the potential extrinsic 17)

line-broadening effects which may preclude the resolution of
individual spectral lines, it may suffice to simply character-
ize the main features of the transmission spectra. As wahere we have made use of the facts fat-I1_+II;=1 and
show below, general expressions for the various moments dild ¥1)=0. To zeroth order, Eq15) becomes
the spectral line can be obtained readily as a perturbation
expansion inAH. These moments allow one to assess the 0 0 0
feasibility of precisely counting the number of atoms con- E ELOW [T OO
tained in the high-finesse cavity based on the transmissiorfi{w.)® =
spectrum.

In general, we evaluate averag@s,) weighted by the

J
2 (W WOy
J

= 2<q,||H+Had1_[+|\lfl>-

transmission spectral distributiohg w). We make use of the (18)
straightforward identificatior{for notational clarity, shown
here explicitly for the case of the blue sideband The first-order correction to this result is given by,
|
fiw,) @ = 20 [TLAHTL W) + (W) [T X ERWRNP L) + (9 |TL X E WO (WU [W,)))
i i

= AW [T Had L W) (W T2 (WX T W) + (0 [T 2 (WP T W), (19)
J J

To evaluate the sums over the first-order corrections to the It is valid to approximate the denominator by the differ-
eigenstatesL\If}li)), we approximate the energy denominatorence between the average energies of_the red and blue side-
in the first-order perturbation correction as the difference bebands when the eigenstates in the different sidebands are

tween the average energies of the red and blue sidebandsWell separated in energy. In the exceptional case in which
is sufficiently large, some states in tliz,(x)) (red) manifold

may have high motional contributions to their energy which

(W T2 (WO ) cause their energy to be comparable with states in the
i |D.(x)) (blue) manifold. However such states will have neg-
| WO W@ AH[ W) ligible overlap with the initial state and therefore should not
=(V|2 D g o WL ), contribute to Eq.(20). Using this approximation, we can
ik hwj .~ hogZ evaluate Eq(15) to first order in the perturbation, yielding
20 iy =TI, HII,) ! (KT H, AHII)
+) = + Y o 7 o~ + -
“ 109 — (ha'®) ""d
1 —
~ oy (ITLAHTL W), (22) 8<H+Haﬁn+><H‘AHH+>)’ (22). N
(hw,”) = (ho") where all expectation values are calculated over the initial
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state|¥,). We can also calculate the second moment of the — 1+e€ 1(1-¢?
distribution using the same technique. To first-order, we ob- i{wy) = Eg=+figVN > 1- N 16
tain
k)
h¥wl) = A (Hag+ AHHag + HagAH)IL) 2m\2(1+¢))  \N/’
© ! © (4T, HZAHTT) Here we quantify the relative length scales of the initial har-
(ho”) = (fiw’’) monic trap as compared to the optical interaction potential
— &(TT,H2T,)(TT_AHTL)) (23  through the parametes=exp—k%c?), which is related to
: - .

the Lamb-Dicke parametern by \fﬁn:ka and o
In order to evaluate these exp.ressions, we must Ca'CU'atﬂV’ﬁ/mwo_ Note that we recover the zeroth-order result
expectation values of the forﬂfi*HgdAHkHi over the initial that the sideband expectation value sca|ese'ﬁg_
state|W,). To simplify matters, we note that we can act with  Next, we obtain an expression for the width of the red and
the projection operators on the initial stgt¥), which is  pjue sidebands by evaluating the second moment of the side-

equivalent to operating in tH@Q internal-state basis. Since bands. Expanding Eq28) as a series in IV, we obtain
H.q is diagonal in the|D.) basis, and¢(x) is the

N-dimensional harmonic-oscillator ground state, it is 0 2 ~n_ 1 5, 5
straightforward to obtain (7)) —(w)) = Eﬁ g (1-e%1+e)
2,2
Had (D) = [Eo £ Agx(X)]|4(x)Ds).  (24) cpghk__ 1

2m 4V”N\c"2(1 +¢€)
Using the definition in Eq(9), we find that thelD.) matrix

elements ofAH are given by the matrix X(1-e23+e) + O<1> (30)
N
AH = M ® ( E 1) (25) To gain some physical insight into these results, we con-
4m -1 1) sider two important regimes: the tight- and loose-trap re-
gimes. These different regimes are reflected in the corre-
where we have defined sponding values of the parametemwhich tends towards 1 in
the extreme tight-trap limit and to 0 in the extreme loose-trap
N-1 N codh(kx) limit. I_n the tight regime, the length scale of the trapping
{(X)==———+1 —E — - (26) potential is much smaller than the wavelength of the light,
X i=1 X i.e., ko< 1. This is equivalent to the Lamb-Dicke regime and

o _ is applicable to current experiments for trapped ions in cavi-
Combining Egs(22) and (23) with Egs.(24) and (25, we  ties[9,10], or for neutral atoms held in deep optical poten-

obtain to first order inAH, tials [20]. In the loose-trap regiméo =1 and atoms in the
ground state of the harmonic-oscillator potential are spread
5 . 172k? 1722 1 out over a distance comparable to the optical wavelength. As
(o) ~Bo= 9<X>+EE<§>+ 2 2m (x) atoms in this regime sample broadly the cavity field, one
expects, and indeed finds, a significant inhomogeneous
X (= (&) + (X)), (27) " proadening of the atoms-cavity resonance.
In the extreme loose-trap lim{ie— 0), we find
A2((w2) = (@,)%) = RGP = (0P) + ﬁgﬁ<i(<§xz> N 1), 1#k? 1
oo 2m \ () (ws) ~ Egfh = tg\ﬁ(l——) +——+o(—),
2 16N/ 22m N
+OOA) - 2<§><x>> : (28) (31)
. . 2
Here all expectation values are taken over the spatial state 2 :} 2, ﬁ 3 (1)
¢ (x). Although the functiong,(x) is simply the product oN ((Awe)? 8g B me 4\2N ¥ N/ (32

harmonic-oscillator ground states, the presence of various

powers of x(x) and {(x) in the above expectation values In the loose-trap limit, the center of the red sideband is now
makes their analytic evaluation very difficult for arbitraky  located atgyN/2 instead of agyN as we obtained for the

To determine the dependence of these integrals on atospatially independent case. This difference is due to the
numberN, one may expand the integrand as a Taylor seriespatial dependence of the standing mode; the atoms no
in x?, leading to approximate analytic solutions for the inte-longer always feel the full strength of the potential, but
gral as a series in N. After some tedious algebra, we find are sometimes located at nodes of the potential. We also
the average positions of the red- and blue-transmission sidsee that the sidebands have an intrinsic width~af/ 8.
bands to be This width will play an important part in limiting our
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ability to count the number of atoms in the cavity in the -1
limit of a loose trap. == N=A
Considering the tight-trap limit, we expand in the small 14 — N=9
parameteko and obtain ’
—(. 1 14Kk
)~ Eg/fi= +gVN 1——k202)———k202+0k4 4, 14
(ws) ~ Eglh = £y ( il b (K') @
1
(33 8 22 S
1 T oI
Aw,)? = =g?Kio* + g———=K*o* + O(K0®). (34 26 e
(Aws)?) gd Ko mezN o' +0(k’0”). (34 .
In the limit ko— 0, the atoms are confined to the origin 3 . s . .
and we recover the Tavis-Cummings result discussed earlier, 0 0.2 04 0.6 08

‘ k22
wherein the transmission sidebands areinctions at £yN &= expl-k’c’)

away from the empty cavity resonance. As the tightness of

. . FIG. 3. Plot of (w_) as a function of the trap tightness
the trap decreases, the atoms begin to experience the Weak_egm_kzoz) for N=8 andN=9 and small ratio of atomic recoil

regions of the optical potent_ia_l and the centers of _the sideéne|rgy to vacuum Rabi splittingik?/2mg=0.01. The shaded re-
bands move towards the origin. In addition, the mdebandaions indicate the intrinsic width of the red sideband,

develop an intrinsic variance which scaleskés”. +\((Aw_)?)/2. In the tight-trap limitN=8 andN=9 can be distin-
An important feature of both regimes is the intrinsic line- gyished. In the loose-trap limit, the intrinsic width of the spectra

width of both the red and blue sidebar{dse Fig. 28)]. This  render determination of atom number difficult.

linewidth has a magnitude of approximatefiy/(1-€)/8

when the vacuum Rabi splitging is much larger than thejocq)density approximation, i.e., treating the initial atomic
atomic recoil energy, i.eg>#k"/2m. Itis unrelated to line- g5t a5 a statistical distribution of infinitely massive atoms.
width due to cavity decay or spontaneous emission which Wee |atter quantifies residual effects of atomic motion, in
have not addressed here and results purely from the spatighsence quantifying effects of Doppler shifts and line broad-
dependence of the atom-cavity coupling. Thus, it will pro-gnings. We surmise that this understanding of our results
vide an intrinsic limit to our ability to courlil atoms, regard-  ¢nould allow them to be applied directly to a finite-
less of the quality of the cavity that is used. Our expressiolemperature sample, characterized by some thermal size
for the intrinsic linewidth also highlights an asymmetry be- (leading to inhomogeneous broadenjirmd velocity (lead-
tween the red and blue sidebands. To first order, increasinigg to Doppler effects

the atomic recoil energyeducesthe linewidth of the red These results can be applied to assess the potential for
sideband but increases the linewidth of the blue Sideba”q)recisely counting the number of atoms trapped in a high-
Consequently probing the red sideband of the atoms-cavitjnesse optical cavity through measuring the transmission of
system rather than the blue sideband would facilitate countﬁmbe light, analogous to the work of Hoed al. [11] and

ing atoms. In addition, these result52 suggest that the ability tiinstermanret al.[11,17 for single-atom detection. To set
tune both the atomic recoil energk®/2m and the coupling  the jimits of our counting capability, we assume that atoms
strengthg (this can be done, for instance, using CQED 0ngre detected through measuring the position of the mean of

Raman transitionswould be beneficial. We attribute the e red sideband. In order to reliably distinguish betwien
asymmetry between the sidebands to the different effectivgq N+1 atoms in the cavity, the difference between the

potentials seen by states within the red and blue sidebands. feans forlN andN+1 atoms must be greater than the width
detailed analysis of this aspect will be provided in a futuregs o peaks, i.e.[(w.(N))—(w,(N+1))|>Aw, (see Fig. 3

publication. Let us consider that, in addition to the intrinsic broadening
derived in this paper, there exists an extrinsic widtfdue to
IV. CONCLUSIONS the finite cavity finesse and other broadening mechanisms.

; e .
We have found that the transmission spectrum of the ca/Evaluated in the limig>#k"/2m and assuming largh,
ity containingN atoms trapped initially in the ground state of

a harmonic potential will consist of distinct transmission 1+e

sidebands which are red and blue detuned from the bare- (w-(N)>—<w-(N+1)>29\/8—N- (39)
cavity resonance, when the vacuum Rabi splitting dominates

the atomic recoil energy. Analytic expressions for the first

and second moments of the transmission sidebands were dé‘e thus obtain an atom counting limit of

rived, and evaluated in the limits of tight and loose initial
confinement. These expressions include terms containing the

vacuum Rabi splittingig and the recoil energy:?k?/2m. Nmax= —3 1+e , (36)
The former can be regarded as line shifts and broadenings 8K— + }(1 —eo¥1+e
obtained by quantifying inhomogeneous broadening under a 22
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FIG. 4. Maximum limitN,,, On atom counting as a function of
trap tightness=exp(—k?0?) for several values of the decay param-

eter «’. e—0 corresponds to the loose-trap limit whige— 1 cor-

PHYSICAL REVIEW A 69, 043805(2004)

although atom counting by a straightforward measurement of
the intensity of the transmitted light may be difficult, it is
possible that the phase of the transmitted light may be less
affected by motional effectgl3]. Dynamical measurements
(possibly using quantum feedback techniquesght also
yield higher counting limits. Second, atomic cooling tech-
nigues could be used in the loose-trap limit to cool the atoms
into the wells of the optical potential, thereby decreasing the
observed linewidth[27-3Q. In addition, cavity-cooling-
based detection would naturally stabilize the problems of
heating atoms during the measurement of their number. Fi-
nally, the state dependence of spontaneous emission has not
yet been taken into account. Although the loose-trap regime
leads to an intrinsic linewidth which limits atom counting, it
may also suppress the extrinsic linewidth as a result of con-
tributions from superluminescence. On the other hand, in the
Lamb-Dicke limit, the atoms are all highly localized, which
could lead to enhanced spontaneous emission due to coop-
erative effects. Future work will investigate alternative meth-
ods of atom counting and will explore complementary tech-
niques of reducing the intrinsic linewidth in atom-cavity

responds to the tight-trap limit. Notice that for the infinitely tight {5nsmission spectra.

trap, atom counting is limited only by’.
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