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Deterministic optical Fock-state generation
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We present a scheme for the deterministic generation ofN-photon Fock states fromN three-level atoms in
a high-finesse optical cavity. The method applies an external laser pulse that generates anN-photon output state
while adiabatically keeping the atom-cavity system within a subspace of optically dark states. We present
analytical estimates of the error due to amplitude leakage from these dark states for generalN, and compare it
with explicit results of numerical simulations forN<5. The method is shown to provide a robust source of
N-photon states under a variety of experimental conditions and is suitable for experimental implementation
using a cloud of cold atoms magnetically trapped in a cavity. The resultingN-photon states have potential
applications in fundamental studies of nonclassical states and in quantum information processing.
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I. INTRODUCTION

The generation of nonclassical states of light has b
central to the confirmation and elucidation of the quant
theory of radiation. Today, such work takes on an add
importance as part of the advancing field of deliberate qu
tum state engineering, motivated in part by applications
quantum communication and computation. For instance,
terministically generated single-mode single-photon sta
could greatly advance the efficiency and security of quan
cryptography@1#. They are also a crucial resource for impl
menting a quantum computing scheme using linear opt
single-photon states, and photodetection@2#. These immedi-
ate potential applications have spurred the developmen
devices that can produce single photons on demand, suc
solid-state devices which use the Coulomb interaction
tween strongly confined electrons to produce single exc
states which then decay optically@3–5#, or devices in which
the fluorescence from single, isolated and optically pum
molecules is collected@6,7#. The stream of pulses produce
from each of these devices has been shown to contain e
zero or one, but rarely more than one, photon per pulse,
differing radically from a classical coherent-state pu
which would contain a Poisson distribution of photon nu
ber. While these recent devices all produce fluorescence f
a single optical emitter on demand, none outputs this fl
rescence into a practical single mode of the optical field.

It has been shown recently that the effects of cavity qu
tum electrodynamics~CQED! can, in principle, be used to
overcome this limitation and produce single-mode sin
photons on demand@8,9#. In such a scheme, a single thre
level atom is induced to fluoresce with high probability in
a single resonant mode of a high-finesse optical cavity.
perimental evidence for such cavity-induced Raman tra
tions has been obtained@10#, and a variant of this scheme ha
very recently been used to generate a sequence of s
photons @11#. By creating a highly controlled, single
quantum-level interaction of atoms and light, CQED can
used quite generally to produce nonclassical states of
electromagnetic field in a single cavity mode.

In this paper, we analyze a particular desired function o
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CQED device that goes beyond the production of sing
photon states, namely, the deterministic production of a F
state of the electromagnetic field containing an exact num
of photons (N). Such nonclassical states are of interest
fundamental tests and applications of the theories of qu
tum optics~such as quantum state tomography, as perform
recently on the single-photon state@12#!, as a resource for
Heisenberg-limited quantum measurements made pos
by the production of two orthogonalN-photon states@13,14#,
and quite generally as a starting point for the controlled
gineering of more complex quantum states. Starting wit
precisely counted number ofN atoms trapped in the confine
of a high-finesse optical cavity, we consider a scheme
which a classical pump field is ramped up to induce de
ministic Raman emission into a single cavity mode by ea
of the trapped atoms, resulting in an optical field of exactlyN
photons that are emitted from the cavity in a single pul
The atom-cavity system is constrained to remain within
subspace of optically darkN-atom states, resulting in a hig
fidelity of production. The present scheme provides a gen
alization of that proposed for the production of single ph
tons from single atoms@8,9,11# and indicates a systemati
route to generation of other nonclassical states.

Several other theoretical and experimental works h
discussed the use of high-finesse cavities for the quan
engineering of mesoscopic nonclassical optical states.
possibility of producing both Fock states and arbitrary coh
ent superpositions of these inside a cavity by exploiting ad
batic transfer of atomic ground-state Zeeman coherence
single atoms was already explored in Ref.@15#. A scheme for
producing an arbitrary quantum optical state using a sin
two-level atom in a high-finesse cavity has also been p
sented by Law and Eberly, based on the arbitrary real-t
control of a classical pump field and the coupling to a cav
field @16#. Experimental evidence for Fock states of a micr
wave cavity field has recently been obtained as a dynam
equilibrium for a stream of Rydberg atoms passing throug
micromaser@17#. Another approach toward the constructio
of a Fock state was proposed in Ref.@18# in which a Rydberg
atom with a Stark-tunable level splitting is used to trans
©2003 The American Physical Society18-1
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photons one by one from a classically populated cavity fi
to another initially empty cavity field. Initial experimenta
steps towards this goal have been recently demonstr
@19#.

In contrast to the schemes of Refs.@16–18# which require
delicate temporal control of the atom-cavity coupling, o
present scheme yields the desiredN-photon state for quite
arbitrary temporal profiles of the classical pump field. This
achieved through a rapid adiabatic passage which trans
the initial ‘‘nonclassical’’ state ofN atoms to the nonclassica
state ofN photons within a short period of time. Thus, th
quantum nature of the photon field is already guaranteed
the initial state of the atoms trapped in an initially emp
cavity. The initial conditions can be achieved by lowering
cloud of cold atoms into the cavity, and pulse control is th
entirely contained in the time dependence of the ramp
field. This avoids the need to make use of atomic motion
controlling the coupling to the cavity field, as was required
Ref. @15#, and is one of the key elements allowingdetermin-
istic production ofN-photon states to be achieved. The nu
ber of atoms in the cavity can be determined by detection
excited-state atoms at the single-atom level, as a result o
atom-mediated shifts of the cavity resonance. Such sin
atom detection has already been demonstrated@20#, and can
be readily extended to larger numbers of atoms. Con
quently, the present scheme opens the way to determin
generation of more complicated quantum states of light
first producing nonclassical states of trapped atoms~such as
spin-squeezed states produced through interatomic inte
tions @21,22# or by measurement@23#!, and then transferring
that state onto the optical field using CQED.

The remainder of the paper is constructed as follows
brief review of the deterministic single-photon generati
schemes of Refs.@8,9# is given in Sec. II, which establishe
some common concepts with the present work. A discuss
of the N-atom–cavity system in a single-mode external fie
follows in Sec. III. We demonstrate here the existence o
family of optically dark coupledN-atom–cavity states an
show generally how adiabatic ramping of an external fi
can be used to generateN-photon emission from the cavity
Detailed analysis of the energy spectrum of the clo
N-atom–cavity system as a function of the ramp time p
vides estimates of the populations in the bright states
also leads to analytic estimates of the energy gap required
limiting adiabatic state transfers. In Sec. IV, we then pres
analysis of the cavity decay responsible for theN-photon
emission, treating in detail the effects of spontaneous em
sion and nonadiabaticity on the output states. We obtain a
lytic estimates of error rates deriving from these contrib
tions that scale linearly in the total number of atom
resulting in a constant relative error in the outputN-photon
states and guaranteeing production of anN-photon state with
high fidelity. In Sec. V, we present numerical simulations
the open system using the quantum jump approach. Th
numerical calculations are used to explore the sensitivity
the scheme to critical experimental parameters, as well a
explore the limits of our analytical estimates of the er
bounds. Finally, in Sec. VI we summarize and indicate dir
tions for further work and for experimental implementatio
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II. ATOMIC STATES AND DETERMINISTIC
SINGLE-PHOTON GENERATION

Our N-photon generation scheme uses the same inte
atomic structure used in the single-photon proposals of R
@8,9#, namely, atoms having three internal levels, labeledu0&,
u1&, and u2&, arranged in aL configuration such that state
u0& and u2& are nonradiating atomic states whileu1& is an
excited state connected to statesu0& and u1& by allowed tran-
sitions ~Fig. 1!. Levels u0& and u2& are typically hyperfine
levels of the electronic ground state. We assume that
allowed transitions to stateu1& can be addressed selectivel
This can be achieved, e.g., as a result of polarization se
tion rules, or merely due to a large energy difference betw
statesu0& and u2&. The three-level atoms are located in
high-finesse optical cavity which supports a resonant m
having vacuum Rabi frequencyg ~i.e., the Rabi frequency
due to the presence of a single photon in the cavity mo!
that couples statesu1& and u2&. The cavity mode has fre
quencyvc which can in general be detuned from the ato
resonancev12 by D5vc2v12 ~see Fig. 1!.

In the schemes of Refs.@8,9#, single-photon generation i
accomplished by exposing a single atom in internal stateu0&
to a classical laser field of frequencyv r and Rabi frequency
r (t), which is controlled dynamically. The laser frequen
v r is chosen to be resonant with the cavity-mediated Ram
transition between statesu0& and u2&, i.e., v r2vc5v20 or
v r2v105D. This laser connects the statesu0& and u2&
through a cavity-mediated Raman transition and induces
fluorescence of a cavity photon by the atom. The pho
exits the cavity into a single cavity-output mode, and there
generates the desired single-photon state. References@8,9#
showed that under suitable conditions on the external p
field, the single photon can be emitted deterministically.

To understand the operation of such a deterministic
vice, it is helpful to first consider the atom-cavity system
a closed quantum system, i.e., we ignore the decay of ca
photons to cavity-output modes, which actually produces
desired Fock state outside the cavity, as well as the poss
spontaneous decay from the excited stateu1& to modes other
than the cavity mode. Spontaneous emission lowers the
delity of deterministic photon generation, and clearly nee
to be avoided or at least minimized. We write the basis sta

FIG. 1. Pictorial representation of the Hamiltonian for a sing
three-level atom in a single-mode cavity. The atom is driven by
external driving field of frequencyv r and coupling strength,r. The
atom is also coupled to a cavity mode of frequencyvc and coupling
strengthg. Both the cavity and the driving fields are detuned fro
the atomic transition resonance by a common frequencyD. The
atom-cavity states are denoted here asu i ,l & wherei 50,1,2 are the
three atomic levels andl is the number of cavity photons.
8-2
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DETERMINISTIC OPTICAL FOCK-STATE GENERATION PHYSICAL REVIEW A67, 043818 ~2003!
of the single-atom–cavity system asu0,0&, u1,0&, and u2,1&,
where the first index refers to the atomic state and the sec
index gives the number of photons in the cavity, i.e.,
cavity field is implicitly assumed to be quantized. The int
action Hamiltonian of this closed system is given by

H05F 0 r 0

r 2D g

0 g 0
G , ~1!

wherer (t);m01E(t)/2 is the time-dependent coupling to th
external ~classical! laser pump field,E(t) ~evaluated in a
rotating frame!. Unless essential for the analysis, we sh
omit the explicit time dependence ofr to streamline the no-
tation. As discussed by Kuhnet al. @9#, the dynamics of this
system are governed by the presence of a null-valued ei
stateuC0&, which is a ‘‘dark state’’ containing no populatio
in the excited atomic stateu1&, and which is therefore im-
mune to spontaneous decay. This dark state exists fo
values ofr (t) and is given by

uC0&5
1

Ar 21g2
~gu0,0&2r u2,1&). ~2!

It is the presence of this dark state that allows the hi
fidelity generation of a single photon in response to a s
able choice ofr (t). The single-atom–cavity system star
initially in the stateu0,0&, which is the dark state for the
initial condition r (0)50. During a sufficiently slow ramp o
r (t) ~i.e., a broad pulse of the classical pump laser!, the
atom-cavity system can adiabatically follow the dark sta
Eq. ~2!. For sufficiently large values ofr (t) (r @g), uC0&
;u2,1&, i.e., a single cavity photon is produced with a hi
degree of certainty. This cavity photon then rapidly deca
from the cavity, resulting in a deterministic single-phot
source that acts within a time interval specified by the per
of the external pump and by the cavity decay time. Law a
Kimble @8# and Kuhn et al. @9# have presented numerica
calculations to assess deviations from this ideal beha
caused by spontaneous emission, and have explored th
tent to which the photon emission probability can be co
trolled by modifying the trigger pulse. Recent experime
by Kuhn, Hennrich, and Rempe have produced single p
tons by this method@11#.

III. DETERMINISTIC N-PHOTON GENERATION:
CLOSED-SYSTEM ANALYSIS

For the generation of arbitrary Fock states of the elec
magnetic field, i.e., with arbitrary large photon numberN, we
now considerN such three-level atoms confined within th
optical cavity. We assume that the atoms are indistingu
able in all respects. This provides an important experime
simplification relative to other CQED schemes in which t
atoms are required to be individually addressable@24#. Each
atom interacts individually with the laser field and the cav
mode, just as for the single-atom case. We make the sim
fying assumption that the atoms do not interact directly w
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one another. However, they do experience a second-o
interaction via the cavity mode. The cavity couplingg and
the classical pump Rabi frequencyr are taken to be identica
for each of theN atoms, consistent with their indistinguish
ability @25#. Thus theN-atom–cavity interaction Hamiltonian
is given, for the closed system, by

H5(
i 51

N

Hi , ~3!

whereHi describes the atom-field coupling, Eq.~1!, for the
i th atom. From now on, we shall use this in the opera
form

Hi52Du1& i^1u i1r ~ t !~ u1& i^0u i1u0& i^1u i !1g~au1& i^2u i

1a†u2& i^1u i !, ~4!

where the operatorsa and a† are the annihilation and cre
ation operators for the quantized cavity mode. Since t
Hamiltonian is symmetric under the exchange of any t
atoms, a symmetric initial state remains symmetric as
evolves. We may thus reduce our effective Hilbert state
consider only the states that are completely symmetric w
respect to atomic interchange. We may thus use a num
representation of the atomic state, namely,un0 ,n1 ,n2 ,l &,
whereni gives the number of atoms in stateu i & ( i 50,1,2),
and l is the number of photons in the cavity. We allow arb
trary values forn0 , n1 , n2, and l, and employ the Bose
creation and annihilation operatorsbi andbi

† for the atomic
statesu i &. We can then rewrite the interaction Hamiltonia
for the closed system as

H52Db1
†b11r ~ t !~b1

†b01b0
†b1!1g~b1

†b2a1a†b2
†b1!.

~5!

This many-bodyN-atom–cavity Hamiltonian conserve
the total number of atoms, represented by the operatoT
5b0

†b01b1
†b11b2

†b2, as well as the difference between th
number of atoms in stateu2& and the number of cavity pho
tons, represented by the operatorD5b2

†b22a†a. When cav-
ity decay is added to this description, the operatorD gains
the significance of referring to the number of photons t
have escaped the cavity. Since the operatorsT and D com-
mute, we define subspacese(N,k) composed of the eigen
states with simultaneous eigenvaluesN5n01n11n2 and k
5n22 l of the operatorsT andD, respectively. This is sum
marized schematically in Fig. 2.

We find that each manifolde(N,k) contains a null-valued
eigenstateuck

N&, given explicitly by

uck
N~ t !&5

1

Zk
(
j 5k

N
@2r ~ t !/g# j

A~N2 j !! j ! ~ j 2k!!
uN2 j ,0,j , j 2k&,

~6!

whereZk is a normalization constant. This state is the ana
of the null-valued dark eigenstate for the single-atom–cav
system@9#. It contains no population in theu1& internal state
and is thus anN-atom dark state immune to spontaneo
decay from any atom. Equation~6! represents a continuou
8-3
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family of dark states that are transformed into each other
the time dependence ofr (t). WhenD50 we find that for any
e(N,k) subspace (N2k.1) there exist multiple eigenstate
with zero energy for all values ofr (t). Thus, in order to
move our system adiabatically through the continuous fam
of dark states, Eq.~6!, we need to impose a finite detunin
DÞ0 such that the zero energy eigenspace ofH is non-
degenerate except at specific values ofr (t). ~The effect of
such accidental degeneracies is assessed in Sec. IV C.! One
can also show that acting on Eq.~6! with the cavity annihi-
lation operatora produces the corresponding dark state h
ing one less photon, i.e., any such dark eigenstateuck

N& de-
cays touck11

N & by cavity emission. Thus cavity decay do
not take the system out of the family of dark states. C
versely, the only way to directly couple dark states in diff
ent manifolds is either to spontaneously lose a photon o
add a particle.

This representation suggests that adiabatic evolu
might be used forN-photon generation in an analogous ma
ner to that proposed for single-photon generation in R
@8,9#. We illustrate this here with the manifold correspondi
to k50. Initially the pump laser is off,r 50, and the corre-
sponding initial state hasN atoms in theu0& state and no
photons in the cavity,uck

N(0)&5uN,0,0,0&. One can then
imagine slowly ramping the value of the pump laser until t
pump-laser coupling is much larger than the atom coup

FIG. 2. Pictorial representation of the Hamiltonian for five a
oms in thee(5,3) ande(5,2) manifolds written in the number bas
representation and assuming red detuning,D,0. Thee(N,k) mani-
fold is composed of the eigenstates with simultaneous eigenva
N5n01n11n2 andk5n22 l , whereni is the number of atoms in
atomic statei and l is the number of photons in the cavity. Th
transition strength between levels is proportional to either the d
ing field r or the cavity couplingg. The energy of the states in th
absence of all couplings is given by2n1D. For red detuning,D
,0, the states with a higher occupation of the exited atomic st
n1, will have a greater energy. The dark state is the superpositio
states withn150 described in Eq.~6!. A transition from the mani-
fold e(5,3) to e(5,2) occurs when a photon is emitted from th
cavity. This transition preserves the dark state~see text!.
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to the cavity,r @g. At this final time t f , one finds that ap-
proximately allN atoms are in the stateu2& and there areN
photons in the cavity,uck

N(t f)&;u0,0,N,N&.
This procedure will generateN photons in a closed cavity

We will show that this procedure can be coupled to cav
decay to produce anN-photon state. In practice, realizatio
of this ideal sequence requires that two key issues be
equately addressed. First, the need for adiabatic evolu
through the family of dark states via couplings to the exci
atomic level u1& places constraints on how we vary th
strength of the pump pulse,r, based on the energy spectru
of theN-atom–cavity system. Second, spontaneous emis
of photons from the cavity will provide perturbations to th
adiabatic evolution that may be nonnegligible.

We examine these issues in detail in Sec. IV. Before th
we first analyze the energy spectrum of the closedN-atom–
cavity system in the remainder of this section. This will a
low us to establish the critical parameters limiting the ad
batic evolution, which are required in order to estimate
errors due to nonadiabaticity and spontaneous emis
within the open-system approach employed in Sec. IV. Wh
the dark state of eache(N,k) manifold has a succinct de
scription, Eq.~6!, the general eigenstates for theN-atom–
cavity system are quite complicated. However, in the limit
both large and smallr (t), the eigenstates are found to ha
familiar forms that render them susceptible to analytic inv
tigation.

We examine first the strong pump~larger ) limit. Here the
eigenstates can be interpreted in terms of the familiar ang
momentum states. In the limit wherer is large relative to the
other parameters (g, D), we can neglect the terms in Eq.~5!
that are proportional to the cavity coupling parameterg. We
then make a transformation from the atomic modesb0 and
b1 to generalized angular momentum operatorsJ using the
Schwinger representation@26,27#. This gives Jz5

1
2 (b1

†b1

2b0
†b0), J15b1

†b0 , J25b0
†b1 , and Jt5

1
2 (b1

†b11b0
†b0),

where Jt denotes the total angular momentum,J25Jt(Jt
11). In this limit, we find that the system Hamiltonian b
comes

H52D~Jt1Jz!12rJx52DJt1Vĥ•J, ~7!

whereV5A4r 21D2, hx52r /V, hy50, andhz52D/V.
The corresponding energy levels are now identical to th
of the generalized angular momentumJ. Therefore the eigen-
states are simply given byu j ,mh ,n2 ,l &J wherej is the eigen-
value of total angular momentum,mh is the angular momen
tum projection along the axisĥ, n2 is the number of atoms
in atomic stateu2&, andl is the number of cavity photons a
before. The cavity coupling term,g(b1

†b2a1a†b2
†b1), can

now be considered to act perturbatively on Eq.~7!, to mix
states differing byj 56 1

2 , and to change the value of th
cavity photon number by unity. Relating these states in
large r limit to our invariantsT and D, we find that the
e(N,k) manifold is composed of statesu j ,mh ,n,l &, where
0< j <(N2k)/2, n5N22 j , and l 5N2k22 j ~see Fig. 3!.
Our dark state at larger is u0,0,N,(N2k)&J . In the number
representation this is simplyun050,n150,n25N,l 5(N

es

-

e,
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DETERMINISTIC OPTICAL FOCK-STATE GENERATION PHYSICAL REVIEW A67, 043818 ~2003!
2k)& @Eq. ~6!#. We note that the loss of a photon only r
duces the photon numberl, and conservesj ,mh , andn2. The
eigenstates in the larger limit are shown schematically in
Fig. 3.

We now consider the weak pump~small r ) limit. Here we
find that the eigenstates may also be interpreted in terms
known set of states, but these are now the less well-kno
eigenstates of the Tavis-Cummings Hamiltonian@28#. We
proceed in this limit by starting from the system Ham
tonian, Eq.~5!, at r (t)50. This is simply

H52Db1
†b11g~b1

†b2a1a†b2
†b1!. ~8!

We again make a transformation to a Schwinger represe
tion, but this time we choose the transformation to be m
between modesb2 andb1. The generalized angular mome
tum operators that are created from these two modes wil
denoted here byF, i.e., Fz5

1
2 (b1

†b12b2
†b2), F15b1

†b2 ,
F25b2

†b1, and Ft5
1
2 (b1

†b11b2
†b2), whereFt denotes the

corresponding total angular momentum,F25Ft(Ft11).
Equation~8! then becomes

H52D~Ft1Fz!1g~F1a1F2a†!, ~9!

which is recognized to be the off-resonant Tavis-Cummin
Hamiltonian@28#. Note that this Hamiltonian conserves th
generalized angular momentumFt . It also conserves the
sum of the number of photons,l, and the angular momentum
in the z direction,Fz . In the smallr limit we can then in-
vestigate the effect of finiter using a perturbative analysis
This perturbative analysis has two consequences for the
ergetics. First, the perturbation due tor, which is of the form
b1

†b01b0
†b1, will only couple states whose totalF value dif-

fers by 1/2. Second, as a result of this, the resulting chang
energy of the eigenstates of Eq.~5! is only second order inr.
The eigenstates of the Tavis-Cummings Hamiltonian are
trivial, but we note that in the limit of largeD they are
approximately eigenstates ofFz with a number of photons in
the cavity given byl 5 f 2 f z2k wheref is the total angular

FIG. 3. Pictorial representation of the Hamiltonian for five a
oms in thee(5,3) manifold using the Schwinger representation
atomic modesu0& and u1& and assuming red detuning,D,0. This
representation is appropriate when the external driving fieldr is
much larger than the cavity couplingg. The eigenstates to first orde
are eigenstates of angular momentum about an axis defined b
effective magnetic fieldsBz52D andBx5r . The cavity couplingg
acts as a perturbation, mixing states differing by a total Schwin
angular momentum of 1/2.
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momentum andk is an eigenvalue ofD. The states of the
Tavis-Cummings model are described in detail in Ref.@28#
and qualitatively in Appendix A. Figure 4 provides a sch
matic of these states in the smallr limit.

One useful advantage of these Schwinger angu
momentum representations of the atomic states for
analysis is that in both of these limits of large and smalr,
i.e., whether for a fixedf or for fixed j, the corresponding
eigenvaluesf z and j z provide a measure of the population
the excited state. This population is given byb1

†b15Ft1Fz

5Jt1Jz . This property will be used in Sec. IV C to mak
estimates of the population in the scattering state, i.e., in
atomic stateu1&, which is susceptible to spontaneous em
sion, and hence of the errors due to spontaneous decay

IV. OPEN-SYSTEM APPROACH

The above description of theN-atom–cavity system as
closed quantum system is clearly incomplete, since a pro
assessment of the operation of anN-photon generator re
quires the consideration of this CQED device as an o
quantum system. We must take into account the two chan
by which theN-atom–cavity system interacts with its env
ronment. These are~i! the possibility of spontaneous deca
from atoms in the excited stateu1& to optical modes outside
the cavity, determined by the spontaneous decay rateg, and
~ii ! the coupling of cavity photons to electromagnetic mod
outside the optical cavity, characterized by the cavity de
rate k @29#. The latter provides the required coupling
transfer anN-photon state from the cavity mode to an exte
nal mode. Cavity decay thus plays two different roles he
First, in allowing emission of theN-photon state, and, sec
ond, affecting the dynamics inside the cavity as discus
below. We describe theN-atom–cavity system as an ope
system within a quantum wave-function formulation@30#. To
characterize its action as anN-photon generator, we evaluat
the cavity flux 2k^a†a&.

r

the

r

FIG. 4. Pictorial representation of the Hamiltonian for five a
oms in thee(5,3) manifold in the Tavis-Cummings basis for atom
modesu1& and u2& and assuming red detuning,D,0. This repre-
sentation is appropriate when the cavity couplingg is much larger
than the external driving fieldr. The eigenstates of the Tavis
Cummings Hamiltonian are complicated~see text and Ref.@28#! but
preserve total Schwinger angular momentumf obtained from modes
u1& and u2&. The coupling to the external fieldr acts as a perturba
tion, mixing states differing by a total Schwinger angular mome
tum of 1/2.
8-5
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In this section, we use the quantum wave-function form
lation in a perturbative regime to derive analytic estima
for the error rates of its action as anN-photon generator. In
Sec. V we then make numerical simulations of the full op
quantum system, which allow us to ascertain the exten
validity of these perturbative error estimates.

In this open quantum system analysis, we will show t
the structure of the closed quantum system, namely, the i
tification of manifolds of statese(N,k), each of which con-
tains a dark state that is immune to spontaneous emis
and that connects adiabatically to the initial state, still play
critical role. Whenr (t) is varied in the open quantum sy
tem, theN-atom–cavity system evolves primarily within th
family of accessible dark statesuck

N& (kP$0, . . . ,N%) from
which no spontaneous emission occurs, just as in the clo
quantum system. The system can fail to produce the des
N-photon output stateonly if photons are actually lost to
spontaneous emission. Thus a crucial part of assessing th
failure rate of theN-photon generator is to quantify the e
tent of ‘‘nondarkness,’’ i.e., the probability that the syste
will evolve towards a bright state from which spontaneo
emission may indeed occur. Nondarkness can arise from
factors: nonadiabatic evolution when the rate of change
r (t) is too fast, and the conditional dynamics resulting fro
cavity decay which can couple the dark stateuck

N& to a non-
dark state.

In the quantum trajectory approach@30–32#, the dynamics
of the N-atom–cavity system are characterized by determ
istic nonunitary evolution, interspersed with rando
‘‘jumps’’ determined by photon losses from the cavity and
spontaneous emission~scattering! from the excited state. The
nonunitary evolution is given by the conditional Hamiltonia

Hcond~ t !5H~ t !2 ika†a2 igb1
†b1 . ~10!

The imaginary terms2 ika†a and 2 igb1
†b1 describe the

back action on the quantum system that accumulates
tween instances of cavity decay and spontaneous emis
jumps, respectively. The corresponding quantum jump op
tors are given byka andgb1 . Theb1 quantum jump opera
tor implies thatu1& decays to an unknown state that is notu0&
or u2&. For a full discussion of the quantum jump approa
see Ref.@30#.

For the numerical calculations presented in Sec. V we
the full conditional Hamiltonian, as required in the quantu
trajectory formulation@30–32#. In order to obtain analytic
error estimates here, we proceed first by assuming that
adiabatic errors are small. Therefore, at all times the stat
the system is now regarded as deviating only slightly fr
the dark state. In this situation we may neglect the sponta
ous emission term,2 igb1

†b1, treating it implicitly as a
higher-order perturbation than the cavity decay term. T
cavity decay termk is treated in first-order perturbatio
theory. Before describing the details of this analysis, we n
again that the cavity decay, characterized by the jump op
tor ka, connects dark states in the manifolde(N,k) to dark
states in a lower manifolde(N,k11), i.e.,
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N&5

rZk11

gZk
uCk11

N &. ~11!

~See Sec. III above.! Thus neither of the quantum jump op
eratorska or gb1 will lead to errors~i.e., to nondarkness! in
the operation of our CQED device, as long as the system
maintained within the dark statesuCk

N&. Consequently, in
order to quantify the failure rate of theN-photon generator
under these conditions, one need only consider the evolu
of the system under the conditional HamiltonianHcond. We
will now make a detailed analysis of the errors, starting w
an estimate of the extent of nondarkness introduced by ca
decay, then estimating the adiabatic error in following t
dark state asr (t) is varied, and finally estimating the spon
taneous emission flux rate due to population in theu1& inter-
nal state that is introduced by a combination of cavity dec
and nonadiabaticity.

A. Effect of cavity decay on dark states

We first analyze the errors due to cavity dynamics. F
this purpose, we treat theika†a term in Eq.~10! as a per-
turbation to the closed-system Hamiltonian, Eq.~5!. In par-
ticular, under the realistic scenario when cavity decay
weaker than the cavity coupling (k,g), we find that the
cavity decay term causes the dark statesuck

N& of the closed-

system Hamiltonian to be modified to the statesuc̃k
N& of the

conditional Hamiltonian, according to

uc̃k
0~ t !&5uck

0~ t !&2 ik(
iÞ0

uck
i ~ t !&

^ck
i ~ t !ua†auck

0&
v i

.

~12!

Here we have modified our notation to define the sta
uck

i (t)& as the instantaneous eigenvalues of the clos
system HamiltonianHcond with corresponding energies\v i .
Using this expression, we find the degree of nondarkness
to cavity decay,ek

cav512 z^c̃k
0uck

0& z2, to be equal to

ek
cav5k2(

iÞ0

z^ck
i ~ t !ua†auck

0& z2

uv i u2
. ~13!

From this expression we can generate an upper boun
the degree of nondarkness,ek

cav. We first note that

(
iÞ0

z^ck
i ~ t !ua†auck

0& z25(
i

z^ck
i ~ t !ua†auck

0& z2

2 z^ck
0~ t !ua†auck

0& z2 ~14!

5Var~a†a!c
k
0(t) , ~15!

where Var(a†a)c
k
0(t) is the variance in the cavity photo

number in the dark stateuck
N(t)&. Our upper bound is then

obtained by replacing the Bohr frequenciesv i in Eq. ~13!
with the minimal Bohr frequency, and replacing the tim
varying variance Var(a†a)c

k
0(t) with its maximum. This re-

sults in
8-6
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ek
cav<k2

maxVar~a†a!c
k
0(t)

minuv i u2
. ~16!

The maximum variance ofa†a is bounded byN2k ~see
Appendix B!, while the minimal Bohr frequency depends o
D, and will be discussed in detail in Sec. IV C. Our expre
sion for the bound on the extent of nondarkness due to ca
decay thus becomes

ek
cav<

k2~N2k!

minuv i u2
. ~17!

B. Adiabatic errors

We now examine errors that arise due to nonadiab
evolution resulting from a nonzero derivative,ṙ (t). Using
the standard treatment@33# we estimate the population leak
age from the adiabatic state at a timet, ek

ad5u^F(t)uck
0&u2, to

first order for a givenN andk as

ek
ad5(

iÞ0

z^ck
i ~ t !uċk

0~ t !& z2

uv i u2
. ~18!

Here uċk
0(t)&5(d/dt)uck

0(t)&. We then apply the standar
upper bound for adiabatic error@33#, given by the square o
the maximum angular velocity of the state, divided by t
square of the minimal Bohr frequency,

ek
ad<

max̂ ċk
0~ t !uċk

0~ t !&

minuv i u2
. ~19!

One can bound the maximum angular veloci
max̂ ċk

0(t)uċk
0(t)&, to be smaller than max(ṙ/g)2@(N2k)/(k

11)# ~see Appendix C!. This results in the following uppe
bound:

ek
ad<

~N2k!max~ ṙ !2

~k11!g2minuv i u2
. ~20!

Equations~20! and ~17! provide an upper bound for th
nondarkness in the limit where our perturbative approac
appropriate. When the minimal-energy separation, minuviu is
independent ofN, both equations suggest that the nonda
ness scales at worst linearly withN. Furthermore, we note
that the maximum nondarkness decreases with increasink.
We now proceed to estimate the effect of spontaneous e
sion, or equivalently, the rate of spontaneous emitted flu

C. Spontaneous emission flux rate

The spontaneous emission flux rate is equal to the pro
of the population in the spontaneously emitting state a
twice the decay rate of that state, i.e., 2g^b1

†b1&. Unfortu-
nately, we are unable to analytically calculate the aver
population in the excited atomic state^b1

†b1&. The simplest
way to estimate an upper bound on the spontaneous flux
is then to use the maximum possible value of^b1

†b1&5N
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2k, and the maximum probability of the system being in
nondark state,ek5ek

cav1ek
ad. We can thus obtain an uppe

bound on the spontaneous emission flux rate as 2gek(N
2k).

Naturally, by detuning from resonance, we expect to mi
mize the population that will leak to population in the e
cited state as is the case in both off-resonant Rayleigh
Raman scattering. Hence, we expect the spontaneous e
sion flux rate to change as a function of the detuningD. The
value of D affects the spontaneous error rate in two wa
First, it controls the value of the minimal Bohr frequenc
and can thereby either reduce or enhance the first-o
population leakage from the dark state. Second, we know
analogy with the three-level system~Sec. II and Refs.@8,9#!
that the nondarkness should contain less excited-state c
acter as the absolute magnitude ofD increases. Our schem
works independent of the sign ofD. However, for concrete-
ness,D is assumed to be negative~red detuning! throughout
the rest of the paper.

Referring to the discussion in Sec. III, for small values
D, i.e., uDu,r ,g, there exist states with energy only;D
away from the dark state. In both the small and larger limits,
these states are them50 states~Sec. III!. Hence, foruDu
,g, the minimal Bohr frequency is equal toD. Furthermore,
the eigenstates are effectively eigenstates ofJx or Fx and
therefore have average valueJz50. Therefore, whateve
states the dark state falls into due to either adiabatic erro
cavity decay, these states will have large population in
excited atomic stateu1&. So in the smalluDu limit, our upper
bound described above is reasonable. Consequently, we
the nondarkness factors calculated in Eqs.~17! and ~20!
times 2g(N2k). Hence, we find that the error rate for sma
values of detuninguDu is always less than

g85gS ~N2k!2max~ ṙ !2

~k11!g2uDu2
1

k2~N2k!2

uDu2
D . ~21!

In contrast, for large values ofuDu, the energy eigenstate
are effectively eigenstates ofJz or Fz ~Sec. III!. The eigen-
states closest in energy to the dark state are them52J and
m52F states. To first order, these states closest in energ
the dark state are degenerate with the dark state, but
smallest second order energy scales asE152(k11)(g2

1r 2)/D. This smallest energy eigenstate has a populatio
the excited state that scales at worse as (k11)g2/D2. We
believe that it is a reasonable assumption to multiply t
smallest eigenstate estimate of the excited-state popula
by our calculated nondarkness factore, in order to arrive at
a better estimate of the excited atomic state population. T
procedure yields the following expression for large values
uDu, namely, an error rate that is independent ofuDu:

g85gS ~N2k!max~ ṙ !2

~k11!2g4
1

k2~N2k!

~k11!g2 D . ~22!

Careful analysis shows that in the largeuDu limit, the state
of energyE152(k11)(g21r 2)/D is not always the closes
state to the dark state. Indeed states can be identified
8-7
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BROWN et al. PHYSICAL REVIEW A 67, 043818 ~2003!
particular settings ofD and r which are degenerate with th
zero energy dark state. However, these states are shown
characterized by higherf or j, and therefore in the perturba
tive limit they do not couple directly with the dark stat
Numerical simulations suggest that the situation is sim
for states which cross the null state in the nonperturba
limit.

D. Small number of photons in the cavity

Having obtained error estimates due to cavity dec
nonadiabaticity, and spontaneous emission, we now cons
the dependence on the cavity photon numberl. In the limit
that one very slowly ramps upr, the average number o
photons in the cavity is always much smaller than 1.
assume that our dark state is simply

ck
05u~N2k!,0,k,0&1hu~N2k21!,0,~k11!,1&.

For this state Var(a†a)5h22h4<h25^a†a&, where h
5(r /g)A(N2k)/(k11) @Eq. ~6!#. In the limit of small h,
the variance of the number of photons in the cavity equ
the number of photons in the cavity. Since the ramp is v
slow, we expect that the error rate will be solely due to
cavity dynamics and, therefore, proportional to the varian
Eq. ~16!. The rate of photon output is proportional to th
number of photons in the cavity. Hence, in the case o
small number of photonsl in the cavity, we expect at wors
for the error to scale proportional to the number of photo
output. This implies a total error that scales at worse prop
tional to the number of atomsN, whenuDu.g.

One might ask how can we increaser to be of equal
magnitude withg, and still maintain a small number of pho
tons in the cavity. The reason is that asr increases, there is a
increasing chance of a photon being emitted. If one varier
slowly enough, the chance of that occurring beforer be-
comes too large is quite high. At this point, we then chan
manifoldse(N,k). Examining the equation for the dark sta
@Eq. ~6!# and looking at only the first two terms, one sees t
changing manifolds is equivalent to reducing the effect
value of r. Compared to thek50 manifold, the effectiver 8
of the k manifold is equal toA@(N2k)/N(k11)#r . As N
increases, for small values ofk one then needs smaller an
smaller values ofr for the approximation to hold. For ex
ample, whenk50, h5ANr/g. However, as the value ofk
increases,r can eventually reach a value comparable to
productNg and still imply a small number of photons in th
cavity.

To summarize, in the limit of a small number of photonl
in the cavity anduDu.g, we expect the ratio of spontaneou
emission flux to cavity flux to be either a constant, or
decreasing function ofN. Explicitly, we expect spontaneou
flux to be smaller than (2gk2/g2)*Var(a†a)dt
<(2gk2/g2)*h2dt @see Eqs.~22! and~16!#. The ratio of the
spontaneous flux, (2gk2/g2)*h2dt, to the cavity flux,
2k*h2dt, is thengk/g2 which is larger than the fractiona
spontaneous loss, the spontaneous flux divided by the
pected number of photons out,N. Therefore, for current
state-of-the-art optical cavity technology for whichk50.1g
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andg50.05g @34#, we expect that only 1 of every 200 pho
tons will be lost to spontaneous emission.

V. QUANTUM TRAJECTORY SIMULATIONS

The quantum trajectory or quantum jump approach allo
one to calculate the properties of open quantum system
averaging over individual quantum trajectories@30–32#. The
basic elements of this approach were described briefly
Sec. IV. Technical details of the algorithm are given in R
@30#. The calculations described below average over 50
trajectories per simulation. The simulations were run un
the cavity flux and spontaneous emission flux were less t
1026. This results in 2000–5000 steps of lengthdt50.1/g,
depending on the specific parameters of the system.

The basic quantity we calculate is the cavity flu
2k^a†a&, which describes the number of photons emitt
from the cavity. For these simulations, we have chosen as
figure of merit the fractional spontaneous loss. The fractio
spontaneous loss is defined as the number of photons lo
spontaneous emission,Ns , divided by the expected numbe
of photons out,N. We calculateNs as the product of 2g and
the integral of^b1

†b1&. Due to the statistical error resultin
from the finite number of trajectories, we have estimate
numerical uncertainty of63% in Ns /N.

A. Production of N-photon state

Using a simple driving field which increases linearly wi
time, and realistic cavity parameters based on the cavity
Kimble @34# ( ṙ 5g/30,k5g/10,g5g/20,D522g), we find
that the deterministic production ofN photons within a single
pulse with small loss is indeed possible. Figure 5 shows
output pulse as a function of time forN<5. We see the
expected linear increase in the area of the output pulse,
the cavity flux 2k^a†a&, with N. We then calculated the los
of photons into the spontaneous emitted modes, show
Fig. 6. When the simulation was run in the limit of a sma

FIG. 5. The cavity flux 2k^a†a& for N52 –5 atoms plotted vs
dimensionless time,T5gt. These simulations were done using
linear rampr (T)5RT whereR5g/100. The other cavity param
eters wereg5g/20,k5g/10, andD522g. The integrated cavity
flux Ns increases linearly withN as expected.
8-8
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DETERMINISTIC OPTICAL FOCK-STATE GENERATION PHYSICAL REVIEW A67, 043818 ~2003!
number of photons in the cavity and withuDu.g, we ex-
pected that the total photon loss will grow at worst linear
as explained above in Sec. IV D. Therefore, the fractio
spontaneous loss should either be constant or decrease
increasingN. This expectation is confirmed by simulation
see Figs. 6 and 8. Furthermore, the error is smaller than
expected bound of 0.5% fractional spontaneous loss, see
IV D.

Although, we have made calculations with only a sm
number ofN values here, it appears that our analytic es
mates coupled with this numeric evidence forN<5 suggest
that the deterministic production of largeN Fock states when
uDu;g is indeed possible. The numerical results summari
in Fig. 6 show that foruDu>g we have minimal fractiona
spontaneous losses of'0.3% and that these actually de
crease with increasingN. Since our analytical results sugge
an upper bound of 0.5% on the fractional spontaneous l
we can expect to be able to produce a Fock state contai
on the order of 100 photons before the total integrated
due to spontaneous flux equals a single photon.

B. Minimizing the spontaneous loss

In the preceding section, we used current experime
cavity parameters@34# and, for simplicity, a linear driving
pulse. We now show how one can minimize the spontane
loss by tuning various cavity parameters and modifying
driving field.

1. Pulse shape

For linear ramping with a small rate of change, one fin
that the fractional error actually decreases with increasinN
~Fig. 6!. This is in line with our analytical bounds whic

FIG. 6. Fractional spontaneous loss forN52 –5 as a function of
uDu. A linear ramp was used withR5g/100, g5g/20, and k
5g/10. As expected, one sees that in the largeuDu limit the frac-
tional spontaneous loss scales less thanN ~see text!. Our analytical
bounds in the largeuDu limit suggest that the fractional spontaneo
loss should be less thangk/g25531023 ~dotted line!. The dis-
crepancy at largeuDu represents parameters for which our perturb
tive approach is invalid. For the smalluDu limit, the increasing
fractional spontaneous loss is consistent with leakage to states
have a higher occupation of the excited state.
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suggested that at worse the fractional error should be c
stant for small occupation of photons in the cavity~Sec.
IV D !. Figure 7 shows that as the ramp speed increases
yond the adiabatic regime, the errors increase rapidly. O
can further reduce the error by using a more sophistica
time-dependent driving field. For example, the application
a Gaussian pulse,r (t)5g exp@2(t2t0)

2/(2t2)#, reduces the
fractional spontaneous loss by a factor of 2, relative to
fractional spontaneous loss resulting from a linear ramp
illustrated in Fig. 8. One expects that appropriate pulse sh
ing could further lead to at most an order of magnitude
crease in the fidelity. However, the minimal fractional spo
taneous loss obtained by pulse shaping is limited by er
due to cavity dynamics. In Fig. 6, one sees that this limit
approached by ramp speeds ofg/100.

2. Effect of detuning

The ability to detune from resonance is one of the ba
tools of atomic physics. Therefore, it is important to det
mine how the fidelity of our operation scales with the detu
ing, D. In Sec. IV C, our analytical predictions suggest th
as uDu is increased fromD50, the initially large fractional
spontaneous loss should decrease, eventually reaching a
stant nonzero value foruDu.g. Our numerical calculations
confirm this prediction forN52 –5 atoms, Fig. 6.

In Fig. 6, one sees that for detuningsuDu smaller than the
cavity coupling constantg, the error decreases as the detu
ing increases. One then sees a relatively flat region, follow
by an increase in error asuDu increases. This rise is outsid
of the predictive ability of our analytical model and repr
sents a breakdown in the first-order perturbative meth
when the energy separation between the dark state
nearest-neighbor state becomes smaller than the ram
speed. The main conclusion from our numerical simulatio

-

hat

FIG. 7. Fractional spontaneous loss as a function of ramp raR
and detuningD (g5g/20, andk5g/10). As expected, larger ram
rates lead to an increased loss when the system can no longer
batically follow the dark state. Note how the dependence onD
varies withR. In the adiabatic limit, smallR, large uDu yields the
lowest fractional spontaneous loss. However, when one ramps
system quickly, i.e., at largeR, the dependence onuDu dependence
is reversed and smalluDu yields the lowest loss.
8-9
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BROWN et al. PHYSICAL REVIEW A 67, 043818 ~2003!
is thatN-photon generation over a wide region of detunin
is nevertheless possible. In terms of efficiency~ratio of num-
ber of photons out per time and fractional spontaneous lo!,
our data suggest that a detuning ofuDu;(1210)g would be
optimal.

3. The good-cavity limit minimizes errors

For large values ofuDu, one can reduce the error by in
creasing the value ofg. As predicted analytically in Sec
IV C, the total error will reduce asg increases. Furthermore
if one variesg and ṙ proportionally, one can numericall
observe the 1/g2 dependence of fractional loss predicted
Eq. ~22!. This is shown in Fig. 9.

VI. CONCLUSIONS

We have presented a scheme for the deterministic pro
tion of N-photon Fock states from couplingN three-level
atoms in a high-finesse optical cavity to an external fie
The method relies on adiabatic passage through a contin
family of dark states, which is controlled by the ramping
of the external field. We have shown that this procedure
reliably output pulses ofN photons from the cavity. We hav
made a detailed analysis of the errors involved in
N-photon state production. These result when there i
breakdown of adiabaticity and from spontaneous emiss
This error analysis yields analytical bounds on the err
which are well reproduced by the results of numerical sim
lations for up toN55 photons. Our estimates for physical
realistic cavity and atom-field parameters indicate that
scheme may be used reliably to generate states with u
N5100 photons.

One way in which such a deterministic Fock-state gene

FIG. 8. Fractional spontaneous loss for linear and Gaus
ramping (D522g,g5g/20, andk5g/10). For the linear ramp
~circles!, R5g/30. For the Gaussian ramp~diamonds!, r (t)
5g exp(t2t0)

2/(2t2), t550/g. The Gaussian widtht was chosen
such that the process of emitting a single photon would occur a
same time as the linear ramp. One expects that a more sophisti
pulse could result in an order of magnitude reduction of the fr
tional spontaneous loss.
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tor may be constructed in the near future is using a com
nation of an ultracold atomic source and a high-finesse o
cal resonator~with parameters such as those used for
calculations in Sec. V! such as those used in the works
Kimble @35#. Modern techniques of laser and evaporati
cooling in magnetic traps can readily produce cold a
tightly confined atomic gases, which can be transported
vacuum from a production region to the confines of an op
cal resonator. Using ultracold alkali atoms, the statesu0& and
u2& can be chosen to be two ground-state hyperfine lev
which are both magnetically trapped, such as theuF51,mF
521& and uF52,mF51& hyperfine states of87Rb. These
may be connected by aDmF52 Raman transition using ex
cited levels on theD1 or D2 transitions—while the strength
of this transition is suppressed at large detuningsuDu from
the atomic resonance, our work shows that only mode
detunings~severalg) are necessary for high-fidelity opera
tion. The initialN-atom state may be generated by followin
a weak microwave excitation with atom-number-sensitive
lection, or, alternately, by real-time observation of the atom
number in a given hyperfine level. This would set prop
initial conditions forN-photon generation.

Several additional comments are in order. Throughout
work, we have assumed that the atoms are identic
coupled to the cavity and pump fields. Similarly, we assu
that these atoms are indistinguishable in their spontane
emission to optical modes outside the cavity. It would
desirable for theN-photon generator to operate similarly
these restrictions are eased. Toward this end, it is still p
sible to define a family of dark states for atoms which are
identically coupled to the cavity and pump fields. As suc
our analytical approach to estimating the photon losses
spontaneous emission could be similarly extended to s
cases. We believe this would provide similar performance
the idealized case we have provided herein, i.e., the de
ministic production of Fock states containing as many asN
5100 photons should be possible. However, one would

n

e
ted
-

FIG. 9. Fractional spontaneous loss as a function of cavity c
pling g and detuningD (R5g/100,g5k/2). One sees that at al
values ofD there is a significant decrease in fractional spontane
loss for increasingg. In the largeuDu limit, one finds that the de-
crease in spontaneous loss with decreasingg has a 1/g2 dependence,
as predicted by our pertubative analysis~see Sec. IV D!.
8-10
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pect that while different spatial arrangements ofN atoms in a
cavity would all produceN-photon Fock states, the specifi
optical mode occupied by thoseN photons would differ. Ap-
plications requiring many orthogonal, simultaneous pulse
N photons ~such as Heisenberg-limited interferometr!
would be constrained by these differences.

We envisage a number of applications for determini
cally producedN-photon states. As alluded to in the abo
discussion, two orthogonalN-photon states can be combine
using linear beam splitters to create an interferometer wh
is sensitive to differential phase shifts between the two a
of the interferometer which are on the order of 1/N ~the
Heisenberg limit!, rather than the typical 1/AN sensitivity
~the standard quantum limit! obtained with classical ligh
pulses@36#. Two orthogonalN-photon states can also be us
to create a highly entangled state using only measurem
and linear optics@37#. Such highly entangled photon stat
can be used to perform precision measurements@38–40#.
The CQED device described in this work could thus be u
for demonstrations of this interferometric method. While t
low photon numbers deterministically available from th
CQED device~given current state-of-the-art cavity param
eters! would not yield the precision available from the use
much more intense classical light sources, there may be
plications requiring high precision at low light levels that a
enabled by this Fock-state generator, e.g., coherent co
@41#. Other applications in the field of quantum informatio
communciation, cryptography, and computation are also p
sible, and we intend to investigate such potential applicati
in future work. Finally, a deterministicN-photon source
would find both basic and applied use for the absolute c
bration of optical detectors, particularly those designed to
sensitive to multiple photons~as opposed to conventiona
avalanche photodiode devices!. Similarly, theN-photon gen-
erator can be used as the light source for multiphoton sp
troscopy, e.g., resonantly enhanced multiphoton ioniza
@42#, although the optical frequency range that can be p
duced by a given atom-based system would be quite limi

Note added.After this work was completed we learne
that similar N-atom dark states have been proposed
Ref. @43#.
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APPENDIX A

In this appendix, we present a qualitative picture of t
eigenstates of our system in the smallr limit, i.e., a descrip-
tion of the eigenstates of the nonresonant Tavis-Cummi
Hamiltonian, Eq.~8!. First, note that if the creation and an
nihilation operators associated with the cavity were n
present in Eq.~8!, the Tavis-Cummings Hamiltonian woul
become again simply a Hamiltonian describing angular m
mentum~F! about some axis (ẑ). In fact, for large enough
uDu, one sees that is indeed the case, and we do merely
eigenstates of angular momentum about theẑ axis. In order
to get a qualitative picture of the Tavis-Cummings eige
states for general values of the cavity couplingg and finite
values ofl, it is useful to treat the cavity creation and ann
hilation operators as operators that act to enhance the ‘‘ef
tive magnetic field’’ in the ‘‘x̂’’ direction. For example, when
one has a large number of photons,l, in the cavity a standard
approximation is to replace the cavity photon creation a
annihilation operators withAl . Applying this transformation
to Eq. ~9!, one finds that the Hamiltonian becomes simp
H5D(Ft1Fz)1gAlF x , i.e., the cavity coupling has bee
transformed into an effective magnetic field in thex̂ direc-
tion.

The eigenstates of Eq.~9! are constructed as follows
First, one starts with atomic states that are the eigenstate
Fz , namely,u f , f z&5un1&5 f 1 f z ,n25 f 2 f z . We know that
the Hamiltonian conservesD, the difference in the number o
atoms in stateu2& and the number of photons,l, in the cavity.
In this representation, the conserved quantity is2 f 1 f z1 l
[2k. We can then append a photon state that reflects
conservation symmetry to the atomic states of modesu1& and
u2& identified viaFz . This results in the atom-photon state
u f , f z ,k&F5u f , f z&Fu l 52k1 f 2 f z&. The only missing com-
ponent is now an atomic state of modeu0&. We then append
the appropriate number state of the atomic modeu0& such
that N is conserved, according toN52 f 1n0. This then
specifies the remaining indexn0. We have thereby arrived a
a set of statesu f , f z ,k,N&5un05N22 f ,n15 f 1 f z ,n25 f
2 f z ,l 52k1 f 2 f z&, which may now be used as a basis f
expansion of the exact eigenstates of Eq.~9!. Since the
Hamiltonian Eq.~9! conservesf, k, andn, the exact eigen-
states can be formally written as u f ,m,k,n&F
5( f z

cm fz
u f , f z ,k,N&. Naturally, determining the coefficient

cm fz
is not trivial @28#. For our purposes here, it is not ne

essary to find explicit solutions for the coefficients. We r
quire only the main features of the energy spectrum. Th
features are available from the identification of the abo
basis and are described below.

It is important to note that in order for the photon numb
l to be positive, we must havef 2 f z>k. For fixed f and k
values, this can lead to a truncation of the possible access
states. One finds that for positivek, the angular-momentum
projection m can have only 2(f 2k/2)11 values, whereas
for negativek, m can take all 2f 11 values. This implies tha
for k<0, the eigenstate degeneracy for given values off, N,
and k equals the degeneracy one would expect for a to
angular momentum value off ~i.e., 2f 11). In contrast, for
8-11



e
f
l-
it

te
s

he
t

s

e
id

r
r t
s
r

liz

a

f

te

BROWN et al. PHYSICAL REVIEW A 67, 043818 ~2003!
values k.0, the eigenstate degeneracy equals the deg
eracy expected for a total angular-momentum value of
2k/2, i.e., 2(f 2k/2)11. Note that in our scheme we a
ways assume that there are initially no photons in the cav
i.e., k>0.

In summary, we see that one can think of the sta
u f ,m,k,N&F as being effectively ‘‘angular-momentum’’ state
possessing a total angular momentumFt equal tof 2k/2 and
angular-momentum projection ofm about the ‘‘magnetic
axis.’’ Although this analogy is not perfect because of t
spread of actual eigenstates over this basis, it does con
the following important feature: foruDu larger thangAl max

5gA2 f 2k, wherel max is the maximum number of photon
in the cavity, the eigenstates are eigenstates ofFz , with ei-
genvaluem2k/2. In contrast, for small and medium siz
values ofuDu, the eigenstates are superpositions over a w
range off z states.

APPENDIX B

In this appendix, we derive an upper bound on the va
ance of cavity photon number for the dark state. In orde
reach this bound, we need to first outline other propertie
the dark state. We begin with a few definitions. The da
state in thee(N,k) manifold is given by

uCk&5
1

Zk
(
l 50

N2k
~2x! l

A~N2k2 l !! ~ l 1k!! l !

3u~N2k2 l !,0,~ l 1k!,l &, ~B1!

wherex5r /g andZk is the normalization constant.
Let uFk& be the state given by (d/dx)uCk&. Thus,

uFk&5
1

Yk
S 1

Zk
(
l 51

N2k
l ~2x! l 21

A~N2k2 l !! ~ l 1k!! l !

3u~N2k2 l !,0,~ l 1k!,l &2
Zk8

Zk
uCk& D , ~B2!

whereYk is the normalization constant and (d/dx)Zk5Zk8 .
We now present some properties relating these norma

tion constants to each other and their derivatives. So let^ l &k
be the average number of photons in the cavity for the d
state in thek manifold. In other words,

^ l &k5^Ckua†auCk&

5
1

Zk
2 (

l 50

N2k
lx2l

~N2k2 l !! ~ l 1k!! l !
. ~B3!

Property 1.

x
Zk8

Zk
5^ l &k . ~B4!

Proof. By definition, Zk is the normalization constant o
the dark stateuCk&. Hence,
04381
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Zk
25 (

l 50

N2k
x2l

~N2k2 l !! ~ l 1k!! l !
.

Therefore,

d

dx
Zk

252Zk8Zk5 (
l 51

N2k
2lx2l 21

~N2k2 l !! ~ l 1k!! l !

and

xZk8Zk5 (
l 50

N2k
lx2l

~N2k2 l !! ~ l 1k!! l !
.

Dividing both sides byZk
2 gives us

xZk8

Zk
5

1

Zk
2 (

l 50

N2k
lx2l

~N2k2 l !! ~ l 1k!! l !

5^ l &k @ from Eq. ~B4!#

Property 2.

S x
Zk11

Zk
D 2

5^ l &k . ~B5!

Proof. Zk11 is the normalizaton constant for the sta
uCk11&. Hence by definition,

Zk11
2 5 (

l 50

N2(k11)
x2l

@N2~k11!2 l #! ~ l 1k11!! l !
.

Therefore,

~xZk11!25 (
l 50

N2k21
x2(l 11)

~N2k212 l !! ~ l 1k11!! l !
,

~xZk11!25 (
l 50

N2k21
~ l 11!x2(l 11)

@N2k2~ l 11!#! ~ l 111k!! ~ l 11!!
,

and

~xZk11!25 (
l 51

N2k
~ l !x2l

~N2k2 l !! ~ l 1k!! l !
.

Dividing both sides byZk
2 , we get the result

S xZk11

Zk
D 2

5
1

Zk
2 (

l 50

N2k
~ l !x2l

~N2k2 l !! ~ l 1k!! l !
.

From Eq.~B3!, we prove the required result.
Property 3.If the system is in the dark stateuCk&, then

Var~a†a!5~xYk!
2. ~B6!

Proof. It is trivial to see that Property 3 is true whenx
50. Let xÞ0. Consider the stateuFk& given by Eq.~B2!.
SincexÞ0, we can extend the summation tol 50. Thus,
8-12
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uFk&5
1

Yk
S 1

Zk
(
l 50

N2k
l ~2x! l 21

A~N2k2 l !! ~ l 1k!! l !

3u~N2k2 l !,0,~ l 1k!,l &2
Zk8

Zk
uCk& D

5
1

YkZk
(
l 50

l 5N2k S l 2x
Zk8

Zk
D ~2x! l 21

A~N2k2 l !! ~ l 1k!! l !

3u~N2k2 l !,0,~ l 1k!,l & @using Eq.~B1!#

5
1

YkZk
(
l 50

N2k

~ l 2^ l &k!
~2x! l -1

A~N2k- l !! ~ l 1k!! l !

3u~N2k- l !,0,~ l 1k!,l & @using Property 1#.

Yk is the normalization constant ofuFk&. Thus,

Yk
25

1

Zk
2 (

l 50

N2k

~ l 2^ l &k!
2

x2(l 21)

~N2k2 l !! ~ l 1k!! l !
.

Therefore,

~xYk!
25

1

Zk
2 (

l 50

N2k

~ l 2^ l &k!
2

x2l

~N2k2 l !! ~ l 1k!! l !

and

~xYk!
25^ l 2&k2~^ l &k!

2.

It easy to see that this is merely Var(a†a).
Property 4.

^ l 2&k5^ l &k~^ l &k1111!. ~B7!
04381
Proof.

^ l 2&k5
1

Zk
2 (

l 50

N2k
l 2x2l

~N2k2 l !! ~ l 1k!! l !

5
1

Zk
2 (

l 51

N2k
lx2l

~N2k2 l !! ~ l 1k!! ~ l 21!!

5
1

Zk
2 (

l 50

N2k21
~ l 11!x2(l 11)

~N2k2 l 21!! ~ l 111k!! l !

5
x2Zk11

2

Zk
2Zk11

2 (
l 50

N2(k11)
~ l 11!x2l

@N2~k11!2 l #! ~ l 1k11!! l !

5
x2Zk11

2

Zk
2

1

Zk11
2 (

l 50

N2(k11)
~ l 11!x2l

@N2~k11!2 l #! ~ l 1k11!! l !

5
x2Zk11

2

Zk
2 ^ l 11&k11 .

Using Property 2, we get the required result.
Property 5.

^ l &k>^ l &k11 . ~B8!

Proof. We need to show that

^ l &k2^ l &k11>0, ~B9!

which is equivalent to showing that

Zk
2Zk11

2 ^ l &k2Zk
2Zk11

2 ^ l &k11>0, ~B10!

sinceZj is positive for allj. We have
Zk
2Zk11

2 ^ l &k2Zk
2Zk11

2 ^ l &k115Zk11
2 (

l 50

N2k
lx2l

~N2k2 l !! ~ l 1k!! l !
2Zk

2 (
m50

N2k21
mx2m

~N2k212m!! ~m1k11!!m!

5 (
m50

N2k21
x2m

~N2k212m!! ~m1k11!!m! (
l 50

N2k
lx2l

~N2k2 l !! ~ l 1k!! l !

2 (
l 50

N2k
x2l

~N2k2 l !! ~ l 1k!! l ! (
m50

N2k21
mx2m

~N2k212m!! ~m1k11!!m!

5
x2(N2k)

N! ~N2k!! S (
m50

N2k21
~N2k2m!x2m

~N2k212m!! ~m1k11!!m! D
1 (

m50

N2k21

(
l 50

N2k21
~ l 2m!x2(m1 l )

~N2k212m!! ~m1k11!!m! ~N2k2 l !! ~ l 1k!! l !
.

We note that

x2(N2k)

N! ~N2k!! S (
m50

N2k21
~N2k2m!x2m

~N2k212m!! ~m1k11!!m! D>0. ~B11!
8-13
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Thus,

Zk
2Zk11

2 ^ l &k2Zk
2Zk11

2 ^ l &k11> (
m50

N2k21

(
l 50

N2k21
~ l 2m!x2(m1 l )

~N2k212m!! ~m1k11!!m! ~N2k2 l !! ~ l 1k!! l !
. ~B12!

In order to evaluate the sum in Eq.~B12!, we choose two integers between 0 andN2k21, a andb. We then evaluate the sum
of the two terms corresponding tol 5a, m5b, and l 5b, m5a. We see that

~a2b!x2(a1b)

~N2k212b!! ~b1k11!!b! ~N2k2a!! ~a1k!!a!
1

~b2a!x2(a1b)

~N2k212a!! ~a1k11!!a! ~N2k2b!! ~b1k!!b!

5
x~2~a1b!!

~N2k2b!! ~b1k!!b! ~N2k2a!! ~a1k!!a! F ~a2b!S N2k2b

b1k
2

N2k2a

a1k D G .
Since

x~2~a1b!!

~N2k2b!! ~b1k!!b! ~N2k2a!! ~a1k!!a!
>0,

we simply need to determine whether

~a2b!S N2k2b

b1k
2

N2k2a

a1k D>0.

If a.b, a2b is positive, and

S N2k2b

b1k
2

N2k2a

a1k D
is positive, so the product is therefore also positive. Ifb.a, a2b is negative, and

S N2k2b

b1k
2

N2k2a

a1k D
is also negative, so therefore the product is still positive . Hence, for alla andb

x2(a1b)

~N2k2b!! ~b1k!!b! ~N2k2a!! ~a1k!!a! F ~a2b!S N2k2b

b1k
2

N2k2a

a1k D G>0, ~B13!

which implies that

(
m50

N2k21

(
l 50

N2k21
~ l 2m!x2(m1 l )

~N2k212m!! ~m1k11!!m! ~N2k2 l !! ~ l 1k!! l !
>0. ~B14!
loc-
By Eqs.~B12! and ~B14!, we have

Zk
2Zk11

2 ^ l &k2Zk
2Zk11

2 ^ l &k11>0 ~B15!

and thus

^ l &k>^ l &k11 . ~B16!

Property 6.If the system is in the dark stateuCk&,

Var~a†a!k<~N2k!. ~B17!

Proof.
04381
Var~a†a!k5^ l 2&k2~^ l &k!
2

5^ l &k~^ l &k1111!2~^ l &k!
2 @using Property 4#

<^ l &k @using Property 5#<N2k.

APPENDIX C

We determine here an upper bound on the angular ve
ity of the dark state, maxak

25max^ċk
0(t)uċk

0(t)&. We first note
that using the chain rule, the maxak

2 is equivalent to deter-

mining the maximum value ofẋ2Yk
2 whereYk is the normal-

ization constant defined in Eq.~B2!. For convenience, we
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will define cl5(2x) l /A(N2k2 l )!( l 1k)! l ! and
cl85(2x) l /A(N2k2 l )!( l 1k)! l ! ~throughout this appen
dix, we will use f 8 to represent the derivative off with re-
spect tox, and ḟ to represent the derivative off with respect
to t).

Since the maximum of the product of two functions
always less than or equal to the product of the maximum
each function, the first step is to simply take the maximum
ẋ2. This yields

maxẋ25S maxṙ

g
D 2

. ~C1!

The second step is to determine the maximum value
Yk

2 . Using the notation from Appendix B, we first note th
^CkuFk&5(1/Yk)^CkuCk8&50, since uCk& is normalized.
From Eq.~B2!, this implies that

K CkU(
l 51

N2k

cl8U~N2k2 l !,0,~ l 1k!,l L 5Zk8 . ~C2!

Hence, we can write the following expression forYk
2 :

Yk
25

1

Zk
2 S (

l 51

N2k

~cl8!22~Zk8!2D . ~C3!
.

ff,

.J
er

v

s

ev

k,
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ev
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f
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SinceYk
2 must be positive and both( l 51

N2k(cl8)
2 and (Zk8)

2 are
positive, we can write the following inequality:

Yk
2<

(
l 51

N2k

~cl8!2

Zk
2

. ~C4!

Note thatYk
2 is an even function ofx, so the value ofYk

2

at x50 must be a local minimum or maximum. When on
takes the derivative ofYk with respect tox, one finds only a
single zero at the origin. The identityx2Yk

25Var(a†a), im-
plies thatYk

2 must go to zero asx increases in order to main
tain a finite variance. Therefore, the maximum value ofYk
occurs at the origin. Explicitly calculating the limit at th
origin yields

maxYk
25

N2k

k11
. ~C5!

Consequently, we have an expression for the maximum
gular velocity

maxak
25

~N2k!maxṙ 2

~k11!g
. ~C6!
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