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Detect Rb at 780nm

Quantify transmission
as the average
intracavity photon
number: n

Detection efficiency:
n =0.05
Cavity mirrors: Vital statistics
ROC = 5cm
Length = 194 um
Finesse = 584,000



Cavity QED: Strong Coupling
.t Cold Atoms

Typically Nonlinear optics occurs at high
intensities as conventional materials mediate
weak coupling between light and matter

Strong Coupling allows access to nonlinear
phenomenon at very low average photon
number:

I" - atomic decay rate

g - atom cavity coupling Optical bistability, cross phase modulation,

/ \p\hoton blockade

Critical photon number

n, =y%2g.2 = .02 Cold atoms introduce long lived motional
o coherence, hence, nonlinearities
lical Ao ninbel N, =2yk/g,2 = .02 resulting form collective atomic motion
may occur at very low average photon

Single atom cooperativity

\ C =g, 2yx = 50

number;

/ n~T, /x

(Rempe ‘91, Gripp ‘96, Stauer ‘04, Turchette ‘95, Birnbaum ‘05)




Dispersive Cavity QED
(far from atomic resonances)

Presence of atoms basically changes the index of refraction in the cavity
Each atom shifts the cavity resonance by an amount: g2/A
a
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Atoms occupy a 1D lattice in the cavity

Trapping U(z) = Ugso(z) + Uyzgy(z,t)
Potential T A

Cavity is stabilized to
Probe this wavelength

Varies depending
Interaction depends on intensity of the on detuning from
probe: this differs from well to well. cavity resonance

Nig{ _ Ngp
A,  2A4




Trapping U(z) = Ugso(2) + U go(2,t)

Potential T R
Cauvity is stabilized to
Probe this wavelength
Presence of the probe shifts Varies depending
potential minimum. on detuning from

_ _ _ cavity resonance
This causes the overall interaction to

either increase or decrease

g2
Ay = NJo (1 406

N Uzs0 )

Usso



Modified cavity lineshape

Intensity in cavity is normally a lorentzian
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Modified cavity lineshape

Intensity in cavity is normally a lorentzian

nma,a:
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- But now, A, depends on the intensity,
AN TA@C

nmaa:
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Kerr Effect



Asymmetric Line Shapes from
Kerr Non-Linearity
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Dispersive/Refractive
bistability
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Dispersive/Refractive
bistability
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! \),,b Non-linearity at very low
yze—< L/ photon numbers

04 As we reduce the atomic detuning,
= fewer photons will suffice for
| bistability; nonlinearities at very low
e I photon number are obtainable.
Nonlinearity “phase diagram” When photons arrive less

frequently than the period of

Bistability harmonic motion, granularity of

1_
_ individual photons becomes
important.
T 01
: / Granularity { Ultimately, the damping of atomic

motion forces a technical limit on
the nonlinearity.
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Varying the Kerr parameter
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Kerr Parameter = 0.25



Varying the Kerr parameter

]|

pc

Kerr Parameter varied from
0.251t09.75

Strength of Nonlinearity
controlled by A, or atom

number



Varying the Kerr parameter

]|

Three solutions to the cubic

Nmax . Kerr Parameter = 9.75
1+ (AC—AN(He(ﬁ/ﬁmw))) “Hysteresis”

K

n —




Far Off-Resonant optical Tra

Cavity stabilization laser at 851nm
forms an optical dipole trap

Optical lat
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Cold atoms integrated with
high finesse cavity

Z
| iy ) Top cavity
87Rb MOT, —

magnetic transter
evaporative coolin

Primary Magnetic
trap coils form a TOP
trap



