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Recent experimental studies of Rb spinor Bose Einstein condensates have shown the existence of a
magnetic field driven quantum phase transition accompanied by structure formation on the ferromagnetic side
of the transition. In this theoretical study we examine the dynamics of the unstable modes following the
transition within the framework of the semiclassical truncated Wigner approximation. In the process we present
a systematic study of the effects of the trap, nonlinearities, finite temperature, and dipole-dipole interactions.
Starting from an initial state which includes quantum fluctuations, we attempt to make quantitative compari-
sons with recent experimental data on this system by combining results presented here with those presented
previously [S. Leslie, J. Guzman, M. Vengalattore, J. D. Sau, M. L. Cohen, and D. M. Stamper-Kurn, Phys.
Rev. A 79, 043631 (2009)]. In the process we estimate the contribution of quantum zero-point fluctuations to
the domain formation with quantitative accuracy and find discrepancies between the calculations and experi-
ments at the quantitative level, despite the qualitative agreement between theory and experiment. We discuss
the possible origins of these discrepancies. Finally, using the strong anisotropy of the trap, we propose ways to

observe directly the effects of dipole-dipole interactions on the spinor condensate dynamics.
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I. INTRODUCTION

The physics of phase transitions between ordered and dis-
ordered phases has been studied extensively in the past and
has yielded answers to many fundamental questions about
the effects of interactions and of quantum and thermal fluc-
tuations on the equilibrium properties in various phases.
However, because of the short time scales and high levels of
noise and impurities involved in traditional condensed matter
systems, it has been difficult to study the dynamics of such
transitions in detail. Ultracold atoms, because of their low
densities and temperatures, provide an opportunity to study
the nonequilibrium dynamics around phase transitions in a
spatially and temporally resolved fashion. Bose Einstein con-
densates (BECs) of atoms with a spin degree of freedom, i.e.,
spinor BECs, are an example of such a system where it is
possible to observe nonequilibrium spin dynamics and how
they are affected by quantum noise and the proximity to
phase transitions [1].

Recent experiments [1,2] have reported the formation of
magnetic structures in ultracold spin-1 ’Rb gases. Spin-1
atoms support two characteristic families of quantum states:
polar states exemplified by the m,=0 hyperfine state and
magnetic states exemplified by the m,= * 1 hyperfine states
[3-5]; here m_ denotes the eigenvalue for the dimensionless
spin projection along the Z axis. As discussed further below,
spin-dependent contact interactions naturally favor the ferro-
magnetic state in *’Rb spinor condensates. The Rb atom may
also be subjected to an extrinsic quadratic Zeeman shift,
which lowers the energy of the m,=0 state by an amount g
with respect to the average of the energies of the m,= *=1
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states. In the experiments, a nonmagnetic m,=0 condensate
is prepared at a large value of ¢, where its internal state
composition is stable. Following this, ¢ is rapidly quenched
to a regime where the initially prepared m,=0 becomes un-
stable. As population flows to the initially unoccupied
m,= * ] states, the condensed gas is observed to break trans-
lational and rotational symmetry spontaneously and form fer-
romagnetic domains of transversely magnetized atoms. In
the experiment, the system also evolves under a significant
linear Zeeman splitting of the three Zeeman sublevels
m,=0, = 1. However, as we shall see later, since most of the
terms of the Hamiltonian are invariant under global unitary
spin rotations, the linear Zeeman shifts can be eliminated
from the theoretical treatment by a global unitary transfor-
mation of the spin into the rotating frame of the Larmor
precessing spin.

The symmetry-breaking ferromagnetic domain formation
discussed above is a phenomenon that accompanies a large
number of thermodynamic phase transitions such as the para-
magnetic to ferromagnetic phase transition seen in iron when
the temperature is lowered below its Curie point. However,
unlike the thermodynamic phase transition in Fe, the
symmetry-breaking transition in the spinor BEC is a quan-
tum transition that can occur at arbitrarily low temperature.
Concomitantly, the initial fluctuations that seed the symmetry
breaking dynamics in a spinor BEC need not be thermal in
nature but, rather, may be of a quantum origin. The possible
quantum origin of such fluctuations makes the detailed study
of the origin and dynamics of the spontaneous magnetization
of fundamental interest.

One approach to developing a theoretical understanding
of the above phenomenon is to analyze the low energy dy-
namics of a spinor BEC by linearizing the Heisenberg equa-
tion of motion of the bosonic annihilation operators for the
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atoms. In previous theoretical studies [6,7], these linearized
equations of motion were obtained by expanding the fields
corresponding to the three components of the BEC around
the initial m,=0 state. One finds that the low energy dynam-
ics of the condensate in the initial state can be described by a
set of three low energy excitations composed of a gapless
phonon mode and two gapped magnon modes. On quenching
the quadratic Zeeman shift to a value which is below the
phase transition, the magnon modes are found to become
unstable. These unstable modes amplify any initial perturba-
tions from a homogeneous polar state. Thus the domain for-
mation following the quench is described as resulting from
the quantum fluctuations in the initial ground state being
dynamically amplified [6,7].

The theoretical calculations discussed above treat the do-
main formation by calculating the linearized dynamics of a
homogeneous spinor condensate with local interactions.
While these calculations yield results in qualitative agree-
ment with experiment, a quantitative comparison to experi-
ment is essential for confirming the quantum nature of the
initial seed and of the amplifier driving the structure forma-
tion. An improved understanding of the dynamics of the
spinor condensate including the effect of the trapping poten-
tial and nonlinearities has been obtained in previous theoret-
ical works [7-9]. In the current work, we improve further our
understanding of the dynamics of spinor condensates by in-
cluding the effects of dipole-dipole interactions and finite
temperature and use this improved understanding to deter-
mine the domain formation resulting from quantum fluctua-
tions within the truncated Wigner approximation (TWA).

We begin with a discussion of how the condensate in a
pancake-shaped trap can be modeled by a two-dimensional
(2D) Hamiltonian. Next we introduce a general framework
for calculating the eigenmodes of the inhomogeneous gas
which are used to describe the time evolution of the initial
quantum fluctuations. Following this we discuss explicitly
the effect of dipole-dipole interactions, the trap and finite
temperatures on the dynamics of a spinor BEC. Next we
introduce the approximations and the general computational
framework that allow us to include all these effects together
with nonlinearity effects such as saturation of the transverse
magnetization at long times. Finally we comment on how
our results compare to experimental results.

II. TWO-DIMENSIONAL EFFECTIVE HAMILTONIAN

The many-body Hamiltonian for the spin-1 7Rb gas con-
sidered in this work, expressed using bosonic fields ‘Zm,,

to represent the three magnetic sublevels m,=0, =1, is given
as [8,10]

h? -
H= f dR ﬁ% |Vlﬁa|2 + CO(fl2 -7)
+ CZF\Q + q(t)é + Vtrap(R)ﬁ + Udipoles (1)

where M is the atomic mass, ¢(z) is the strength of the qua-
dratic Zeeman shift, and V,,,,(R) is the external trap poten-
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tial. The parameter ¢ is the strength of the spin-independent
atom-atom short range repulsion, ¢, is the coupling constant
for the spin-dependent contact interaction, and U ;. is the
dipole-dipole interaction. The boson field operators appear in
the magnetic part of the interaction terms through the spin

density operators defined as F =2/, ﬁ,y@;@y where J, are
the spin-1 matrices in the fundamental representation. The
quadratic Zeeman shift term in the Hamiltonian is of the
form Q=2B,Y(P'J)é,ylz;’zy where P is the axis along which
the quadratic Zeeman shift is applied. When the quadratic
Zeeman shift is applied via a magnetic field, then P coincides
with the direction of the applied magnetic field. The total

atom density is given by ﬁ=2a|fpa|2. In the above discussion,
the condensate is prepared in the m,=0 hyperfine state,
where m,, is the magnetic quantum number for spins quan-
tized along the axis P. This state is prepared at a high qua-
dratic Zeeman shift g(t)>2|c,|n;p where nsp is the peak
density at the center of the condensate. The quadratic Zee-
man shift is then rapidly reduced below the critical value of
2|c,|n3p and the state of the condensate is allowed to evolve.
In the experimental work discussed in this paper the axis P
along which the quadratic Zeeman shift is applied is taken to
be the z axis, which coincides with the longest axis of the
trap. The shortest axis of the trap is the thickness direction of
the pancake-shaped quasi-two-dimensional condensate and is
taken to be the y axis. The third axis is taken to be X.

As mentioned in the introduction, the atoms in the system
evolve under a strong magnetic field which we have elimi-
nated from the Hamiltonian described in Eq. (1), by trans-
forming to a rotating frame. Such a transformation leaves the
rotation-invariant terms in the Hamiltonian unchanged but
affects the quadratic Zeeman shift term and the dipole-dipole
interaction term Uy;,,. Yet, under the experimental condi-
tions that the Larmor precession frequency is far higher than
that of the interaction-driven spin dynamics, one may con-
sider the quadratic Zeeman shift term and the dipole interac-
tion as precession-averaged static terms in the Hamiltonian.
It may also be possible to vary dynamically the axis of the
quadratic Zeeman shift to follow the Larmor precession of
the initial state applied by the initial magnetic field, in which
case the quadratic Zeeman shift term is intrinsically station-
ary in the rotating frame of the spin.

The above defined Hamiltonian can be used to calculate
the dynamics of the transverse magnetization, which is the
observed quantity in the aforementioned experiments [1].
The x and the y components of the transverse magnetization
can be combined into a single complex transverse magneti-

zation operator F L(R):I}X(R)Hﬁy(R) which is given in
terms of the fields (Za by

FLR) = 2[d(R) ., (R) + (R (R (2)

The random magnetization domain pattern that forms after
the quench can be characterized by a correlation function of
the above defined transverse magnetization, which we take

as G(R)=[dR{F | (R-8R/2)F" (R+8R/2))/[[dR(A(R))]2
[1].
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An important feature of the experiments is the use of con-
densates with widths in one dimension (y) that are smaller
than the spin healing length, 27/V2M|c,|nsp. The
three-dimensional (3D) Hamiltonian is thus reduced to a
two-dimensional ~ form  through  the  substitutions
4, (R) = (r)&(r;y)Vn,p where y=R-§ and R=r+yy. The
peak density integrated along the y axis is given by
nop=Jdy{A(0,y)) i Here &r;y) represents the normal-
ized spatial profile of the wave function at each point r in the
two-dimensional x-z plane. The scale of the initial quantum
zero-point fluctuations of the two-dimensional field, g?)a, is
determined from the canonical commutation relations
[Ba(r). SN )= 8(r—1")3, 5

Using these relations and the Heisenberg equations of mo-
tion one can construct a time-evolution equation for the op-

erator ¢,(r) of the form,

. w2\,
latd)a(r): _ﬁ Vrd)a(r)

+ a(r) J dy( )[V2§(r,y)]§(r,y)

+ a(r) f dy&(;3)Viap(039) + Uy (3)

The second term on the right-hand side of the above equation
may be considered to be an effective renormalization of the
potential energy related to confinement effects. Within the
Thomas-Fermi (TF) approximation this term is small through
most of the condensate and is hence ignored.

For simplicity, we assume the wave function profile to be
a TF profile given by £(r;y)=(3/4R,)(r)[1- yZ/R%F (r)]"?
where R (r)=R,(1-x*/Riy ,—2*/ Ry, )12 and R, . R, Jand R,
are the TF radn in the x, the y, and the z directions, respec-
tively. With the above choice of a transverse profile, the con-
tribution of a local two-body potential of the form c,,&(r
—r’)8(y—y') to the interaction term U,,, simplifies to

Cm f lf(R)f(r;y)dy=cm|§’%|2 f E(riy)dyd’(r)
Ripy(0) 5
R, (1) ¢°(r), 4)

where the index m: is either O or 2 depending on whether we
are referring to the spin-independent or spin-dependent parts
of the contact interaction, respectively. In the rest of the pa-
per we will be using a two-dimensional position-dependent
effective interaction by c,,(r)=0.8¢,n3pRrr y(0)/ Rrp (r).

=0.8 Cl3p

III. QUANTUM DYNAMICS AND QUANTUM NOISE
SEEDED DOMAIN FORMATION

Let us now describe the fluctuations and domain forma-
tion in terms of the two-dimensional fields derived above.
We consider the dynamics and low energy fluctuations of the
initial m,=0 state by shifting the operator corresponding to

the m,=0 component by do=\n(r)+ 7, where n(r)
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=<$g(r) do(r)) is the equilibrium density for the condensate
at large positive quadratic Zeeman shift of g |c,|nsp. The
Hamiltonian can now be expanded to second order in the

small fluctuations in the small fluctuation operators ., 7.
In this Hamiltonian, the terms involving 7,, which describe
the scalar Bogoliubov spectrum of phonons and free par-
ticles, separate from those involving spin excitations; these
latter terms provide the following Hamiltonian

2
AR AT
+ J [q(1) + co(r)n(r) + Vi (1) + co(r)n(r)]
X(‘?’il&ﬂ + &5:(2’—1)
+ J ex(n)n(e)( 1oy + ¢ 41). (5)
For simplicity, the effect of the dipole-dipole interaction term
has been ignored here and its discussion is postponed to Sec.

V. The dynamics of the magnetic degrees of freedom ob-
tained from the above approximate Hamiltonian are given as

3 D(r) = [ (— ﬁ—Vz +q(1) + Viygp(r)

+[co(r) + cz(r)]n(r)> o+ czn(r)a'}} d(r). (6)

¢+l(r))

$Li(r)
The above spinor equation of motion can be used to de-

scribe the dynamics of the condensate in terms of normal
modes Yﬁfl (r) with frequencies *=E,. The dynamics of

where we have introduced the spinor d(r)=(

®(r, 1) are then determined as
d(r.)= D dDe Y (). (7)

n,o==*1

where cAZEI") are the mode occupancy operators. The magnon
modes are stable when the eigenenergies E, are real, and
unstable when E, are complex. It is these unstable modes
that amplify quantum fluctuations to generate macroscopic
magnetization in the quenched spinor gas.

In the case of a homogeneous condensate the normal
modes Y( 1)(r) can be taken as plane-waves. However the
determlnatlon of these modes in the case of an inhomoge-
neous density must be done in real space using explicit nu-
merical diagonalization of a generalized eigenvalue problem.
In the case of a positive quadratic shift, which is the focus of
in this article, the frequencies of these eigenmodes can be
shown to be either purely real or imaginary as discussed in
Appendix A. A similar eigenmode expansion for a trapped
spinor condensate in the limit of vanishing quadratic Zeeman
shift has been reported in previous work [7].

The quantum noise amplified by these unstable modes is
entirely contained in the correlation function of the spinors
relative to the initial state. Since the initial state of our sys-
tem is assumed to be prepared as a condensate of atoms in
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the m,=0 state, the population in the m,= %1 states is neg-
ligible and the relevant correlator is given by
(@(rl ,0)<13T(r2,0))= &(r;—r,)(1+0.)/2. In the description of
the dynamics of the condensate in terms of magnon modes,
the quantum fluctuations become encoded in the quantum

mode occupancy operators 35,"), which can be derived from
the spinor operator at the time of quench ®(r,0), cAZ,(f)

f dr(lA’L(r - 5r/2)13"1(r+ or/2))

2
{f drnZDn(r)J

G(éor) =
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=[ drYfl")*(r)(IA)(r,O), where ij’)(r) are the dual modes, ex-
plicit expressions for which can be found in Appendix A.
Given this initial noise and the linear dynamics of these
magnon modes, we may calculate the magnetization correla-
tions that may be observed at short times after the quench.

— 2 el(UEn—a"E:l)t

!
nm,o,o

Linearizing the transverse magnetization as F 1 (r)
=nyp\2n(r)[ @], (r)+ d_,(r)], we obtain
|
f de\n(r = or/2)n(r + 5e/2) Y (x = 56/2)(1+ ) YO x + 6r/2)
2
J drn(r)
(8)

X f de YO e )1+ 0 )Y (ry).

Note that the correlation function defined above suffers from
a uv divergence. The physical origin of this divergence is the

fact that £ | represents the magnetization of pointlike par-
ticles. This uv divergence is however not observed experi-
mentally because of the physically natural cutoffs such as the
finite spatial and temporal resolution of the measuring appa-
ratus, which introduces a natural spatiotemporal averaging
into the observed magnetization. For our purposes it suffices
to consider only the contribution of unstable magnon modes
to the transverse magnetization, thus avoiding the uv diver-
gence.

IV. NONLINEARITY EFFECTS: TRUNCATED WIGNER
APPROXIMATION

In the last section we saw how we can describe the phys-
ics of the quench by expanding the Heisenberg equations of
motion about the initial condensate state and keeping terms
up to linear order in the fluctuations. Even though this might
be expected to be a relatively accurate description at short
times where deviations from the initial state are small, it
breaks down at longer times and predicts an unphysical di-
verging magnetization.

Such a divergence is avoided by considering the complete
Hamiltonian, including the higher order terms neglected in
our prior approximation. The direct solution of the Heisen-
berg equations of motion with the nonlinearity terms would
present an extremely difficult task. This is a general feature
of problems involving quantum many-particle systems and
for this reason various approximations must be used to un-

derstand such problems. One such approximation, that has
been seen to describe the dynamics of BECs reasonably well
[11], is the TWA [12,13].

Within the TWA one is interested in calculating the time
evolution of the Wigner distribution function of the fields

&,(r), which are the quantum analog of the classical phase
space distribution. The fields are assumed to evolve accord-
ing to the classical limit of the Heisenberg equations of mo-
tion which are formally equivalent to the Gross-Pitaevskii
equation (GPE) and can be obtained from the Heisenberg

equations of motion by replacing the operator ¢,(r) by the
time-dependent order parameter ¢,(r). Quantum fluctuations
around the mean field time evolution are included in the
TWA by picking the initial condition at random from a clas-
sical distribution of fields representing the initial WDF. Ex-
pectation values of various observables are calculated at the
end of the time evolution by averaging the observables over
the distribution of these trajectories. In our case, where the
initial state has a negligible population in the m,=*1 hy-
perfine state, the classical distribution of the randomly
picked wave functions, ¢,(r), is a Gaussian distribution
with  variance  given by (Bo(0) e (T esassical
=%(q,initialHa)z—(r)(?Sa’(r,)}|q,initial> where |‘I’mmal> is the ini-
tial state with all atoms in the m,=0 hyperfine state [14].

Within the TWA, we obtain the magnetization correlation
function by averaging over numerical results obtained for the
different, random representations of quantum noise. As
shown in Fig. 1, this procedure yields a satisfactory result for
the magnetization variance G(0) that saturates rather than
diverging.
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FIG. 1. Evolution of the variance of the transverse magnetiza-
tion for the experimental configuration [2] for ¢/h=2 Hz and
¢»(0)/h=8 Hz, calculated using the TWA to include nonlinearity
induced saturation effects.

The TWA has been shown to describe dynamical phenom-
ena in BECs with reasonable success. However the TWA
fails to describe certain aspects of the dynamics of BECs,
such as the noncondensate fraction, and improvements be-
yond the TWA have been proposed in several works [15,16].
It is difficult to estimate the accuracy of the TWA in the full
multimode spinor condensate system that we are studying.
However as has been observed in previous work [10], it is
possible to solve the Hamiltonian under consideration
within the single mode approximation exactly. This
corresponds to the limit of a small trap where we can ignore
the spatial dependence of the dynamics of the atoms com-
pletely and the system of 2N atoms can be described by a
Hamiltonian given by Hgy,=(2N— (2)8(%0)((%11$+1+(2)L$_1)
—(pl, ", do+ Pi?by1_1). The time evolution of the fluctua-
tions in the transverse magnetization of this Hamiltonian can
be determined exactly by numerically solving the time evo-
lution of an initial state where all atoms are in the m,=0
hyperfine state. We compared the results of this calculation
for a system of 2000 atoms to the time evolution of the
transverse magnetization obtained within the TWA for the
same system and found excellent agreement between the
growth rate within the TWA and exact results up to the satu-
ration time within the TWA. However, the exact transverse
magnetization was found to saturate at a slightly later time
and at a value that was 10% higher compared to that ob-
tained within the TWA. The TWA is believed to be a good
description of Bose systems with large mode occupancies. In
this light it should be not that both the single mode and
multimode spinor condensates have small mode occupancies
at short times and large mode occupancies at long times and
thus the applicability of the TWA should noted be affected by
the presence of multiple modes from the point of view of
mode occupancy. Therefore, while it is still possible that the
multimode nonlinearity of our system causes physics beyond
the TWA to become directly relevant, the above comparisons
of the TWA to exact results for the single mode systems
demonstrate that the TWA accounts for some of the effects of
nonlinearity in these systems.

V. FINITE TEMPERATURE EFFECTS FROM AN INITIAL
PHONON POPULATION

In attempting to make quantitative comparisons between
calculations and experimental observations, it is imperative
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to consider the role of the nonzero temperature on the initial
preparation and later evolution of the experimental system.
In fact, at first glance, one might expect the quench experi-
ments reported to be wholly dominated by thermal effects,
given that the gas is prepared by evaporative cooling at a
temperature of 7= 50 nK for which the thermal energy is far
larger than the spin-dependent energies responsible for the
quench dynamics, i.e., kzT>|c,|n;p. However, one must
consider separately the kinetic and spin temperatures of the
paramagnetic condensate in these experiments. While the
thermal population of the scalar excitations, the m,=0 Bogo-
liubov excitations about the m,=0 condensate is indeed de-
termined by the 7=50 nK kinetic temperature of the gas, the
magnon excitations are expelled from the gas by the appli-
cation of magnetic field gradients that purify the m,=0
atomic population. To the extent that such state purification
is effective, and that magnon excitations are not thermally
produced, e.g., by incoherent spin-exchange collisions, the
initial spin temperature of the system is indeed near zero.
Thus remarkably, a purely quantum evolution may indeed
occur in the nonzero temperature gas.

Here, we consider the possible influence of the thermal
population of scalar excitations on the quantum quench ex-
periments. The study of the coupling of phonons and mag-
nons requires going beyond the linearized Heisenberg equa-
tion of motion. Thus, we consider the time-evolution
operator for the quantum state of the spinor condensate
as a coherent state path integral  U(t,t,)
=[T,Dp,Dep., exp(iS[p,, ¢.]), as has been found useful for
many boson problems [17]. Here S is the action for the three-
component boson field corresponding to the Hamiltonian in
Sec. II. The scalar phonon fluctuations are composed of a
scalar density fluctuation, &n(r,t)==,|d,(r,1)|*=n(r),
and current fluctuations associated with the density
fluctuations, required by number conservation. In the case of
a condensate with population dominantly in the m,=0 hyper-
fine state, the current fluctuations can be described by the
superfluid  phase  A(r,7) defined through  ¢(r,?)
=M \n(r)+ on(r, 1) |, (r,0]>=|p_,(r,)|>. Since the
density fluctuations are gapped at a high energy by the term
coon(r,t)?/2 in the action S, they can be integrated out to
leave an effective action involving the phase \(r,?).
Therefore in order to eliminate the high frequency
density fluctuations we perform the field substitution
¢1(r,1)— oy (r,1)e™™) in the action S and then integrate
out the density fluctuations on(r,z). This leads to the
approximate action Sapprox = Sphonan[)\] + Smagnzon[ ¢i 1]
+Veouptingl #+1,\] where the Sphon0n=nx2/2co+n2h—M(V)\)2,
Synagnon 18 the action for the ¢, atoms corresponding to the
Hamiltonian ianq. (5) without the scalar interaction term
and Vcoupl,«nngT_,,[—V)\-EaIm(gbaV ¢:)]. The last term is the
interaction that describes the coupling between phonons and
magnons.

The nonzero kinetic temperature of the gas causes (low
frequency) fluctuations of superfluid phase with variance
given by (|\J?)=2MkzT/%h’k’n,p. These thermal phase
fluctuations couple to the dynamics of the magnons,
through the interaction term Vi, ;- A rough estimate
of the magnitude of the effect of the kinetic temperature can
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be made by considering the dimensionless ratio of the
rms value of V,ne to the spin-mixing energy |[c,|n
which is given by

\/ﬁz 2

spin

[
12MN (kBT)kihonon/nZDdCZ|n3D
= \’/(ZMkBT)|C2|/h2n2DC()

where kj,;, is the wave vector associated with the spin heal-
ing length and k,,,,, is the small wave vector associated
with a phonon at the energy scale of the spin dynamics,
|c,|n3p. For the kinetic temperature in experiment of 50 nK,
this dimensionless parameter characterizing thermal effects
is found to be less than 1.3 X 1072, A more rigorous calcula-
tion within the TWA, where phonons are introduced by add-
ing random thermal fluctuations to the initial conditions in
¢, confirms our rough estimate by showing a negligible
effect of the kinetic temperature.

VI. ROLE OF DIPOLE-DIPOLE INTERACTIONS

In the preceding paragraphs we have discussed the phys-
ics of the formation of domains from quantum fluctuations in
a trapped quasi-two-dimensional condensate with ferromag-
netic interactions. However theoretical [18,19] and experi-
mental studies [20] suggest that dipolar interactions play an
important role in determining the magnetization textures for
this system. In this section, we provide the first characteriza-
tion of the role of dipolar interactions on the quantum
quench dynamics of a ’Rb spinor BEC.

The atomic spin undergoes Larmor precession at a high
frequency, on the order of tens of kilohertz, even as slower
dynamics responsible for spontaneous magnetization tran-
spire. While this Larmor precession has no influence on av-
erage on the spin dependent s-wave contact interaction or the
quadratic Zeeman shift, the time averaged Larmor precession
of the atoms must be accounted for in calculating the influ-
ence dipolar interactions, yielding an effective precession-
averaged interaction of the form [21,22]

Mo
Udipote = STT(gFMB)zf dR,dR,

» (R;-R,)*-3[D- (R, -R)T

R K[ {3(D - F(R))]

X[D-F(Ry)]-F(R,)-F(R,)}, (9)

where D is the dipole-precession axis (the magnetic field
axis), gp=1/2 is the gyromagnetic ratio of the electron, ug is
the Bohr magneton. Integrating over the thin dimension of
the condensate, we derive an effective two-dimensional di-
pole interaction as

c
Udipote = ?1 f drdryK(ry,1p)

X{3[D - F(r)][D - F(r,))] - F(r)) - F(r,)},
(10)
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N (R-R")?>-3[D-(R-R"P
K(r,r') = 52(0)f |R—R’|5

XE(r;y)E(r' sy )dydy', (11)

where the dipole interaction strength is given by cgyy,

:n}%:”(gF,uB)z. The dipole-dipole interaction term U, is a

spin-dependent interaction term in the Hamiltonian in addi-
tion to the ferromagnetic part of the contact interaction al-
ready discussed. The total of the two spin-dependent parts of
the interaction Hamiltonian is given by

vain = f dcm(r)ﬁ(r)z + Udipole

[F(r) - F(r,)]

=fdr1dr2c§ff(r1,r2) —
Vn(r)n(ry)

3 A n
+ Ef drdryc, ;K(ry,r))[D - F(r))][D - F(r,)],
(12)
S(ry,1) = oy (r)n(ry) 8ry = 13) — cgq\n(rn(r) K(r,,1,)/2.
(13)

Thus apart from renormalizing the spin-dependent part of the
contact interaction to cgff, the dipole-dipole interaction also
has an intrinsically anisotropic contribution which is given
by the second term in Eq. (12), where the anisotropy is not
related to the spatial anisotropy of the dipole interaction ker-
nel K. This term however turns out to not be relevant for the
linearized dynamics in the case where the dipole-precession
axis D coincides with the spin-quantization axis P.
In the homogeneous case cgff can be written as

e c
5"k x, m) = e(0) = Kk o ), (14)

where K(k, x, 7) is the dipole interaction kernel, and y is the
angle that D makes with the y axis and # is the polar angle of
the vector D in the plane of the BEC, as shown in Fig. 2. The
wave vector k is taken to be along the z axis in the plane of
the BEC. As discussed in Appendix A, the eigenmode treat-
ment discussed in Sec. III can be easily generalized to in-
clude dipole-dipole interactions.

From Eq. (14) it is apparent that in the three-dimensional
homogeneous case dipole-dipole interactions enhance struc-
ture formation for wave vectors along the dipole-precession
axis and suppress it for wave vectors transverse to the dipole-
precession axis. However the effect of dipole-dipole interac-
tions on a quasi-two-dimensional condensate is qualitatively
different. The Fourier transform of the interaction K(k, x, 7)
in the case of the parabolic TF transverse profile along the y
direction is difficult to compute analytically. To obtain a
qualitative understanding of dipole interactions we consider
the case of a 2D condensate for the case of a Gaussian profile
&(r;y) of width w:%RTF,y. This width is chosen so that
the peak density for the normalized profile matches that of
the TF profile. The expression used for the Gaussian regular-
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--- D along x axis
-- D along y axis ||
— D along z axis |

¢ s K/2h (H2)

FIG. 2. (Color online) Momentum dependence of the contribu-
tion of the dipole interaction kernel K defined in Eq. (15) to cgff for
c4a/h=0.8 Hz, ¢,(0)/h=-8.0 Hz. The inset shows the orientation
of the dipole-precession axis D relative to the coordinates and the
plane of the BEC.

ized dipole interaction derived in the Appendix B can be
used in conjunction with standard integrals to determine the
Fourier transform of K(r) for this Gaussian choice of profile
to be

_
44 3
K(k,x,m) = \/ZT{\Tﬂ-(l - Esin2 X) + kw(sin® x cos 27

+3sin? y=2)[1 - Erf(kw)]ekzwz] . (15)

The contribution of the momentum variation of the dipole
interaction kernel K to cgff is shown in Fig. 2. In the large k
limit, this expression, apart from a factor of V2 arising from
the renormalization because of the transverse profile, reduces
to —*7(1-3 sin® y cos® 7)) which is the three-dimensional
form as expected.

In the case where the dipole-precession axis D coincides
with the spin-quantization axis of the atoms P, we can use
the explicit form for ¢§" given in Eq. (14) to discern the
effect of the anisotropic dipole-dipole interactions on behav-
ior of the spin dyrzlamics by studying the dispersion relation
Ez(k)z(%+q)[%+q+2c§ff(k)] in the presence of dipole-
dipole interactions. The dispersion relation E(k) determines
the rate of growth of domains at the characteristic wave vec-
tor k. As seen in Fig. 3, when the dipole-precession axis
points along the long axis of the condensate, i.e., the z axis,
as in the experiments, the effect of the dipole interaction is
weak and the dipole interactions slightly shorten the length
scale and lengthen the time scale of domain formation. In
contrast, the domain formation is significantly slowed down
by the dipole-dipole interaction when D is oriented along the
x direction. Interestingly when the dipole axis is pointed
along the y axis, the thin axis of the condensate, the mini-
mum of the dispersion relation (Fig. 3) is seen to be lowered
relative to that without dipole interactions, indicating that the
rate of structure formation is increased relative by dipole
interactions in this case.

The effects of the anisotropic dipolar interactions may
also be highlighted in quantum quenches where the dipole-
precession axis D differs from the spin-quantization axis P.
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FIG. 3. (Color online) Magnon dispersion curves for an un-
bounded two-dimensional condensate in the x-z plane, for
q/h=2 Hz, ¢,(0)/h=8 Hz and c,,/h=0.8 Hz, including the ef-
fects of dipole-dipole interaction for D aligned along X, ¥, or Z, and
the wave vector being assumed to be aligned along Z.

Specifically, consider the case where D=y, while P is pre-
pared to be orthogonal to D (i.e., the axis P Larmor precesses
in the £-Z plane). In this case the intrinsic spin-anisotropic
term in Eq. (12) can no longer be ignored when constructing
the linearized dynamics of a two-dimensional homogeneous
condensate and this leads to a contribution which breaks the
symmetry of the two polarizations of the magnon modes
describing the magnetization dynamics of the condensate.
Altogether the strong variation of postquench dynamics with
changes in the system geometry provides a compelling sig-
nature of dipole-dipole interactions that may be studied in
future experiments.

VII. NUMERICAL METHODS AND RESULTS

Having set up our theoretical model we now turn to the
numerical techniques and quantitative results based on these
ideas applied to a model spinor condensate with parameters
motivated from experiment. As previously discussed, the cal-
culation of correlation functions within the TWA requires the
time evolution of an initial state which is comprised of an
initial mean field state with random fluctuations added to it.
The initial wave function of the m,=0 condensate is deter-
mined by minimizing the total energy via conjugate gradient
minimization [23] assuming g— . Time evolution accord-
ing to the GPE is determined numerically by the sixth-order
Runge Kutta method [23] with periodic boundary conditions
in space. The kinetic energy is computed by Fourier trans-
forming each component into momentum space. The dipole-
dipole interaction kernel, K(r,r’), has the properties both of
being long ranged and also of being singular at short dis-
tances. Therefore it is necessary to regularize and truncate
K(r,r’) in real space before calculations are performed in
Fourier space to avoid interaction between intersupercell pe-
riodic images as discussed in Appendix B. In calculating
K(r,r') for use in the solution of the full GPE, we neglect
the variation of the condensate thickness (Ryg,) along the &
direction. We have checked that this approximation doesn’t
significantly affect our results when D is along the long axis
of the trap i.e., Z, as is the case in experiment.
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For the calculations reported we use a time step of 3.5 us
and a grid spacing of 0.5 um and the results are found to be
converged with respect to these parameters. In addition, the
total energy of the system remains conserved to a certain
error tolerance in the time evolution. It is also verified that
the total magnetization along D is a conserved quantity in the
absence of dipole-dipole interactions.

The trap geometry for our calculations is taken to be simi-
lar to experiment [2] such that the TF radii of the condensate
are Ryp,=20 pum, Rrg,=1.6 um. Given that the relevant
length scale for spin dynamics (277/V2M|cy|nsp=~2 um) is
much smaller than the 7 length of the condensate
(Rtp,=200 um), here we treat the system as unconfined
along Z, with periodic boundary conditions over a 90 um
length. The peak three-dimensional and two-dimensional
densities are taken to be n3p=2.5X 10'*/cm?, respectively.
The strength of the spin-dependent part of the contact inter-
action has been inferred previously from molecular spectros-
copy [24,25] and from spin-mixing dynamics [26,27].
According to these works ¢,(r=0)=0.8|c,|n;p is predicted to
lie between hX6 Hz and h X8 Hz, corresponding to
L.lag<Aa=(ay—a,) <1.9agz where Aa is the difference be-
tween the s-wave scattering lengths for the spin-0 and spin-2
channels and aj is the Bohr radius. The uncertainty in |c,|
leads to an uncertainty of the theoretical estimate of G(0)
plotted in Fig. 1 at any given instant of time. The uncertainty
in |c,| obtained from the above described calculation and its
comparison to experiment has been presented in Ref. [2]. At
the present state, this dependence of G(0) precludes a quan-
titative comparison with experiment.

We find our results to be in qualitative agreement with
experiment and previous theoretical calculations. In particu-
lar, we find that the average magnitude of the transverse
magnetization grows exponentially from a small value to a
much larger value (Fig. 1) with a time constant that is rela-
tively insensitive to the quadratic Zeeman shift ¢ [1,2] (for
experiment theory comparison plot see [2]). The calculated
domain structure and magnetization correlations match with
those observed experimentally, and in previous calculations
[9], the characteristic domain size increasing with ¢ (Fig. 4)
[2]. However as seen from Fig. 5 and the results presented
previously [2], our calculations somewhat underestimate the
domain size for the larger of the experimentally measured
values of Aa. This discrepancy between theory and experi-
ment is reduced on using the smaller of the measured values
of Aa. Thus the difference between theory and experiment
could be the result of an error in the experimentally mea-
sured value of the spin-dependent contact interaction or
quantum and thermal effects of interactions beyond the
TWA. The introduction of a dipole-dipole interaction intro-
duces a weak dependence of the average local transverse
magnetization G(0) on the quadratic Zeeman shift.

Despite the qualitative agreement between the homoge-
neous 2D condensate calculation [6] and the current results,
we find quantitative differences between the results of the
homogeneous case and the calculations including the trap
and dipole interactions that are important for comparison to
experiment. We discuss several of these differences below
(Fig. 6).
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FIG. 4. (Color online) Correlation function G(dér=zZ) at
t=100 ms for a spinor condensate calculated using the method and
geometry described in Sec. VII for various quadratic Zeeman shifts.
The correlation function plotted along the length of the condensate
shows decreasing domain size with decreasing quadratic Zeeman
shift.

A. Effect of the trapping potential

Similar to previous theoretical work [7], we find a signifi-
cant effect of the inclusion of the trap on the spin dynamics
in the parameter regime corresponding to experiment. The
external trapping potential along the width of the condensate,
which is accounted for in our numerical calculations, is
found to slow the growth of the transverse magnetization in

i

G(Br)/G(0)

Experiment ‘ Theory

G(dr)/G(0)

z (um)

FIG. 5. (Color online) Planar correlation function G(dr) at
t=87 ms for a spinor condensate calculated using the method and
geometry described in Sec. VII for ¢g/h=2 Hz. The one-
dimensional plots shown in the lower half represent sections of the
two-dimensional plots above through the center of the condensate at
x=0. The two-dimensional plots are 100 um along the z direction
and 40 wum along the x direction. The above plots compare the
calculated correlation structure on the right to the experimentally
measured structure on the left [2]. The error bar in the experimental
plot (not shown) arises from shot to shot fluctuations [2] and is less
than 0.1 in the range plotted.
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FIG. 6. (Color) Spatial structure of the complex transverse mag-
netization F | (r) in the x-z plane at t=87 ms for g/h=2 Hz. The
upper panel of figures consist of random instances of experimen-
tally measured spin textures [2] while the lower figures are random
instances of calculated spin textures. Each figure in the panel is
100 wm long and 40 wm wide. The complex number F | is repre-
sented as shown in the color wheel in the inset of the figure. Do-
mains are seen to have limited structure along the width of the trap
and localized at the center of the condensate.

the condensate significantly as seen in Fig. 7 when compared
to the quasi-two-dimensional homogeneous case without a
trapping potential along the width. This slowing down can be
understood intuitively from the fact that the trap causes the
density away from the center of the trap to be lower than at
the center of the trap. Consistent with previous theoretical
work [7], the density reduction away from the center of the
trap also affects the spatial structure of the correlations ob-
served and the trap is found to suppress the formation of
structure in the radial direction, X, as seen in Fig. 5.

B. Effect of the dipole interaction

As discussed in Sec. VI, dipole-dipole interactions reduce
the rate of domain formation in the case where the magnetic
field is aligned along the z direction, which is the long axis of

Te—e D along the y-axis
0.1 E = a D along the x-axis E|

£ +— D along the z-axis

/l
0.01 E p _
6}
0.001 E 3
0.0001 ¢ E
¥ . | . | . | . | 3
0 0.02 0.04 0.06 0.08
Time (s)

FIG. 7. (Color online) Summary of effects of various factors on
the evolution of the magnitude of transverse magnetization. Both
dipole-dipole interactions and the external trapping interaction are
found to reduce the growth rate of the transverse magnetization.
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FIG. 8. (Color online) Dependence of the evolution of the vari-
ance of the transverse magnetization for the dipole-precession axis
D aligned along X, y, and Z directions for g/h=2.0 Hz. The growth
rate of transverse magnetization is found to be enhanced signifi-
cantly for D aligned along y as compared to D aligned along Z
which yields results close to the case without dipole interaction.

the condensate. However, as seen from Figs. 3 and 7, for the
parameters of the calculation, which are taken to be the ones
relevant to experiment, the effect of the dipole-dipole inter-
action on the average transverse magnetization G(0) turns
out to be small because the Fourier transform of the dipole
interaction kernel K almost vanishes at the length scale of
domain formation. That is, the spin healing length being
nearly equal to the narrower condensate thickness, the domi-
nant length scale for domain formation coincides with the
crossover between the 2D and 3D forms of the dipole inter-
action. Despite having a negligible effect on domain forma-
tion in the longitudinal direction, dipole-dipole interactions
are found to suppress domain formation along the radial di-
rection.

Yet as discussed in Sec. VI, other experimental geom-
etries, i.e., orientations of D and P away from the z axis, are
expected to show more prominent dipolar effects in the spon-
taneous formation of magnetization. We explored this possi-
bility numerically. The magnitude of the magnetization vari-
ance G(0) indicated by such calculations is shown in Fig. 8.
One can see that the rate of growth of transverse magnetiza-
tion is significantly enhanced with D and P pointing along
the y direction compared to other orientations.

VIII. CONCLUSION

We have studied a realistic quantum Hamiltonian model
for a quasi-two-dimensional spinor condensate, including the
effects of the trap and dipole-dipole interactions, in order to
make a quantitatively accurate prediction of the contribution
of intrinsic fluctuations to the symmetry-breaking domain
formation. Similar to previous studies, the inclusion of the
trapping potential was found to reduce the rate of structure
formation because of a reduction of the average density. A
quantitative prediction of the magnitude of the structure for-
mation also requires the inclusion of effects from nonlinear
interaction terms and thermal effects. On a preliminary ex-
amination one would have expected thermal effects to be
significant since the kinetic temperature of the condensate is
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much larger than the spin-mixing energy scale. However we
found that the coupling of phonons to spin fluctuations is
small, leading to a separation of the low temperature spin
dynamics from the high temperature phonon dynamics. In
Sec. 1V, we studied the effects of the nonlinear interactions
within the standard TWA and found that nonlinearity effects
lead to saturation of the transverse magnetization at long
times. We expect the TWA to be a reasonably accurate de-
scription of the spin-spin correlations of a spinor BEC since
it was found to yield results in good agreement with exact
diagonalization calculations our spinor BEC model in the
single mode regime.

The dipole-dipole interaction, which is known to have a
dominant effect on the long term structure formation in
spinor BECs, was found to add an effective nonlocal contri-
bution to the spin-dependent part of the interaction in the
spinor condensate. The nonlocal nature of the spin-spin in-
teractions couples the spin structure formation dynamics to
the direction of the spin polarization. Even though dipole-
dipole interactions are found to affect the spin dynamics
weakly when D and P are polarized along Z, we find that
dipole interactions significantly enhance the rate of domain
formation when these vectors are polarized along y. More-
over, dipole-dipole interactions were found to split the de-
generacy of the two polarizations of the magnon modes in
the case where D was orthogonal to P. This spin-polarization
dependence of the domain formation rate leads to a direct
means to observe experimentally the role of dipole-dipole
interaction on spinor dynamics.

Despite our effort to include the effects of the trapping
potential, dipole-dipole interactions, nonlinearities and finite
temperature to develop a quantitative understanding of the
magnitude of domain formation, we found in Sec. VII that
the uncertainty in the magnitude of the spin-dependent part
of the contact interaction [c,(r=0)] prevents us from making
a quantitative comparison of the magnitude of the domain
formation with experimental results. Such a quantitative
comparison between theory and experiment is critical for the
determination of the contribution of intrinsic quantum fluc-
tuations to the domain formation. One possible experimental
approach to resolving this problem is to determine in a direct
way the gain of the spinor BEC in the experimental geom-
etry by studying the dynamics of the magnetization of the
condensate following an initial microwave pulse. Such ex-
periments in conjunction with quantitative calculations might
make it possible to determine better the importance of intrin-
sic quantum fluctuations to symmetry breaking dynamics.
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APPENDIX A: EIGENMODES FOR THE BOGOLIUBOV
TRANSFORMATION OF INHOMOGENEOUS
DIPOLAR CONDENSATES

Here we give explicit expressions for the eigenmodes and
eigenfrequencies of a dipolar ferromagnetic spinor BEC for
positive quadratic Zeeman shifts. As discussed in Sec. VI,
the inclusion of dipole-dipole interactions requires the gen-
eralization of the local spin-dependent coupling constant c,n
to ¢3(ry,r,). The eigenmodes and eigenfrequencies that we
define are strictly valid when the Hermitean Hamiltonian
HO=—2%V2+q(t)+ p+con(r)+V,,, is positive definite. In
this case the eigenmodes of the condensate are given by

Y\7(r) = o, Hy&,(r), (A1)
Y9 (r) = Hy ' ?¢,(r), (A2)

where Ei and &, are defined to be eigenvectors and eigenval-
ues of the Hermitean operator Hy*(Hy+2cS")Hy? and
o= *1. The dual modes then follow to have the form

Y\7(r) = 0E,Hy &, (r), (A3)
Y\ () = Hy &, (r). (A4)

In the case of negative quadratic Zeeman shifts, such a Her-
mitean eigenproblem cannot be constructed since some of
the frequencies in this case are neither purely real nor imagi-
nary. This can be verified by introducing a weak periodic
potential to the homogeneous ferromagnetic Bose gas and
diagonalizing the problem using degenerate perturbation
theory.

APPENDIX B: REGULARIZING THE DIPOLE
POTENTIAL

In order to perform numerical or semianalytic calculations

where the Fourier transform of the three-dimensional dipole
interaction kernel, K(R—R’):M%%l?_lm, is needed,
one needs the integral involved in the Fourier transform of
the kernel to be well defined. The full 3D Fourier transform
of the dipole interaction kernel may be calculated analyti-
cally, but to obtain converged results for the spin dynamics it
is necessary to truncate the long-ranged dipole interaction
between periodic images of the system which emerge when
using Fourier techniques to do such calculations. For numeri-
cal convenience we imagine that the dipole density can be
expanded in terms of a possibly overcomplete set of func-
tions 1.e.,

S, ¢(RE)p(R ~ Ri™)
Z,p(R;™)

d(R) = (B1)

Such an expansion allows us to represent a function @(R)
which is smooth on the scale of the width of p(R) by its
value p(RE"™) on a discrete grid of points R®"™ with a grid

spacing that is smaller than the width of p(R). Integrals of
the kernel K(R) of interest are given by
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HREIHRE]
f PR )PR)KR,; - R,) = n%z {Enlp[Rilgrid)]z}z
(B2)

f dR{dR)p(R| - R)p(R; —R,)K(R; -R;).  (B3)

Taking the smoothing function to be p(R)=me‘R2/ 2w,
the averaged kernel g is given by
g(R) = f dRdR,p(R; = R)p(Ry)K(R; - R,)
3 cos?(6) - 1
_Beos(0)-1] 5

R3
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Erf| — | - ——¢ R4’ —+1]].
2w W\c‘”ﬂ' 6w

The regularized expression, unlike the original dipole inter-
action kernel K(R), Vanjshes for small R and approaches the
regular expression [M}M for large R as expected.

Using the regularized kernel g(R), the dipole interaction
can be calculated on a real-space grid with grid spacings
smaller than the width of the smoothing profile p(R), in a
way so as to avoid interaction between periodic images. The
Fourier transform for the two-dimensional kernel with a
Gaussian profile given Eq. (15) in Sec. VI can be derived by
applying a Fourier transform to g(R) restricted to the 2D
plane.

(B5)

[1] L. Sadler, J. Higbie, S. Leslie, M. Vengalattore, and D. M.
Stamper-Kurn, Nature (London) 443, 312 (2006).

[2] S. R. Leslie, J. Guzman, M. Vengalattore, J. D. Sau, M. L.
Cohen, and D. M. Stamper-Kurn, Phys. Rev. A 79, 043631
(2009).

[3] T. L. Ho, Phys. Rev. Lett. 81, 742 (1998).

[4] T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998).

[5] R. Barnett, A. Turner, and E. Demler, Phys. Rev. Lett. 97,
180412 (2006).

[6] A. Lamacraft, Phys. Rev. Lett. 98, 160404 (2007).

[7] G. 1. Mias, N. R. Cooper, and S. M. Girvin, Phys. Rev. A 77,
023616 (2008).

[8] H. Saito, Y. Kawaguchi, and M. Ueda, Phys. Rev. A 75,
013621 (2007).

[9] H. Saito, Y. Kawaguchi, and M. Ueda, Phys. Rev. A 76,
043613 (2007).

[10] H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Big-
elow, Phys. Rev. A 60, 1463 (1999).

[11] M. T. Johnsson and S. A. Haine, Phys. Rev. Lett. 99, 010401
(2007).

[12] A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. A
73, 043617 (2006).

[13] C. W. Gardiner and P. Zoller, Quantum Noise (Springer-Verlag,
Berlin, Heidelberg, 2000).

[14] To see this we observe that the requirement of equality of the
quantum and the classical distributions is equivalent to the
equality of the quantum characteristic function yy(\,\")
=(exp(¢"N=\T ) =11, (exp[ ] (uph =\ Tv}) +, (v, A =NTu,)])

to the classical characteristic function X gssicatN>N")
=(exp(¢'N =\ @))=I1,(exp[c) (N =N "v}) +c,(v N =NTu,)]).
Thus the 2 characteristic functions agree if (exp(éj,y+én7*)>
=(exp(ciy+¥"c,))=2exp(=2[ ).

[15] A. Polkovnikov, Phys. Rev. A 68, 053604 (2003).

[16] P. Deuvar and P. D. Drummond, Phys. Rev. Lett. 98, 120402
(2007).

[17] S. Sachdev, Quantum Phase Transitions (Cambridge Univer-
sity Press, Cambridge, England, 2000).

[18] T. Garel and S. Doniach, Phys. Rev. B 26, 325 (1982).

[19] K. De’Bell, A. B. Maclssac, and J. P. Whitehead, Rev. Mod.
Phys. 72, 225 (2000).

[20] M. Vengalattore, S. R. Leslie, J. Guzman, and D. M. Stamper-
Kurn, Phys. Rev. Lett. 100, 170403 (2008).

[21] Y. Kawaguchi, H. Saito, and M. Ueda, Phys. Rev. Lett. 98,
110406 (2007).

[22] R. W. Cherng and E. Demler, e-print arXiv:0806.1991.

[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipes: The art of scientific computing
(Cambridge University Press, Cambridge, England, 2007).

[24] N. N. Klausen, J. L. Bohn, and C. H. Greene, Phys. Rev. A 64,
053602 (2001).

[25] E. G. M. van Kempen, S. J. J. M. E. Kokkelmans, D. J. Hein-
zen, and B. J. Verhaar, Phys. Rev. Lett. 88, 093201 (2002).

[26] A. Widera, F. Gerbier, S. Folling, and T. Gericke, O. Mandel,
and 1. Bloch, New J. Phys. 8, 152 (2006).

[27] M. Chang, Q. Qin, W. Zhang, L. You, and M. S. Chapman,
Nat. Phys. 1, 111 (2005).

023622-11



