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Photonische Kristalle stellen zur Zeit ein vielbeachtetes und lebendiges Forschungs-

gebiet in der Physik und ganz allgemein in den Naturwissenschaften dar. Dieses in-

terdisziplin�are Forschungfeld wurde 1987 aus Ideen von Sajeev John [Joh87] und Eli

Yablonovitch [Yab87], �uber Lokalisierung von Licht und gehemmte spontane Emission

geboren. Grob gesagt entwickelten sie ein Konzept um die r�aumliche und zeitliche

Ausbreitung von elektromagnetischen Feldern bewu�t zu kontrollieren. Seit dieser Zeit

wird den physikalischen Grundlagen der photonischen Kristalle, in Theorie und Ex-

periment viel Aufmerksamkeit gewidmet. Diese Aufmerksamkeit beschr�ankt sich aber

nicht nur auf die Physik sondern erstreckt sich �uber die Chemie und Biologie bis zu

technologischen Anwendungen und sogar Kunst. Auf eine bestimmte Art und Weise

revolutionierten photonische Kristalle sogar das Verst�andnis der Optik in der Physik.

Einen sch�onen �Uberblick �uber das Gebiet der photonischen Kristalle bietet das Buch

von Joannopoulos [JMW95].

Prinzip Das Grundprinzip der photonischen Kristalle ist relativ einfach und intu-

itiv. Ein photonischer Kristall ist eine r�aumliche Struktur mit periodisch moduliertem

Brechungsindex. Diese Periodizit�at mu� in der Gr�o�enordnung der zu beein
ussenden

Wellenl�ange sein. In einer Dimension sind solche Strukturen altbekannt. Es handelt sich

um dielektrische Spiegel, welche aus abwechselnden Schichten von unterschiedlichem

Brechungsindex, mit einer Schichtdicke von einer Viertel Wellenl�ange bestehen. Bei

geeigneter Wahl der Brechungsindizes besitzen sie perfekte Re
exionseigenschaften bei

dieser bestimmten Wellenl�ange. Klassisch gesehen kann diese Eigenschaft der konstruk-

tiven (in Re
exion) und destruktiven (in Transmission) Interferenz durch aufeinander-

folgende Schichten zugeschrieben werden. Im Bild der photonischen Kristalle ergibt

sich f�ur diesen Fall eine Bandl�ucke, welche die Lichtausbreitung in dieser Richtung

verbietet. Ursache daf�ur ist die Periodizit�at im Brechungsindex, die in Analogie als pe-

riodisches quantenmechanisches Potential angesehen werden kann. Diese grundlegende

Idee kann nat�urlich auf den 2- und 3-dimensionalen Raum ausgedehnt werden (siehe

Gra�k). Im 3-dimensionalen Fall spricht man von einer vollst�andigen photonischen

Bandl�ucke, wenn die Lichtausbreitung in allen Raumrichtungen verboten ist.

Figure 1: Prinzip der photonischen Kristalle: periodische Strukturen in einer,

zwei und drei Raumdimensionen [JMW95]
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Anwendungen Das zunehmende Interesse an photonischen Kristallen ist haupts�ach-

lich der G�ute und Vielfalt ihrer Anwendungen zuzuschreiben. Diese liegen besonders

im 
orierenden Bereich optischer Telekommunikation und moderner Quantenoptik.

Materialien mit photonischer Bandl�ucke bieten vollkommen neue, vielversprechende

und �uberlegene Technologien im Vergleich zu herk�ommlicher Optik. Zum Beispiel

k�onnen photonische Kristalle als hochre
ektierende Substrate in Antennensystemen

Verluste reduzieren. Dar�uberhinaus k�onnten die perfekten Rexlexionseigenschaften in

Verbindung mit deutlich erh�ohter elektromagnetischer Modendichte dazu verwendet

werden Laser mit geringem Schwellwert zu bauen. Neben der Anwendung als Fil-

ter oder Ummantelungsmaterialien, ist vor allem der Einsatz photonischer Kristalle

zur Lichtleitung und Lichtumleitung in Strukturen mit r�aumlichen Dimensionen der

Wellenl�ange sehr interessant. Ein Ziel ist es integrierte photonische Schaltungen f�ur

zuk�unftige optische Computer zu bauen. Der Einbau k�unstlicher Defekte erlaubt es

sogar Licht um sehr scharfe Ecken zu leiten [LCH+98], ganz im Gegensatz zu kon-

ventionellen optischen Fasern, die auf dem Prinzip der Totalre
exion basieren. Dies

er�o�net die M�oglichkeit der Miniaturisierung zu optischen Schaltkreisen. Die Er-

wartungen auf diesen photonischen Schaltkreisen beruhen vor allem darauf in naher

Zukunft elektronische Schaltkreise zu ersetzen. Vorteile sind das Fehlen der st�orenden

W�armeentwicklung und der Geschwindigkeitszuwachs aufgrund der k�urzeren erziel-

baren Pulsl�angen und gr�o�erer Bandbreite. �Ahnliche Technologie ist bereits Bestandteil

der optischen Nachrichtentechnik. J�ungste Ergebnisse zu einstellbaren photonischen

Bandl�ucken k�onnten zur Realisierung von photonischen Transistoren f�uhren [JB99].

Ein weiteres, lange ersehntes Ziel, die Erzeugung einer vollst�andigen 3-dimensionalen

Bandl�ucke bei der f�ur die optische Telekommunikation ma�geblichen Wellenl�ange von

1:5 �m wurde k�urzlich erreicht [BCG+00].

Ebenso wurde durch die Entwicklung der photonischen Kristalle das Forschungs-

gebiet der Quantenoptik vorangetrieben. Hier sind haupts�achlich Defekte, welche

Mikroresonatoren bilden und dadurch die elektromagnetische Modendichte ver�andern

(von null in einer vollst�andigen Bandl�ucke, bis zu sehr gro�en Werten an den R�andern

der Bandl�ucke) von vorrangigem Interesse. Au�ergew�ohnliche Ph�anomene treten auf

wenn Photonen auf einen Raum von der Gr�osse der Wellenl�ange eingegrenzt wer-

den. Bekannte quantenoptische E�ekte, wie Photon-Atom-Wechselwirkungen in Hohl-

r�aumen, gehemmte spontane Emission und gebundene Photonen Zust�ande k�onnen mit

Hilfe dieser Mikroresonatoren untersucht werden.

Herstellung Eine Vielfalt von photonischen Kristallen f�ur die verschiedensten Wel-

lenl�angenbereiche kann bereits hergestellt werden. Die Fabrikation von photonischen

Kristallen begann mit dem mechanischen Bohren von wohlgeordneten L�ochern in Ma-

terialien f�ur Experimente im Mikrowellenbereich. Ein ber�uhmtes und typisches Beispiel

hierf�ur stellt der Yablonovite-Kristall dar, der eine vollst�andige, 3-dimensionale Band-

l�ucke aufwies. Diese Struktur wurde von E. Yablonovitch hergestellt [YGL91]. Die

Strukturen mu�ten aber bedeutend kleiner gemacht werden, um infrarote und sicht-

bare Wellenl�angen zu beein
ussen. Hochentwickelte �Atztechniken stellen heutzutage

die besten Methoden zur Herstellung 2-dimensionaler Strukturen dar. Hingegen wurden

die fr�uher �ublichen Lithographie-Methoden zu Herstellung von 3-dimensionalen sub-
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Mikrometer Kristallen schon bald durch Selbstorganisationsmethoden, wie chemisch

gewachsene kolloidale Kristalle [XGYL00] �uberholt. Au�erdem versprechen hologra-

phische Methoden in der Lage zu sein, 2- und 3-dimensionale photonische Kristalle

herzustellen [CSH+00]. Gr�ossere Strukturen wie sie zum Beispiel f�ur den THz Fre-

quenzbereich ben�otigt werden k�onnen sehr elegant mit sogenannten "Rapid-Prototyping"

Techniken, wie "Laser assisted Chemical Vapor Deposition LCVD" [LS95] hergestellt

werden.

Mutter Natur hat (nat�urlich) schon lange photonische Kristalle in Form von bunten

Opalen, den schillernden Stacheln der 'sea-mouse' [PMM+01], einem Meereswurm, und

den farbigen Mustern auf Schmetterlings
�ugeln [Gra98] entwickelt.

�Uberblick Der Begri� 'Kristall' stammt aus dem Bereich der Festk�orperphysik und

entspricht einer 3-dimensional periodischen Struktur. Zus�atzlich bestehen weitgreifende

Analogien zwischen dem Gebiet der Festk�orperphysik und dem Gebiet der photonischen

Kristalle. Deshalb leitet sich die Terminologie und viele theoretische Konzepte f�ur

photonische Kristalle aus der Festk�orperphysik ab. Die Einf�uhrung dieser Begri�e und

Strategien ist das Thema von Kapitel I dieser Arbeit sein. Au�erdem wird in diesem

Kapitel die zweite wichtige Grundlage photonischer Kristalle, die Elektrodynamik kurz

zusammengefa�t. Kapitel II kombiniert diese zwei Aspekte und pr�asentiert theoretis-

che Modelle, die das Verhalten von Photonen in diesen Kristallen beschreiben. Die

Auswertung dieser Modelle wird mit Hilfe von Computerprogrammen, welche eben-

falls in diesem Kapitel beschrieben sind, numerisch ausgef�uhrt. Danach werde ich

repr�asentative Ergebnisse dieser Methoden in Kapitel III zeigen und typische Merk-

male photonischer Kristalle diskutieren. Dieses Kapitel beabsichtigt au�erdem ein

bestimmtes Verst�andnis und Gef�uhl f�ur die E�ekte in photonischen Kristallen zu ver-

mitteln. In Kapiteln IV, V und VI, werden die Forschungen, die ich im Verlauf des

vergangenen Jahres ausgef�uhrt habe, gezeigt und diskutiert.

Der Ausgangspunkt f�ur meine Forschungsaktivit�at auf dem Gebiet der photonischen

Kristalle war ein 'Government of Canada Award', der mir im Jahr 2000 gew�ahrt wurde.

Ich bin Prof. Hanspeter Helm (Universit�at Freiburg) und Prof. Sajeev John (University

of Toronto) sehr dankbar, da� sie es mir erm�oglichten einen wesentlichen Teil dieser

Diplomarbeit in Kanada, an der Universit�at von Toronto auszuf�uhren. Von Januar bis

Juni 2000 war ich an einem Projekt besch�aftigt, das die k�urzlich berichteten Ultra-

brechungseigenschaften in photonischen Kristallen [KKT+98] theoretisch analysierte.

Ich habe sehr von der Unterst�utzung durch Ovidiu Toader pro�tiert, dessen Computer-

program ich verwenden konnte. Der Ablauf und die Ergebnisse dieser Forschungen wer-

den in Kapitel IV berichtet und diskutiert. Seit meiner R�uckkehr nach Freiburg konnte

ich meine Kenntnisse auf dem Gebiet der photonischen Kristalle verfeinern und aus-

dehnen. In Kapitel V werde ich numerische Simulationen optischer Eigenschaften von

kolloidalen Kristallen, wie sie von Matthias Soddemann in der Gruppe von Prof. Rich-

tering, Kiel (ehemals Freiburg) hergestellt werden, pr�asentieren. Schlie�lich werde ich

�uber experimentelle Ergebnisse von photonischen Kristallen im THz Frequenz Bereich

berichten. Diese Experimente wurden im Rahmen der THz Pojekt Gruppe um Peter

Uhd Jepsen in der Abteilung von Prof. Helm in Freiburg ausgef�uhrt.
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Ich bin begeistert Teil eines so faszinierenden und lebhaften Gebietes der Physik mit

gro�em Anwendungspotential zu sein. Ich ho�e mit dieser Arbeit eine verst�andliche

Einf�uhrung zum Themenkreis, und mit den konkreten Problemen die ich in dieser

Arbeit behandle einen Beitrag zu den Forschungen auf dem Gebiet der photonische

Kristalle leisten zu k�onnen
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Photonic crystals are currently a very hot and vivid topic in physics and science in

general. This interdisciplinary research �eld was born by ideas of Sajeev John [Joh87]

and Eli Yablonovitch [Yab87] in 1987 about localization of light and inhibited sponta-

neous emission, respectively. Commonly speaking they discovered a way how to control

light. Ever since then photonic crystals attract much interest throughout fundamental

theoretical and experimental physics (optics, quantum optics), chemistry, biology as

well as applied technology and arts. In a certain way they revolutionized the physic

perception of optics.

A good overview of the �eld of photonic crystals is given in the book by Joannopou-

los [JMW95].

Principle The basic principle of the photonic crystals is rather simple and intuitive.

It solely requires a structure with periodically modulated refractive index. This peri-

odicity however has to be on a length scale comparable to the wavelength in order for

photonic crystal e�ects to appear. In one dimension such structures are well known.

Dielectric mirrors, for instance consist of alternating layers of di�erent dielectrics with

a thickness of one quarter wavelength. They exhibit perfect re
ection properties at

this particular wavelength. Classically this property can be attributed to constructive

(in re
ection) and destructive (in transmission) interference from scattering by consec-

utive layers. In the photonic crystal picture a band gap, prohibiting the transmission

of light, is formed by the periodicity in the refractive index which can be interpreted

in analogy to a periodic quantum-mechanical potential. This fundamental idea can

further be extended to 2- and 3-dimensional space. The latter case would inhibit light

propagation in all spatial directions, thus creating a complete photonic band gap.

Figure 2: Basic principle of photonic crystals: periodic structures in one, two

and three dimensions [JMW95]

Applications The excelling interest in photonic crystals mainly lies in their out-

standing variety and quality of applications, especially in the booming area of optical

telecommunications and modern quantum optics. Photonic band gap materials o�er

completely new, promising and superior techniques over conventional optics. They can

be used, for instance as a high re
ective ground of transmitters aiming the radiation

towards the receiver, thereby avoiding losses. Their perfect re
ection properties, along

with increased electromagnetic mode density, can be incorporated to build lasers with

near zero threshold. Besides the application as �lters or cladding materials, their utility



8 Introduction

in guiding light in feature sizes on the order of the wavelength is highly interesting. A

future goal is creating all photonic circuits, aimed towards optical computing. Arti�cial

defects like lines can guide light even through very sharp turns [LCH+98] in contrast

to conventional optical �bers which are based on total internal re
ection. This will

eventually allow the miniaturization of optical chips. A prospect of such photonic chips

is to take over the legacy of electronic chips but without any bothering thermal ef-

fects. Furthermore this would result in a gain of speed due to shorter pulse lengths

achievable and increased band width. Similar technology is already in use in optical

telecommunications. An initiator of modern information technology.

Recent results in tunable photonic band gaps [JB99] could lead towards photonic

transistors, the 'holy grail' in photonics. Another long seeked goal, creating a full 3-

dimensional band gap at the optical telecommunication wavelength of 1:5 �m, has just

recently been achieved [BCG+00].

By the same token photonic crystals boosted the research area of quantum op-

tics. Here mainly defects, forming micro-cavities and distorting the photonic density

of states, ranging from zero DOS in a complete photonic band gap to very large val-

ues at the band edges, are of interest. Unusual phenomena of photons con�ned to a

volume comparable to their wavelength can be examined. This includes photon-atom

interactions in cavities, like inhibited spontaneous emission, bound states or dressed

atoms.

Fabrication A variety of photonic crystals for a diverse range of wavelengths can

already be fabricated. The fabrication of photonic crystals started by mechanically

drilling ordered holes in bulk materials for experiments in the microwave regime. A

typical, famous example is the yablonovite crystal, which exhibited a complete 3-

dimensional band gap, as manufactured by E. Yablonovitch [YGL91]. The structures

however needed to be signi�cantly smaller to reach infrared and visible wavelengths,

so new fabrication techniques emerged. For 2-dimensional structures, di�erent sophis-

ticated etching techniques comprise the methods of choice nowadays. Whereas for

the fabrication of sub-micron 3-dimensional crystals early layer-by-layer and micro-

lithography methods were soon overtaken by self-organization techniques, like chem-

ically grown colloidal crystals [XGYL00]. Furthermore holographic methods are also

promising to fabricate both 2- and 3-dimensional photonic crystals [CSH+00].

Mother nature has (of course) already invented photonic crystals, for example in the

form of the colorful opals, the iridescent spines of the sea mouse [PMM+01], a marine

worm, and the colorful design on butter
y wings [Gra98]

Outline 'Crystals' are known as 3-dimensional periodic structure from solid state

physics. Additional analogies link this area to the �eld photonic crystals. Therefore

the terminology and the theoretical concepts are mostly taken over from solid state

physics. Introducing these terms and strategies will be the topic of chapter I in this

thesis. Also included in this chapter is a recapitulation of basic electrodynamics, the

other theoretical basis of photonic crystal. Chapter II combines these two branches and

presents theoretical techniques describing the behavior of photons in these crystals. The

evaluation is performed numerically with computer programs which are also explained
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in this chapter. Subsequently I will show representative results of these methods and

discuss typical features of photonic crystals in chapter III. This chapter is intended

to develop a certain understanding and feeling for the e�ects of photonic crystals. In

chapters IV, V and VI the research I conducted over the past year will be presented

and discussed.

The starting point for my research activity in photonic crystals was given by a

Government of Canada Award which I was granted for the year 2000. I am very

grateful to Prof. Hanspeter Helm from the University of Freiburg and Prof. Sajeev

John from the University of Toronto that I was allowed to carry out research work in

Prof. John's group as part of this thesis. From January to June 2000 I was involved in

a project theoretically investigating recently reported ultra-refractive e�ects [KKT+98]

in photonic crystals. I bene�ted from the support of Ovidiu Toader who developed a

numerical computer program which I could employ. The progress and outcomes of this

research are reported and discussed in chapter IV. Upon being back in Prof. Helm's

group I could re�ne and extend my experience on photonic crystals. In chapter V

numerical simulations for optical properties of colloidal crystals, as being prepared by

Matthias Soddemann in the group of Prof. Richtering, Kiel (formerly Freiburg) are

presented. Eventually I will report experimental �ndings for photonic crystals in the

THz frequency regime. These experiments were carried out in the 'Thz project group'

around Peter Uhd Jepsen in the research group of Prof. Helm in Freiburg.

Overall it is very exciting to be part of such a fascinating and vivid �eld with great

potential applications. I hope to contribute with this thesis to the promotion of the

research on photonic crystals. Furthermore I hope to provide a coherent introduction

for readers new to this �eld.
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Chapter 1

Theoretical Framework

This chapter will serve as a quick review on the classical �elds of solid state physics

and electrodynamics. The methods and de�nitions herein are fundamental to develop

the concepts of photonic crystals and their optical properties.

1.1 Solid State Physics Fundamentals

One of the cornerstones in the theoretical treatment of photonic crystals is to be familiar

with the basics in solid state physics. Therefore, we have to reproduce them �rst and

start with introducing periodical geometrical arrangements in 2- and 3-dimensional

space, crystal structures, reciprocal space and some basic theoretical methods, like

the tight-binding model and the nearly-free electron approach, as well as common

representation schemes of a band structure diagram and the density of states.

The treatment of the geometrical aspect of photonic crystals, i.e. the crystal struc-

tures is re-applicable from well established condensed matter physics on a di�erent

length scale. Furthermore there exists a fundamental analogy between photonic crys-

tals and conventional crystals: waves in periodic potentials. The arrangement of the

atomic potentials in a regular crystal a�ects the wave functions of electrons and causes

the electronic bands to form. In the photonic case, on the other hand the scatterers

with a di�erent index of refraction take up the role of the atomic potentials for the pho-

tons. Combined with the periodicity they are the cause for the formation of photonic

bands. As a consequence it is possible to treat the photonic and electronic case with

similar approaches and (re-)use most of the ideas and methods of solid state physics.

An educational introduction, also covering advanced topics in solid state physics

is given in the classical textbooks of Ashcroft and Mermin [AM76] and Kittel [Kit99].

Most of the �gures in this chapter are taken from [AM76], except as noted otherwise.

11
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1.1.1 Crystal Structures

The main characteristic of a crystal is of course its periodicity. A certain element or

cell is repeated in all directions of space. In the simplest case this is a point, resulting

in a point lattice. There are many di�erent con�guration of periodicities with respect

to the axis spanning the space. In order to characterize those structures, each point

lattice is described by a set of vectors ([a1;a2;a3] for instance), which are usually the

non reducible primitive vectors.

Figure 1.1: point lattices, primitive vectors and primitive unit cells in 2- and

3-dimensional space [Kit99]

They span a primitive unit cell with a volume V = (a1�a2) �a3. The primitive vectors
provide the coordinate system, i.e. a grid in space which determines the periodicity by

translations of the cell by multiples of a. So each point of the lattice can be reached

by a linear combination of these primitive vectors.

R = n1a1 + n2a2 + n3a3 (1.1)

If the cell contains more than one point or atom per cell, then more information, e.g. a

second set of vectors, is required to describe the internal structure, which is called basis

or motif (see Fig. 1.2). The basis and the point lattice make up the complete crystal

structure.

Figure 1.2: A point lattice and a motif form a crystal [Kit99]

The possible point lattice types can be classi�ed according to lengths and angles of

their primitive vectors. August Bravais showed in 1850 that there are only 14 possible

con�gurations of point lattices in three dimensions and only 5 in two dimensions. These

con�gurations are often referred to as Bravais lattices. For reasons of completeness and

future references they are all listed here (see Fig. 1.3 and Fig. 1.4).
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Figure 1.3: The 5 2-dimensional Bravais lattice types : : :

Figure 1.4: : : : and the 14 3-dimensional Bravais lattice types

A set of primitive vectors also allows the de�nition of lattice planes in the crystal,

identi�ed by the so-called Miller indices. This set of integers (triplett in 3 dimensions,

dublet in 2 dimensions, e. g. f1,0,1g, f1,3g) refers to the multiples of primitive vectors
required to express the normal on the lattice planes as a linear combination of them.

The orientation of the planes becomes important in scattering experiments when waves

are re
ected at consecutive layers of lattice planes and interfere with each other. The

conditions for that were elaborated by and named after von Laue and Bragg. A neat

manifestation of lattice planes in everyday-live are the 
ights visible when driving by

a �eld of regularly planted sun
owers for instance.
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Figure 1.5: Lattice planes and their corresponding Miller indices

A di�erent approach to classify the lattices is according to their symmetry properties.

This crystallographic classi�cation follows rules from mathematical group theory and

uses various nomenclature systems. Generally the symmetry properties of the point

lattice are stated in many (32) point groups. The overall symmetry combines the lattice

symmetry with the symmetry of the basis and results in even more (230) space groups.

Possible symmetry operations on the crystal, along with the intrinsic translational

symmetries, are

� Rotations through multiples of 2�=n about symmetry axes

� Re
ections at a mirror plane

� Inversions at the origin

� Rotation - Re
ections

� Rotation - Inversions

Symmetry arguments can also play a role when de�ning a unit cell. There is no unique

way of de�ning a unit cell (see Fig. 1.6) except the criterion that it has to contain

the basis and the ability to completely tile the whole space with its geometrical shape.

(That disquali�es for instance pentagons and septagons as unit cells in 2D).

Figure 1.6: Possible unit cells Figure 1.7: bcc: con-

ventional and primitive

(grey) unit cell

Since the primitive unit cell does not always resemble the full symmetry of the point

lattice it is sometimes desirable to de�ne larger unit cells. They are called conventional

unit cells and mirror the complete symmetry of the crystal (see Fig. 1.7).
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A widely used way to de�ne a primitive unit cell with full symmetry properties is by

virtue of the Wigner-Seitz Cell. [AM76]:"The Wigner-Seitz Cell about a lattice point is

the region of space that is closer to that point than to any other point". It is independent

from the choice of primitive vectors and naturally matches the tiling condition. It can

Figure 1.8: On the construction of the Wigner-Seitz Cell

be constructed (see Fig. 1.8)by virtually connecting the lattice point with all its nearest

neighbors and bisecting the center of the connection with planes normal to them. The

polyhedron formed by those planes and their intersections is the Wigner-Seitz Cell. In

a 2D triangular lattice the Wigner-Seitz Cell is a hexagon, in a square lattice a square

again. Three dimensional Wigner-Seitz Cells are shown in 1.11 on page 17.

1.1.2 Reciprocal Space

Any lattice has at least an intrinsic translational symmetry and exhibits periodicity.

Therefore an approach with a Fourier series seems promising, when treating a crystal

theoretically. It is always possible to express the space function, i.e. the position of the

atomic potentials in real space as

U(r) =

1X
k=0

Uk e
ikr

: (1.2)

Due to the invariance of the space function by translating through a linear combination

of basis vectors,

1X
k=0

Uk e
ikr = U(r) = U(r +R) =

1X
k=0

Uk e
ikr

e
ikR

; (1.3)

the term e
ikR has to vanish and consequently kR must be a multiple of 2�. Since

the R's form a discrete set of vectors in real space, i.e. the Bravais lattice, the k's

satisfying this condition are also discrete in reciprocal space and form the reciprocal

lattice. They shall be labeled K and can again be written as a linear combination of

primitive vectors gi in reciprocal, or k-space.

R = n1a1 + n2a2 + n3a3 (1.4)

K = n1g1 + n2g2 + n3g3 (1.5)
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Figure 1.9: Constructing the reciprocal lattice

This leads to a condition for the primitive vectors gi of the reciprocal lattice

giaj = 2�Æij (1.6)

which simply states that they are perpendicular to the primitive vectors in real space

and normalized to 2�. The gi's can be calculated through

g1 = 2�
a2 � a3

a1 � (a2 � a3)
(1.7)

and cyclic permutations.

1.1.3 The Brillouin Zone

An interesting and important fact is that the reciprocal lattice and the space lattice

belong to the same point group, and consequently have equal symmetry properties.

Therefore, the Wigner-Seitz Cell is the most common unit cell in the reciprocal lattice.

Another reason is according to the von Laue condition K = k
0 � k, which states the

criterion for constructive interference is when incident and re
ected wave vectors k;k0

of a scattered wave lie on the boundaries of the Wigner-Seitz Cell. The k-space Wigner-

Seitz Cell is generally called Brillouin-Zone. Most important is the �rst Brillouin Zone,

abbreviated 1.BZ . Higher order Brillouin Zones can also be formed by employing not

only the nearest neighbors but also the second, third, : : : nearest neighbors to construct

the Wigner-Seitz Cells.

For some important lattices the 1.BZs are shown in Fig. 1.10 and Fig. 1.11. The

1.BZ contains all relevant information about the crystal. In the case of a higher sym-

metry lattice, the 1.BZ can even further be reduced to the Irreducible Brillouin Zone

IBZ. The rest of the 1.BZ can then be related to the IBZ by symmetry (see Fig. 1.10).

High symmetry points of the BZ usually are named by capital letters according to con-

ventions. The center of the 1.BZ is always referred to as the �-point. This corresponds

to k = (0; 0; 0) and serves as the reference point when stating true directions, e.g. �-M,

�-K or �-X. A complete reference to Brillouin Zones with their corresponding high

symmetry points is given in the appendix A on page 115.
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�
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Figure 1.10: 1.BZ and IBZ for a square (left) and a triangular (right)

2-dimensional lattice

Figure 1.11: 1.BZ for a bcc (left) and a fcc lattice

1.1.4 Bloch's Theorem

A fundamental aspect of solid state physics is solving the Schr�odinger equation for

electrons in a periodic atomic potential U(r), which describes the crystal lattice.

H 	(r) =
�
� �h2

2m
r

2 + U(r)
�
	(r) = E	(r) (1.8)

In order to tackle this complex problem one needs approximations and well suited

methods. An essential one is Bloch's theorem, which is based on the idealization of a

perfect and in�nite crystal. The perfect periodicity is accounted for by U(r) = U(r+R)

and the ideal, in�nite crystal without boundaries can be simulated by imposing periodic

boundary conditions, the so-called Born - von Karman boundary conditions. They can

be expressed as

	(r +Niai) = 	(r); i = 1; 2; 3 (1.9)

where Niai = Li represents the physical size of the crystal in the respective directions

given by the primitive vectors ai.
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Bloch's theorem expresses and is a consequence of the symmetry, i.e. the translational

invariance of the lattice. In quantum mechanics (thinking in the Heisenberg picture) a

fundamental theorem states the existence of a simultaneous set of eigenfunctions for two

commuting operators. It is easy to proof (see for instance [AM76]) that the translation

operator of the lattice TR = e
ikR and the Hamiltonian Eq. (1.8) commute. According

to Bloch's theorem the mutual eigenstates of TR and H can be written as

	nk(r) = unk(r) e
ikr (1.10)

where n is discrete and k restricted to the 1.BZ. Vitally u(r) is a lattice periodic

function satisfying the condition

uk(r +R) = uk(r): (1.11)

These solutions of our speci�c single electron Schr�odinger equation, basically modulated

plane waves, are usually referred to as Bloch modes, states, functions or waves. They

form a complete, orthogonal set of functions. The index n is known as the band index

and labels di�erent eigenstates for a given k. A convenient consequence is that the

eigenvalues En(k) in the Schr�odinger equation

H 	nk(r) = En(k)	nk(r) (1.12)

are also periodic in k-space and therefore it is possible to reduce further discussions to

the 1.BZ. Note, that although the k-space is discretized the k's can be assumed to be

continuous, since their di�erences are in�nitesimal in the order of

�k =
2�

V

; (1.13)

where V is the actual macroscopic size of the crystal. This follows from the Born - von

Karman boundary conditions in conjunction with Bloch's theorem. [AM76]

1.1.5 Electronic Band Structures

I will brie
y present two common methods to approximate the solutions of the electronic

Schr�odinger equation and furthermore introduce the common representation scheme of

a band structure diagram.

Tight Binding Model The tight binding model initially assumes a single, unper-

turbed potential with known eigenstates. This can be the e�ective potential for the

valence electron for instance. Those atomic potentials are spatially located very close

in a crystal and mutually in
uence each other. By gradually decreasing the distance or

equivalently increasing their interaction the previously well de�ned states get distorted.

They split up and broaden (see Fig. 1.12). Eventually, for very close potentials elec-

tronic bands form again. Mathematically this can be treated with the Ritz Variational

Principle. It is also often referred to as the Linear Combination of Atomic Orbitals

(LCAO) which is also a standard method to calculate Molecular Orbitals (MO).
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Figure 1.12: Formation of bands for mutually in
uencing atomic poten-

tials

Nearly Free Electron Approach The nearly free electron approach is based on

quantum mechanical perturbation theory. In the �rst step a negligibly weak potential

with periodicity is assumed. Consequently the free dispersion curves emerge from the

centers of every Brillouin zone and cross each other at their boundaries. In the case of

a free electron the dispersion is a parabola

E(k) =
�h2

2m
k
2 (1.14)

(straight lines !(k) = cjkj in the photonic case). In step two the strength of the

potential is increased which lifts some of the degeneracies. By including more and

more steps of quantum mechanical perturbation theory the real band structure can be

approximated.

A common scheme to represent the (approximated) solutions of the Schr�odinger

equation for the electrons in the crystal is a band structure diagram. Hereby the eigen-

values En(k) are plotted versus a continuous k, which is usually restricted to the 1.BZ

(reduced-zone scheme: see Fig. 1.13f). Further ways to represent the dispersion re-

lations are in a repeated-zone scheme (e.g. Fig. 1.13g) or in an extended-zone scheme

(Fig. 1.13e). For simplicity the eigenvalues are just plotted along lines of interest in

the 1.BZ, which have high symmetries. In Fig. 1.14 a typical electronic band structure

is shown. The di�erent branches in the diagram are called (energy) bands. They are

continuous in k and crossing or overlapping bands represent degeneracies. In some

cases it is possible that there are no corresponding k-vectors for a speci�c energy value,

which means that the energy has to change discontinuously. Such a forbidden energy

region is called band gap. In electronic systems band gaps occur for instance between

the valence- and the conduction band. The materials are then either insulators or semi-

conductors depending on the position of the Fermi level, which is the upper limit for

electronic states.
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Figure 1.13: Splitting of the bands in the Nearly-Free-Electron Approach

(left) and di�erent band structure representation schemes

1.1.6 Density of States

Besides the band structure the Density of States (DOS) is an informative quantity. It is

a measure for the allowed (electronic) states per di�erential energy interval. A sample

DOS is shown in �gure 1.15. Mathematically it can be de�ned as

%(E) = 2
X
n

Z
dk

(2�)3
Æ(E �En(k)); (1.15)

where n sums over the (relevant) bands and the integration is performed over any

primitive unit cell. The validity of this de�nition can be seen when the total number
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Figure 1.14: Sample band structure diagram for Silicon (Si) in a diamond

con�guration

of �lled states is recovered:

N =

Z EFermi

0

%(E) dE (1.16)

A sometimes more useful de�nition, relating the energy bands to the density of states,

is simply derived by counting the allowed wave vectors in a certain energy range E �
En(k) � E + dE. In the in�nitesimal limit of �k ! dk and dE ! 0 this can

be formulated as an (energy-)surface Sn(E) integral in k-space. In a next step the

in�nitesimal k-distance between Sn(E) and Sn(E + dE) can be reformulated with the

gradient of the dispersion rEn(k). This yields the explicit relation for the electronic

DOS and the band structure:

%(E) = 2
X
n

Z
Sn(E)

dS

(2�)3
1

jrEn(k)j
: (1.17)

� � � �

�

Figure 1.15: Sample Density of States with characteristic van Hove singulari-

ties (marked by arrows)

In case of a vanishing gradient the integrand diverges, but the singularities are inte-

grable and result in so-called van Hove singularities in the DOS (see Fig. 1.15).
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1.2 Electrodynamics Fundamentals

The second fundamental basis for any theoretical treatment of photonic crystals is of

course electrodynamics. Generally all we need are Maxwell's equations.

r �D = 4�� (1.18)

r �B = 0 (1.19)

r�E = �1

c

@B

@t

(1.20)

r�H =
4�

c

j +
1

c

@D

@t

(1.21)

E and H are the macroscopic electric and magnetic �eld respectively, D and B repre-

sent the in
uence of matter and are called electric displacement and magnetic induction.

Here it is recommended to use Maxwell's equations in their form for transparent, dielec-

tric media. That is without any external charges (� = 0) and currents (j = �E = 0).

In media the electric �eld and the displacement are related via the dielectric con-

stant (or permittivity) ". The magnetic �eld relates to the induction via the magnetic

permeability �. Both " and � are material constants and de�ned by the so-called

material equations.

D = "E (1.22)

B = �H (1.23)

These simple relations are only valid for homogeneous, isotropic and linear media. In

the case of anisotropic media the dielectric constant as well as the magnetic permeability

(but � is generally very close to 1 for optical materials) is a 3x3 tensor which can

also be position- and frequency-dependent to account for inhomogenities: "kl(r; !). If

the medium is non-linear the relation between D and E has to include higher order

coeÆcients (�(1)
; �

(2)
; etc).

Maxwell's equations with j = 0; � = 0 can be combined to yield the wave equations

for E and H .

r2
E � "�

c
2

@
2
E

@t
2

= 0 (1.24)

r2
H � "�

c
2

@
2
H

@t
2

= 0 (1.25)

These are standard equations of wave motion and suggest the existence of electromag-

netic waves propagating with a phase-velocity of

vph =
c

p
"�

=
c

n

(1.26)

where c is the speed of light. The deviation of v from c de�nes a new material property

of optical density, the refractive index n =
p
"�. This de�nition is only valid for

lossless materials with real dielectric constant and magnetic permeability. For complex
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Figure 1.16: Snell's law

dielectric constants "̂ the de�nition n̂2 = "̂� remains valid. Then the index of refraction

n and the absorption coeÆcient � have to be calculated with the following relations

n̂ = n(1� i�) n
2 = �

2

�q
"
2
r + "

2
i + "r

�
=)

"̂ = "r + i"i �
2 = 2�!2

c2

�q
"
2
r + "

2
i � "r

�
;

(1.27)

where "i =
4��
! . As can be seen from this transformations the index of refraction is

actually a foreign body in Maxwell's equations, but it governs macroscopic features like

Snell's law for incident and refracted light:

ni sin �i = nr sin �r: (1.28)

General solutions of the wave equations 1.24 and 1.25 are harmonic waves in space and

time, usually expressed as :

E (r; t) = E0 � ei(kr�!t) (1.29)

H (r; t) = H0 � ei(kr�!t) (1.30)

The wave vector k denotes the direction of propagation and forms a triad with the E

andH �eld since electromagnetic waves are transverse (in vacuum). The direction and

mutual phase of the �elds de�nes the polarization of the wave. The angular frequency

! is related to the frequency via ! = 2�� and the wave vector k to the wavelength

through � = 2�=jkj. In vacuum, where " and � are unity, the linear dispersion relation

! = cjkj holds. That is equivalent to E = pc or �� = c. In dielectric media this relation

alters to

!

jkj = vph =
c

n

(1.31)

Unfortunately, harmonic and monochromatic waves are idealistic and in reality one

always has to deal with a superposition of them, so-called wave packets. Wave-packets

are characterized by a certain bandwidth f(!) and therefore, per de�nition contain a
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range of neighboring frequencies. Quite generally this can be stated as:

F(r; t) = F0

Z
f(!) e�i[!t�k!r] d! (1.32)

Since in dielectric media the dispersion relation ! (k) is not necessarily linear any more,

the group velocity de�nes a measure for the propagation of the wave packet as a whole.

vgr =
@!

@k

i.e. vgr = r
k
!(k) (1.33)

In contrast to the phase velocity the group velocity is always less than or equal to

the speed of light. It represents the speed of the entire wave packet including the

information and energy transmitted by it.
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Computational Techniques

After establishing the basis of solid state physics and electromagnetism, we are now

interested in the behaviour of electromagnetic waves in a photonic crystal. In principle

all the information is concealed in Maxwell's equations and we are left with solving

them in a structure of a periodically modulated dielectric constant. There are di�erent

strategies to tackle this problem. Most of them revert to methods of solid state physics,

but there are two main di�erences. On the one hand the vectorial character of light

has to be taken into account, on the other hand, since photons are bosons the single

particle problem delivers accurate results.

I will �rst introduce the most common one of these techniques, the Plane-Wave-

Expansion method (PWEM) based on the formalism given by Ho, Chan and Soukoulis

(HCS method) [HCS90].

A second important approach that I want to present in detail is the Transfer Matrix

method by Pendry [PM92]. This formalism does not rely on approximate solid state

methods but rather solves Maxwell's equations directly for a given con�guration of a

periodically modi�ed dielectric constant.

Finally I will present and brie
y discuss some other methodologies as well as their

speci�c advantages and disadvantages along with applications.

2.1 Plane Wave Expansion Method

In the PWEM the solutions of a master equation, which is deduced from Maxwell's

equations, are expanded in a set of plane waves by utilizing Bloch's theorem. In the

issue of PRL 65 in (1990) three di�erent approaches to construct a suitable master

equation [HCS90, ZS90, LL90] were presented. The solution o�ered by Ho, Chan and

Soukoulis is the most commonly used technique to calculate photonic band structures

nowadays.

25
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In order to simplify the basic problem, starting from Maxwell's equations the assump-

tions of a

1. linear

2. isotropic

3. frequency independent

4. lossless

material are made. This reduces the dielectric constant to an intrinsic position depen-

dence " (r). The magnetic permeability � is generally very close to unity and therefore

set to 1. Under these assumptions Maxwell's equations read

r � (" (r)E (r; t)) = 0 (2.1)

r �H (r; t) = 0 (2.2)

r�E (r; t) = �1

c

@H (r; t)

@t

(2.3)

r�H (r; t) =
" (r)

c

@E (r; t)

@t

(2.4)

The time dependency can be separated by an common harmonic ansatz

H (r; t) =H (r) ei!t and E (r; t) = E (r) ei!t: (2.5)

Inserting this harmonic ansatz into equations 2.1 & 2.2 leads to the simple, time-

independent divergence equations 2.6 and through equations 2.3, 2.4 to the coupled

curl equations relating the magnetic and electric �elds 2.7.

r � ("(r)E (r)) = 0 r �H (r) = 0 (2.6)

r�E (r) = � i!
c

H (r) r�H (r) =
i!

c

" (r)E (r) : (2.7)

These relations can be de-coupled for either one of the �elds. It proves superior to

consider the magnetic �eld �rst, because this results in a hermitian di�erential operator

[JMW95]. This is of great importance since it eases subsequent numerical methods.

Eliminating E from Eq. (2.7) yields our master equation:

r�
�

1

" (r)
r�H (r)

�
=
�
!

c

�2
H (r) (2.8)

To point out its character of an eigenvalue equation it can be written as

�H (r) = $H (r) (2.9)

with the hermitian operator � and the real, positive eigenvalues $ corresponding to�
!
c

�
. In the progression of this work I will refer to the frequencies ! as being the

eigenvalues. They can straightforwardly be recovered from $ and are the physical

signi�cant quantity.
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Once the magnetic �eld is known, the electric �eld can subsequently always be

recovered through

E (r) =

�
�ic
!" (r)

�
r�H (r) : (2.10)

Therefore the remaining problem is solving our master wave equation 2.8. Basically

all the information about the crystal is contained in the position dependent dielectric

tensor "(r) = "(r+R), whereR is a lattice vector. Ideally it would be perfectly periodic

without boundaries. Mathematically we are confronted with an eigenvalue problem for

a di�erential operator on H , which is hermitian. Therefore the eigenfunctions H(r)

have real eigenvalues !, they are orthogonal, and they can be obtained by a variational

principle and have distinct symmetry properties. Primarily we have to deal with a set

of 3 coupled di�erential equations with periodic coeÆcients in 2.8. The best approach

to this problem is employing Bloch's theorem, called Floquet theorem in optics. So the

ansatz is to expand the dielectric tensor and the magnetic �eld in a Fourier series on

the reciprocal lattice G

"(r) =
X
G

"
G
e
iGr (2.11)

H
k
(r) =

X
G

2X
�=1

h

�

G
e

�

G
e
i(k+G)r (2.12)

where � represents the two transverse polarizations of the wave vector k labeling the

solutions. Inserting 2.11 & 2.12 into the master equation 2.8 leads to an in�nite eigen-

value problem, for the eigenvalues !n(k) and the eigenfunctionsHnk(r), i.e. its Fourier

coeÆcients h
�

G
.

X
G

2X
�=1

M
��0

GG
0 h

�0

G
0 =

�
!

c

�2
h
�

G
(2.13)

with M
��0

GG
0 = jk +Gj � e

�
G
� e�0

G
0

"G�G
0

� jk +G0j (2.14)

This matrix eigenvalue problem can be solved by standard matrix-diagonalization meth-

ods if truncated by only retaining a �nite number of reciprocal lattice vectors. The

diÆculty is obtaining the Fourier coeÆcients of the inverse dielectric tensor "(r) in

Eq. (2.14). With the HCS method the position-dependent dielectric function is evalu-

ated in the real space unit cell, Fourier transformed into reciprocal space and subse-

quently inverted. This method proves to converge signi�cantly faster than the direct

method, which �rst inverts "(r) and then applies the Fourier transform. Matrix sizes

on the order of � 750 plane waves are suÆcient to obtain accuracies better than 1%

for the 10 lowest bands [HCS90]. The intrinsic results of the PWEM are of course the

dispersion relations !n�(k) (eigenvalues) along with the spatial electromagnetic �eld

distributionsHkn�(r);Ekn�(r) (eigenfunctions), as well as photonic density of states.
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Alternative approaches to construct a master equation from Maxwell's equations are

also possible, but were not as successful as the HCS method. For instance, the master

equation proposed by Zhang and Satpathy [ZS90] is

�r2
D =

�
!
c

�2
D +r�r� [V (r)D]

with V (r) = 1� 1
"(r)

(2.15)

the one Leung and Liu [LL90] suggested looks like

r� (r�E) =
�
!

c

�2
"(r)E: (2.16)

Both equations can also be solved with a Plane-Wave-Expansion method and yield

the same results but lack good convergence properties due to less suitable di�erential

operators. R�omer [Roe00] suggested an improvement to Eq. (2.16) in order to regain a

positive de�nite, symmetric operator:

r � (r �E) :

= �E =
�
!

c

�2
"(E) (2.17)

where quite generally "(E) is a position-dependent function of E. In the linear case it

assumes "(E)i =Di = "ijEj. De�ning

F = "
1=2(E) and K = "

�1=2 � "�1=2 (2.18)

yields the hermitian eigenvalue equation

KF =
�
!

c

�2
F : (2.19)

Unfortunately it is shown in [JMW95] that the �elds F are not transverse anymore.

That makes this approach less suitable because the transverse character of H is of

great utility for the numerical methods.

2.2 Transfer-Matrix Techniques

In contrast to PWEMs the Transfer-Matrix method does not necessarily assume an

ideal crystal with perfect, boundless periodicity. It is rather an on-shell, �nite ele-

ment method and directly calculates the 
ow of the electromagnetic �elds throughout

a small, real structure. Therefore it does not rely on Fourier space and is thus better

capable of incorporating disorders or defects. Additionally its intrinsic features allow

the determination of transmission and re
ection properties. This cannot be done with

PWEMs due to the existence of uncoupled bands. Uncoupled bands are Bloch modes of

distinct orthogonal symmetry to an incident plane wave. Thus they cannot support the

propagation of a plane wave. The existence of those uncoupled bands was proven by

Sakoda [Sak95] through group theoretical considerations. The original Transfer-Matrix

method was presented by Pendry and MacKinnon in 1992 [PM92] as a further develop-

ment of on-shell methods in low-energy electron di�raction theory. Later modi�cations

and extensions are based on this, see for instance [ET95, ET96].
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The Transfer-Matrix approach represents the electromagnetic �elds on a discrete mesh

of space points where Maxwell's equations are evaluated.

r�E = �@B
@t

and r�H =
@D

@t

(2.20)

As a �rst step, the structure has to be discretized in real space. The mesh points can

be simply de�ned as

r = n1a � ex + n2b � ey + n3c � ez ni : integers; (2.21)

where ex;ey;ez usually span an orthogonal lattice. This is should not be mis-understood

as the unit cell of the structure under study, which is subdivided by this mesh. An

orthogonal mesh is the prime choice and could always be altered by coordinate trans-

formation into a better adapted one [WP96].

Secondly, the equations 2.20 are transformed using the harmonic ansatz and are

expressed in (!;k) space:

ik �E = +i!B and ik �H = �i!D (2.22)

where k can be approximated for small values of a; b; c by:

kx �
1

ia

[eikxa � 1] (2.23)

ky �
1

ib

[eikyb � 1] (2.24)

kz �
1

ic

[eikzc � 1] (2.25)

This can be inserted to equations 2.22 which are then Fourier transformed into real

space. Now the �elds D(r) and B(r) can be substituted by "(r)E(r) and �(r)H(r),

respectively. Eventually eliminating the components of the �elds in propagation di-

rection, e. g. Ez and Hz leads to determining equations for F(r + c). Here F(r)
is de�ned as 4-dimensional vector containing the x- and y-components of the �elds

(Ex(r); Ey(r);Hx(r);Hy(r)). With this notation a transfer matrix T can formally be

de�ned as

F(r + c) = Trr0F(r0) (2.26)

with the r0 points on a plane. This transfer matrix only depends on !; "(r); �(r) and

relates the �elds in one layer of cells to the next layer in z-direction (see �g. 2.1). The

actual matrix components are calculated in [Pen94].

As boundary conditions either the dielectric constant of the embedding material

can be taken into account. Or, for periodic arrangements in any directions Bloch's

theorem can be invoked.

E(r + R) = e
ikR

E(r)

H(r + R) = e
ikR

H(r)
(2.27)

where R is a lattice vector as in de�nition 1.1 on page 12.

A consistency check of the results can always be done by virtue of a constant energy


ow in form of the Poynting vector (S = c
4�
[E �H ]) through the layers.
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�
��

Figure 2.1: A mesh for the Transfer-Matrix method, which expresses the

�elds in a given plane in terms of �elds in the previous plane[Pen94]

When trying to �nd the transmission and re
ection coeÆcients for the whole structure,

�rst of all the coeÆcients for a single slice, i. e. layer of cells have to be calculated. In

order to achieve this, the known transfer matrix T is unitarily transformed into a free

wave basis T̂ = STS
�1. This results in a form where the quadrants of T̂ can easily be

related to the re
ection and transmission coeÆcients for this particular slice. The total

transmission and re
ection for a slab of a material consisting of several slices could

then ideally be obtained by determining the total T-matrix through

T (L) =

L=zY
z=1

T (z) (2.28)

and re-applying the above explained procedure. Unfortunately this elegant prescription

for simply adding together slices can su�er from fatal numerical instabilities [Pen94].

To avoid this problem multiple scattering formulae have to be used iteratively to add

a new layer. This increases the computational load but leads to more stable results.

In order to identify the wave vectors k, the presumably known eigenvalues of the transfer

matrix for a period system have to be compared to the term e
ikZ from Bloch's theorem:

T (Z)F(z) = F(z + Z) = e
ikZF(z) (2.29)

Through this step the dispersion relation, albeit in a form of k(!) as opposed to the

conventional !(k), can be obtained.

2.3 Various Other Methods

Besides the Plane-Wave-Expansion and Transfer-Matrix method there are other ap-

proaches to treat electromagnetic waves in periodic dielectrics. I just brie
y want to

address them here. A recent review on this topic can be found in the article of Berger

[Ber99].
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Scalar Wave Early approaches neglected the vectorial character of the electromag-

netic �eld and performed scalar computations. Nevertheless the calculations were able

to explain some experimentally veri�ed results, but many features could not be ac-

counted for. In fact when dealing with a 2-dimensional crystal the scalar wave approach

can be exact. In this case it is possible to de-couple the two polarization states and

treat them independently.

Nearly-Free Photon Approach A straightforward but very heuristic argument

is the nearly-free photon approach. It is equivalent to its counterpart in solid state

physics, with the exception that the free dispersion curves in the photonic case are

linear ! = cjkj as opposed to a quadratic energy-momentum relation E = �h2

2mk
2.

Figure 2.2: Evolution of a photonic band gap by gradually increasing

the dielectric contrast for a 1D Bragg stack.[JMW95]

Considering a crystal with negligible di�erence in the index of refraction but periodicity

nevertheless, the photon dispersion curves are still linear as in free space. But due to

the periodicity in the crystal the dispersion curves emerge from the centers of every

Brillouin zone and cross each other at its boundaries. Subsequently, by gradually

increasing the refractive index ratio, i.e. applying perturbation theory the degeneracies

at the boundaries of the Brillouin Zone are lifted and the dispersion curves repel each

other. In this fashion distinct bands and band gaps develop. Although this method

follows rather heuristic arguments, it re
ects some basic features of the photonic bands.

For example it re
ects the in
uence of the geometrical shape of the Brillouin Zone,

which results in di�erent slopes for di�erent directions and therefore in anisotropies for

higher bands (see �g. 3.10 on page 46).

Di�raction Grating And Scattering Method Di�raction Grating methods model

a 2-dimensional photonic crystal as a stack of N grids. The e�ect of a single grating on

the �eld is transferred to the next layer iteratively. In that sense this approach is related

to the Transfer-Matrix method. Scattering methods are also purely electromagnetic and

describe the photonic crystal as a simple set of Bragg-scatterers [Rus86, Yeh79]. They

can be superior to other methods when very weak scattering is considered. Forbidden

bands are the consequence of negative interference between multiple scattered waves,

matching the Bragg conditions.



32 Chapter No. II

Tight-Binding Model Another already mentioned famous method in solid state

physics, besides the Nearly-Free Electron approach, is the Tight-Binding model. By far

not as popular in photonics, it is nevertheless very interesting to discuss. The method is

most useful for geometrical objects with well known eigenmodes, for instance dielectric

spheres. Their eigenmodes are vector spherical waves, the so-called Mie resonances.

A very thorough treatment of this case was done by Ohtaka [OT96a, OT96b, OT96c,

OUT96]. In a mathematical way the set of eigenvalues in the bulk crystal ( i.e. the

bands) are calculated through an expansion with spherical waves. They are, in contrast

to plane waves well suited for the problem and also form a complete and orthogonal

set of functions.

The convergence properties and therefore the computational load of this method

are very good compared to other methods. This is due to the geometrically adapted

set of functions used for the expansion. Another advantage of this method is the

interpretation of 
at bands, i.e. slow photons (also called heavy photons) as propagating

Bloch waves. The group velocity of those 
at dispersion curves can be in the order of

c=100. A way to look at this in the Tight-Binding picture is that spherical waves

of single spheres couple to neighboring spheres through some energy leaking. This

mixing e�ect leads to a well-de�ned mode propagation from sphere to sphere. So the

light comes crawling along, spends some time in every sphere (localized modes of Mie

resonances already have a �nite lifetime in an isolated sphere) and then hopps on to the

next sphere. Although this method employing vector spherical waves as basis functions

shows some advantages, it is not very widespread. Mostly because of its limitations to

spherical/ellipical objects, which just recently got more attention in the work on opals

and inverted opals [BCG+00].

Rayleigh-Ritz Approach Again this is a technique where the computation of the

photonic bands is based on a decomposition of the �elds into a complete and orthogonal

set of well adjusted functions [FG97, FGV98]. These functions preferably possess the

same symmetry as the crystal with discontinuities associated to the position dependent

dielectric constant "(r) and therefore have great advantages in convergence, avoiding

the Gibbs phenomenon (sharp peaks at the corners of a Fourier transformed rectangular

function). Unfortunately one needs a new set of functions for any variation of the

geometry.

Finite Di�erence Time Domain Technique It is a somewhat similar approach

to the Transfer-Matrix method. As its name already implies, Finite Di�erence Time

Domain techniques are also based on �nite elements methods, but discretizes the �elds

in time [RJ96]. It allows to map the temporal evolution of light pulse propagation

and is therefore particularly eÆcient for calculating cavity quality factors and emission

rates.

In summary the di�erent theoretical methods to treat photonic crystals usually re-

vert to well established solid state physics methods. The approaches are numer-

ous and increasing. See for instance Vol.8 No.3 (Jan.29, 2001) of Optics Express

[http://www.opticsexpress.org/].
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2.4 Computer Programs

In order to make use of the ideas presented above and draw quantitative conclusions,

the aid of computers is inevitable. Therefore the methods have to be implemented in

source code. This again allows many degrees of freedom owing to di�erent algorithms

and programming languages. Some of this software is already freely available. For

instance the MIT Photonic Bands Package [http://ab-initio.mit.edu/mpb/] from

Stephen Johnson at the MIT in the Joannopoulos group.

For the calculations and simulations in this work, I was allowed to use the programs

developed by Ovidiu Toader at the University of Toronto in the group of Prof. Sajeev

John and by Prof. John Pendry at the Imperial College of Science, London. I learnt

how to operate and modify these codes for my needs and want to give a very quick

overview of them.

2.4.1 by Ovidiu Toader

The program Ovidiu Toader created is based on the Plane-Wave-Expansion method and

implemented in modular C++ code. It runs under Linux and uses standard mathemati-

cal packages, e.g. for Fast Fourier Transforms (FFT) and Linear Algebra. CVS (Concur-

rent Versions System) keeps track of the source code �les [http://www.CVShome.org].

For instance it lets only compile new or modi�ed ones. The compilation is executed

by a 'homemade' Python command: pmake. Python [http://www.python.org] is a

script language comparable to Perl. The basic �le structure of the complete program

looks like:

/home/oettl/PBG:

* CVS/

* doc/

* etc/

* include/

* lib/

* mk/

* python/

* src/

/home/oettl/PBG/src:

* Anton/

* BandStructure/

* CVS/

* Config/

* CoordinateSystem/

* Crystal/

* DOS/

* Dielectric/

* EMField/

* NL/

* PlaneWaves/

* PointGroup/

* Shape/

* TempBandstructure/

* Visualization/

* mkf

* readme
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In /PBG/doc/ the documentation of the source code �les, located in /PBG/src/ can

be viewed in HTML format. The /PBG/src/ directory, containing the single classes

is subdivided in thematic, self-explaining directories Crystal/ for instance contains 2-

and 3-dimensional point lattices and Shape/ di�erent geometrical as a basis to generate

desired crystal structures. New classes or modules can easily be added any time by

just creating them, putting them in the relevant directory and compiling with pmake

and pmake install subsequently in /PBG/src/.

In the main program those classes are simply assembled as building blocks to calcu-

late the dispersion relations !n(k) in a band structure diagram, the photonic density

of states DOS, the spatial electromagnetic �eld distribution or the real space shape of

the crystal structure. For a sample main program see appendix B on page 125. It is

compiled to an executable �le through the pmake command and the mkf-script.

2.4.2 by John Pendry

The above explained Transfer-Matrix method was implemented originally by J. Pendry,

P. M. Bell, A. J. Ward and L. M. Moreno in Fortran code. This code along with docu-

mentation and permission to use was kindly provided by Prof. John Pendry [http://-

www.sst.ph.ic.ac.uk/photonics/].

Figure 2.3: Graphical user interface of the Translight program by

A. Reynolds and vrml representation of a Lincoln-log structure

Besides that, Andrew Reynolds at the University of Glasgow programmed a software

with graphical user interface GUI on top of the initial code. It is called Translight

and runs under Windows. It is freely available at [http://www.elec.gla.ac.uk-

/~areynolds/Software/SoftwareMain.htm] and o�ers convenient interaction with
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the program. Although the interaction through control and template �les would be rec-

ommended due to higher transparency. It includes some pre-de�ned structures which

can serve as case studies and examples to program templates for custom built struc-

tures. A desired structure can be implemented by repeating cells or blocks of cells

through space. This cell can simply be the unit cell of a lattice. With more cells, more

complex structures (with defects) can be generated. The geometry of the cells and

the mesh on it has to be programmed in a template �le. Unfortunately one is limited

to elements consisting of bars, rods or spheres. Eventually the crystal structure can

be output and viewed in Virtual Reality VRML. The �nal transmission and re
ection

curves are output on a frequency scale adjustable in range and accuracy.
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Chapter 3

Discussion Of General Features

After establishing the theoretical framework and computational techniques we can now

move on to look at some representative results and interpret their features with regard to

speci�c designs and optimization of photonic crystals. Although 3-dimensional photonic

crystals are of great importance, all relevant features are already present in the 2-

dimensional case. Hence I will mostly deal with 2-dimensional examples here, because

they have simpler structures and are easier to imagine and visualize.

�

�

�

Figure 3.1: Sample photonic crystal: Si (n=3.45) with air columns of r=a =

0:35 in hexagonal lattice, and its corresponding 1.Brillouin Zone

Let us consider a sample system. It consists of air columns in a backbone of Silicon.

The refractive index of Si in the infrared is 3.45 (! " = 11:9). The columns extend in

the z-direction and are arranged in an ordered triangular lattice in the xy-plane with

a ratio of radius to lattice constant r=a of 0.35. A top-view of the structure along with

its corresponding 1.BZ is shown in Fig. 3.1.

37
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3.1 Photonic Band Structures

In analogy to solid state physics (see page 18) the common way to represent the disper-

sion relations is in band structure diagrams. Here !n(k) is plotted versus a continuous

k along lines of high symmetry (� �K, � �M and the connection of M �K, which

does not correspond to an actual direction) in the 1.BZ, where n labels the bands.

The energy axis is normalized (y = !a
2�c

= a
�
) by the lattice constant a in order to

take advantage of the scalability of Maxwell's equations. That is because no intrinsic

length scale is given by them. So the results can be applied to the complete range of

electromagnetic radiation provided an appropriate structure with the same dielectric

contrast.

As a representative example the band structure of our sample system is shown in

Fig. 3.2. It was generated with the PWEM program. The parameters were: Triangular

lattice, disc motif r=a = 0:35, "
backbone

= 11:9, "1 = 1, H-polarization (TE).

Figure 3.2: Calculated band structure diagram of the sample crystal

Generally, coming from the low frequency regime the dispersion curves, i.e. the �rst

band starts, out linear from the center of the 1.BZ. Obviously the wavelengths are too

long in this domain to probe the periodicity of the di�erent dielectrics in the crystal.

Propagating light then only experiences an averaged refractive index. In this linear

regime the e�ective index of refraction is simply inverse proportional to the slope.

neff =
k

!1(k)
c (3.1)
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More generally the slope of the band is related to the group velocity

vgr = r
k
!(k): (3.2)

Consequently, when going to higher frequencies the speed of light in the crystal can be

drastically reduced. This is particularly true for bands bending towards a gap. Slow

light near the band edge has already been observed experimentally [IVSL99].

The most prominent feature in the diagram 3.2 is of course the band gap. It is a

region where two consecutive bands are so far apart in energy, that light in a certain

wavelength range cannot couple to any band for any given direction, i.e. k-vector in the

crystal. For these wavelengths the crystal is perfectly re
ecting. No light is transmitted.

The band gap is generally characterized by the relative quantity of the gap-midgap

ratio �!!0
� 100. The present example exhibits a gap of � 40% for the lowest band gap

and � 3% for the second complete gap.

It is remarkable that light propagation in the gap is forbidden, although the ma-

terials constituting the crystal are transparent. This astonishing e�ect o�ers fantastic

possibilities in optics such as the trapping of light and gives rise to new phenomena.

The formation of band gaps strongly depends on the con�guration of the crystal and

is subject to discussion in section 3.5 on page 44.

If a gap does not extend throughout the complete BZ, but only exists for a particular

direction then it is referred to as a pseudo gap or stop band.

Still going to higher frequencies past the band gap(s), the bands tend to 
atten

out. Although that would suggest that light propagation would slow down there, it

is not at all clear what happens at frequencies corresponding to higher bands. Their

combined e�ects get far too complicated to analyze and less interpretable. Additionally

the convergence and therefore the accuracy of the numerical simulations is getting worse

for higher band indices. Because the bands not only 
atten out but also tend to be

closer together, they eventually become indistinguishable and one reaches the classical

geometrical optics domain for higher frequencies. However a clear limit cannot be

stated.

3.2 Spatial Field Distribution

The electromagnetic �elds Hk(r) are the corresponding eigenfunctions in the master

equation Eq. (2.8) to the eigenvalues !n(k), which are arranged in the band structure

diagram. Since the di�erential operator in the master equation Eq. (2.8) can be shown

to be hermitian, its eigenvalues are real and its eigenfunctions are harmonic modes.

This implies that any two non-degenerate eigenfunctions are mutually orthogonal and

own a distinct symmetry. Furthermore an electromagnetic variational principle holds,

stating that the modes can minimize their electromagnetic energy by concentrating

their displacement �eld D(r) in the high-" regions [JMW95]. In analogy to quantum

mechanics high-" domains correspond to deeper energy potentials.
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The phenomenon of 'repelling' bands can be illustrated by considering the spatial �eld

distributions. Three factors play a role:

1. The electromagnetic modes, i.e. bands tend to concentrate their energy in the

high-" regions.

2. Modes have to be mutually orthogonal in space.

3. The �elds have to be continuous across the interfaces of di�erent dielectrics.

Therefore higher bands have to penetrate low index domains in order to stay orthogonal

and continuous. Consequently two consecutive bands exhibit a distinct discontinuity

('jump') in energy if the electromagnetic power of their modes is mainly localized in

regions with di�erent dielectric constants. One often refers to dielectric bands (below

the gap) and air bands (above the gap).

As an illustration, the displacement �eld for the �rst two bands at the K and M

point is depicted in Fig. 3.3. The 1.band (dielectric band) has minimal energy by

Figure 3.3: Displacement �eldD in the 1st (bottom) and 2nd band (top) at the

K-(left) andM -point (right). The corresponding normalized frequencies ( !a
2�c)

at the K-point are 0.22 and 0.345, at the M -point 0.2 and 0.33 respectively.

Field distributions at the K-point for the 2nd and 3rd band are identical since

the are degenerate.
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optimally concentrating the �eld in the high index material. The 2.band (air band)

possesses a D �eld node in the high index backbone and therefore carries more energy.

3.3 Density of States

Once the dispersion relations !n(k) are known the photonic Density of States DOS can

be calculated in the same manner as the electronic DOS (see 1.15-1.17 on page 20).

N(!) =
X
n

Z
1:BZ

d
3
k Æ(! � !n(k)) (3.3)

Alternatively, to better reveal the relationship to the dispersion curves or its slope:

N(!) =
X
n

Z
Sn(!)

dS

(2�)3
1

jr!n(k)j
(3.4)

To evaluate the integral numerically it is necessary to discretize the �rst, i.e. the irre-

ducible Brillouin Zone (IBZ) uniformly [JB99].

For the sample system the DOS was calculated and plotted on a normalized fre-

quency scale again (see Fig. 3.4). The DOS is a measure for the number of allowed

states in a certain di�erential energy interval and so a valuable tool to identify com-

plete band gaps. Regions of zero DOS, where no allowed states exist are full band gaps

throughout the BZ. Peaks in the DOS curve represent van Hove singularities and cor-

respond to a vanishing gradient of the dispersion. DOS considerations are of particular

interest in quantum optical calculations [BVJS00].
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Figure 3.4: Calculated total 2-dimensional photonic Density of States

(top) and 1-dimensional DOS in ��K direction

An entirely linear !n(k) (free space, i.e. vacuum) would result in a photonic DOS curve

proportional to !2 as opposed to a E3=2 �curve for free electrons. That is because the
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shape of the DOS depends exclusively on the dispersion curve and the dimension of the

integral. This is also demonstrated through a 1-dimensional DOS by integrating only

over a speci�c crystal axis. In this case a constant DOS would result for a homoge-

neous system. Since our sample system is far from homogeneous, clear gaps arise. The

1-dimensional DOS was calculated in � � K direction. In this fashion, identi�cation

of pseudo gaps is also possible. Nevertheless the 1-dimensional DOS ought not to be

confused with a transmission curve (compare with Fig. 3.5).

The photonic DOS is also a measure for the quality of coupling between energetic

systems, like excited atoms or radiating dipoles [BVJS00] and the electromagnetic

vacuum modes. An extension to the total DOS would be a local DOS

Nlocal(!; r) =
X
n

Z
1:BZ

d
3
k jEn;k(r)j2 Æ(! � !nk); (3.5)

which expresses local coupling of an imaginary atom inside a photonic crystal with the

Bloch modes. Consequently their spatial intensity distribution has to be taken into

account.

3.4 Transmission and Re
ection

Band structure diagrams and DOS deliver a lot of information and give deep insight

to the optical properties of the crystal. Nevertheless it is often desirable to charac-

terize transmission and re
ection properties, especially when interpreting experimental

results. Only phase-sensitive experiments like Terahertz Time Domain Spectroscopy

THz-TDS [WLH98] or coherent microwave spectroscopy [RAM+93] can directly probe

the dispersion relations.

With the Transfer-Matrix method program (see section 2.4.2) we are able to cal-

culate actual transmission (T) and re
ection (R) coeÆcients for speci�c wavelengths.

The results for the system under study (��K direction) are shown in Fig. 3.5. Trans-

mission and re
ection curves are plotted on a normalized frequency scale again. The

accuracy for higher frequencies ( !a
2�c

>� 1) is doubtful as with the other methods.

Please notice that transmission and re
ection curve do not necessarily have to be

complementary as in this case. In metallic systems (metallo-dielectric photonic crystals)

for instance absorption plays a major role and R+ T < 1.

Furthermore the computer program permits to follow the evolution of the curves for

an arbitrary number of unit cell layers of a crystal. This is particularly useful when the

number of layers is known exactly. In Fig. 3.6 the transmission spectra for 1, 2, 4 and

8 layers of our sample structure are plotted on a logarithmic scale. One layer consists

of two rows of cylinders. Please notice that the number of layers coincides with the

number of oscillations below the gap. This e�ect corresponds to Fabry-Perot fringes as

eminent in 1-dimensional systems, like Bragg stacks or dielectric mirrors.



General Features 43

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
0,0

0,2

0,4

0,6

0,8

1,0

Normalized Frequency

Reflection

 0,0

0,2

0,4

0,6

0,8

1,0

Transmission

Figure 3.5: Transmission and re
ection spectra in � �K direction for

the sample crystal
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Figure 3.6: Evolution of the gaps with increasing number of layers
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3.5 Design and Optimization Criteria

Some of the main interest in the �eld of photonic crystals surely focuses on the possi-

bility to create Photonic Band Gap PBG materials. But not necessarily every photonic

crystal exhibits a complete gap. So it is advisable to look at the range of parameters

free to modify in order to design photonic crystals. Furthermore it will be helpful to

develop a certain feeling for the implications of those variables when optimizing a band

gap. A glimpse on existing state of the art designs and unconventional photonic crystals

will conclude this section.

3.5.1 Polarizations

Whenever there is a distinct special axis in the crystal, as in our 2-dimensional crystal

the z-axis for instance, it is possible to de-couple the electromagnetic �elds. Based

on this axis they can be labeled transverse magnetic TM, or sometimes referred to

as E-polarization, and transverse electric TE (H-polarization). Consequently, in the

quest for a complete gap, overlapping band gaps for both polarization states have to

be achieved.

As a rule of thumb, it turns out that TE band gaps are favored in a lattice with

connected high index backbone, e.g. columns in a dielectric. TM gaps on the other hand,

prefer lattices with isolated high index regions, e.g. ordered dielectric rods. Recalling

the discussion about spatial electromagnetic �eld distribution, especially the formation

of air and dielectric bands in section 3.2 on page 40 sheds light on this phenomenon.

It can be attributed to the fact that only for one polarization at a time it is possible to

localize its electromagnetic energy of consecutive modes in the preferred high-" regions.

Whereas the 'air band' of the other polarization state has to penetrate (continuity of

the �elds) low-" domains, which results in increased energy.

3.5.2 Dielectric Contrast

A straightforward parameter to consider is the index of refraction. In order to increase

a band gap it is of foremost importance to maximize the ratio of the refractive indices

"high="low.

This can only be achieved by selecting proper materials. The dependence of the

gap size on this dielectric contrast is strictly monotonous, even up to extremely high

dielectric constants (like " = 300 for Rutil in the microwave regime). Recalling the

dielectric constant as the analogon to the quantum mechanical potential enlightens

this fact. Larger dielectric contrasts are equivalent to deeper potentials which result

in stronger splitting of the bands in the Nearly Free Electron or Photon picture (see

section 1.1.5 and 2.3 on page 19 and 31 respectively). From a di�erent point of view

larger discontinuities of refractive index result in stronger scattering of light at the

respective interfaces. This is also the reason why discontinuities in dielectric constant,

i.e. jumps are preferable over smoothly varying index functions, for instance sinusoidal

ones.

Moreover when increasing the index contrast not only does the size of the gap

increase but also its position shifts towards lower frequencies (see Fig. 3.13). Because
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Figure 3.7: Air columns in high index (n=3.45) backbone (left) and ordered high

index rods in air (right): TE (H-polarization) (center) vs. TM (E-polarization) (bot-

tom)

higher dielectric constants mean higher e�ective index 
attening the bands (see Rutil

in Fig. 3.8). This can be seen in the long wavelength limit (1st band):

jkj
!1(k)

=
c

neff

(3.6)

Usually a threshold for the minimum dielectric contrast required to open up a complete

gap is stated for a given crystal structure. (e.g. "
th
= "high="low � 1:9 for our sample

crystal)
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Figure 3.8: The evolution of the band gap with increasing dielectric constant:

On the left Glass (" = 2:25), in the center Silicon (" = 11:9) and on the right

Rutil (" = 300). The lattice is the same as discussed above
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0

10

20

30

40

Dielectric Constant

 Gap size [%]

Figure 3.9: The dependence of the gap size (�!!0
� 100) on the variation of

dielectric constant for the sample crystal (with air �lling)

3.5.3 Crystal Structure

Contrary to the dielectric contrast the crystal structure is a more complex parameter

to analyze.

Figure 3.10: Comparison of di�erent lattices (equal �lling fraction, same di-

electric contrast and polarization): On the left a rectangular lattice, a square

in the center and a triangular lattice (sample system) on the right
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First of all the underlying point lattice o�ers some degree of freedom. A point lattice

with a most sphere-like (3D) or disc-like (2D) 1.BZ has the best chance to exhibit a

complete gap throughout the BZ. The reason for this is that the lengths of di�erent

high symmetry axes in the BZ are approximately the same. Then, thinking in a Nearly

Free Photon picture again, the energy di�erences of one band at the di�erent respective

edges of the BZ are less pronounced. Consequently it is easier to create a band gap by

lifting the degeneracies through perturbations, i.e. increasing the dielectric contrast.

Figure 3.11: The band structures for the di�erent lattices in Fig. 3.10: Rect-

angular lattice (left), Square lattice (center) and Triangular lattice (right)

Nevertheless some of the degeneracies cannot be lifted since they are symmetry induced

(e.g. the W-point in fcc lattice [LL90]). In this case the proper choice of the basis

element (motif) can reduce or break the overall symmetry of the crystal structure.

Frequently employed geometric shapes like spheres or discs could be replaced by motifs

with less symmetry to break the overall symmetry. A typical example is the diamond

con�guration where two spheres serve as the motif in an fcc lattice type. One sphere

is located at (0,0,0) the other displaced by 1
4
(a1 + a2 + a3) in the unit cell. This

con�guration exhibits the largest complete 3-dimensional band gaps.

Figure 3.12: An fcc lattice consisting of 1 sphere (left) and two separated

spheres (right) as a motif. The latter is a diamond con�guration.
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3.5.4 Filling Fraction

The �lling fraction of the crystal is a most important parameter which has to be opti-

mized carefully. Usually this has to be done numerically for every single con�guration.

The dependence of the gap-size on the �lling fraction is generally a bell-shaped curve

with a distinct maximum. Sometimes this dependence is expressed in terms of the

quantity r=a, where r is a parameter characterizing the motif (e.g. the radius for cylin-

ders or spheres) and a the lattice constant. Of course the relationship between r=a

and the �lling fraction is di�erent for every point lattice but easy to calculate through

geometrical considerations (e.g. for a square lattice f = ( r
a
)2� or for a triangular lattice

f = 2p
3
( r
a
)2�).
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Figure 3.13: The relative size of the band gap in our sample crystal depending

on the �lling fraction with air (left). The position of the gap with varying

�lling fraction (right)

The dependence of the band gap in our sample system on the �lling fraction is plotted

in Fig. 3.13. This diagram reveals that a maximal band gap of 50% could be obtained at

an air �lling fraction of f � 0:66. This corresponds to r=a � 0:43 in our con�guration.

It is clear that in the limits of very low and very high �lling factors the band gap

vanishes since the structure approaches homogeneity. The asymmetric shape of the

curve can be attributed to the fact that the air columns touch at r=a = 0:5 ($ f � 0:9)

and yield isolated domains of high index material. This is a con�guration which does

not favor TE gaps (see subsection 3.5.1). Furthermore the position of the band gap

shifts with varying �lling factors since that changes the e�ective index.

Fig. 3.14 illustrates how the optimal �lling fraction shifts with increasing dielectric

contrast. This means that crystals consisting of materials with very high refractive

index should actually consist mostly of air.
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Figure 3.14: Dependence of the optimal �lling ratio on the dielectric

contrast. Curves calculated for the sample crystal.

3.5.5 State of the Art

With this kind of knowledge it is possible to design photonic crystals in 2- and 3-

dimensional space with optimized band gaps or other desired features. Limitations of

course apply to fabrication techniques and material properties.

State of the art 3-dimensional crystals are inverted opals. They consist of air spheres

in a backbone of Silicon (Si: n=3.45), arranged in a diamond lattice. With such sophis-

ticated crystals the �rst complete band-gap at optical telecommunication wavelength

(1.5 �m) was achieved [BCG+00].

Additional material properties can be exploited to further manipulate and extend

the features of photonic crystals. For instance active media can be incorporated in the

dielectrics to study emission and lasing properties [BVJS00]. Conductive materials are

used to create metallo-dielectric photonic crystals [FVJ96]. Another highly interesting

idea is the in�ltration of photonic crystals with liquid crystals. Liquid crystals have

mnematic properties and are sensitive to external electric or magnetic �elds. They

align themselves in the presence of those �elds and thereby change their optical prop-

erties, i.e. refractive index in certain directions. With such a combination of liquid and

photonic crystals it is in principle possible to build tunable photonic band gaps [BJ99]

[Yab99].
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Chapter 4

Ultra-Refractive E�ects in

Photonic Crystals

The previous chapters serve as an introductory basis and overview of the �eld of pho-

tonic crystals. I now want to present the work I conducted while spending 6 month

in the research group of Prof. Sajeev John at the University of Toronto, Canada from

January 2000 to June 2000. This invaluable research study was made possible through

and funded by a Government of Canada Award.

My research topic in Canada was "What happens at non-normal incidence of non-

monochromatic light on a photonic crystal ?". It turns out that new phenomena un-

precedented in conventional optics arise in this case.These phenomena are often referred

to as the superprism e�ect or more generally ultra-refractive e�ects.

In this chapter I will brie
y outline the evolution of this speci�c �eld and introduce

a straightforward theoretical numerical approach. I will apply this approach, in con-

junction with our PWEM program presented in section 2.1, to review existing work.

Finally refraction properties of relevant photonic crystals in designated experiments are

predicted with these methods.

4.1 Introductory Theory

In classical optics we are familiar with the e�ects of coupling light into a homogeneous,

isotropic dielectric (e.g. with n = 2). The angular dependence of refraction is stated

by Snell's law Eq. (1.28) and can be interpreted with Fermat's principle. Furthermore

dispersion of light results if the material has a wavelength-dependent index of refraction

n(!). In case of an anisotropic material (e.g. birefringent crystal) the relations can also

be relatively easily be stated [BW75].

The key question is how these laws apply to photonic crystals. There have been

several approaches to this problem, basically distinguished as a phase-velocity picture

and a group-velocity approach. I will �rst present the more intuitive phase-velocity

picture. Then I will discuss some �eld plots generated by di�raction grating methods

which do not rely on either picture. Finally the more general group-velocity approach

will be described along with a procedure how to implement it. The latter strategy was

51
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employed in my own calculations.

4.1.1 Phase Velocity Approach

The people who came up with the phase-velocity approach (Dowling and Bowden

[DB94]) were motivated by discussions on the merit of ultra-high refractive indices

with regard to lasing without inversion, resolving power of optical microscopes and

laser acceleration of electrons. In fact the resolving power only depends on the ratio of

n0=n and therefore the authors strove to �nd ultra-low indices in order to increase this

ratio.

They initially assume a 1-dimensional system. The dispersion relations !(k), or

k(!) can be calculated analytically in this case. They are shown in Fig. 4.1.

Figure 4.1: Dispersion relations k(!) (right) for a 1-dimensional model system

(left). The lattice constant here is given by d [DB94].

Since the index of refraction n is given by n = c
vphase

and the phase velocity simply

by vphase =
!
k , the actual refractive index can be obtained through n(!) = kc

! . It is

plotted in Fig. 4.2 and shows anomalous behaviour. For instance it drops below 1 in

the higher bands and even tends to zero at the band edges. This situation corresponds

to a phase velocity !1 (!).

Figure 4.2: Extracted e�ective index of refraction [DB94]

In my opinion the idea of an e�ective index de�ned by the phase velocity can only prop-

erly be applied in the long wavelength limit (1st band), because the physical behaviour
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of the light is governed by the group velocity. An extension of this 1-dimensional model

to 2- and 3-dimensional space requires more complex re
ections on the propagation di-

rection of light. This can be better accounted for in the group velocity picture.

Furthermore this picture raises the question if superluminous phenomena are present

in such a system. It has already been con�rmed experimentally (with autocorrelation

techniques) that indeed the phase velocity is increased dramatically way beyond the

speed of light. This implies that light is basically tunneling through this barrier. But

on the other hand this poses no violation to Einstein's theory of relativity. Because

�rst of all only a marginal amount of light is transmitted, since this all happens very

close to the band gap. Secondly these e�ects are only possible in an extremely narrow

wavelength range. This inhibits the transmission of information, because such neces-

sarily implies a certain band width.

The idea of an anomalous e�ective index in photonic crystals, exhibiting unusual prop-

erties was picked up by Lin et al. [LHWJ96]. These authors tried to make use of this

anomalous refractive index and built a highly dispersive PBG prism in the microwave

regime. It consisted of dielectric rods arranged in a triangular lattice and was shaped

in a equilateral prism (see Fig. 4.3). They measured incident and refracted angles for

di�erent wavelengths below the band gap. Then they extracted an empirical index of

refraction n(�) by applying the standard prism formula Eq. (4.1) to the de
ection angle

Æ(�).

Æ = �i + arcsin
�
sin�

p
n
2 � sin2 �i � sin �i cos�

�
� �: (4.1)

Figure 4.3: Experiment and results by [LHWJ96]

Their results show a clear increase of the refractive index (� 20%) when approaching

the band gap. Unfortunately their work is of pure experimental origin and no attempt

was made to relate these results to any quantitative theoretical analysis. Nevertheless

the �rst experimental veri�cation of a highly refractive material was established. It

o�ers high sensitivity to incident wavelengths and angles. Therefore it would be well
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suited for instance, to increase the bandwidth and reduce the size of optical components

used for wavelength-division multiplexing-demultiplexing (WDM).

4.1.2 Field Plots

Investigations based on Di�raction or Scattering methods as performed in the group

of Maystre [ETM99], do not rely on either a group velocity or phase velocity picture.

With these methods Maxwell's equations are rigorously evaluated numerically for �nite

structures. This approach yields �eld maps of a monochromatic wave interacting with,

i.e. di�racted by, a given photonic crystal. The �gures below show a gaussian beam

hitting a slab of photonic crystal from atop and incident, re
ected and transmitted

�elds are simulated.

Figure 4.4: Widening of the beam:

� = 2:5447

Figure 4.5: Splitting of the beam:

� = 2:543

These results clearly show exceptional di�raction and refraction e�ects. Under normal

incidence [ETM99] widening (Fig. 4.4) and splitting occurs (Fig. 4.5) for only marginally

altered wavelengths. The splitting corresponds to spatial Fabry-Perot fringes.

At non-normal incidence ultra-refraction (Fig. 4.6) and negative refraction (Fig. 4.7)

is predicted by Gralak et al. [GET00]. Ultra-refraction, where the angle of refraction

is greater than the angle of incidence (�i < �r), implies that indeed an e�ective index

of refraction less than one (neff < 1) exists for this particular wavelength. Gralak et

al. [GET00] extended this analysis to proposed micro-optical components speci�cally

designed to exploit these e�ects, like micro-lenses and micro-prisms (Fig. 4.8, 4.9).

The beautiful results obtained with Di�raction or Scattering methods con�rm that

extraordinary refraction properties exist when coupling light into photonic crystals.

Unfortunately the �eld patterns need to be computed for every single con�guration (an-

gle, wavelength) separately. Therefore it is diÆcult with this method to show intrinsic

coherencies and provide deeper insight to the underlying causes of the phenomena.
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Figure 4.6: Ultra-refraction Figure 4.7: Negative refraction

Figure 4.8: Micro-lens Figure 4.9: Micro-prism
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4.1.3 Group Velocity Approach

The group velocity approach provides a picture better suited to illustrate the reasons

for the remarkable refraction properties of photonic crystals. It is based on two corner-

stones:

1. The propagation direction of light inside the crystal is given by the group velocity.

2. The basic boundary conditions in electromagnetic theory (! Fresnel equations)

extend to photonic crystals.

The �rst theoretical predictions and experiments for refraction properties of pho-

tonic crystals based on a group velocity argument were done by Kosaka et al. [KKT+98,

KKT+99a, KKT+99b].

Gradient The work by Kosaka et al. picks up a theoretical treatment of Ohtaka

[OT96a, OT96b, OT96c, OUT96] who proves that the energy 
ux is indeed in the

direction of the group velocity, i.e. the gradient of the dispersion curve:

r!(k) = vgroup = venergy =

R
cell

c
4� [E(r)�H(r)] drR
cell

1
8� jH(r)j2 dr

; (4.2)

where the numerator is basically the integral of the Poynting vector and the denomi-

nator the integral of the energy density.

This implies that in order to predict the propagation direction of light inside the

crystal requires to have full knowledge of the complete topology of the dispersion curves.

Since the gradient is a derivative, also the energy values ![k) of a certain wave-vector

k need to be known in a 3-dimensional surrounding. It is generally not suÆcient to

just look at a 1-dimensional cut through the band structure, as in a phase velocity

picture, since the gradient of a certain point does not necessarily fall into the plane of

the cut. Heuristically the gradient points towards the steepest slopes of the function.

For instance in a 2-dimensional topology (e.g. alpine landscape) that would be the

direction of the greatest slope, i.e. the inverse direction where water would 
ow.

Figure 4.10: Interpretation of Contour lines and a real life example
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An educational way to �nd the gradient is by drawing the contour lines of the topology

and subsequently constructing the normals on them, bearing in mind that its direction

is de�ned as upward. This method using the contour lines is in many cases easier to

implement and usually more intuitive (just think alpine mountain ranges maps).

It is clear now how to �nd the propagation direction inside the crystal. But in

order to do so certain constraints apply. Most importantly the correlation between the

propagating modes inside (Bloch modes) and outside (plane wave) the crystal have to

be determined. This de�nes the boundary condition.

�

�

� �

� �

� �


 � 


Figure 4.11: Incident, refracted and re
ected beam

Boundary Condition Let us recall the classical boundary condition in electromag-

netic theory at an air-dielectric interface. It is deduced here and leads to the well known

Snell's law for homogeneous materials. We consider Maxwell's equation in air (n0) at

the boundary to a dielectric material (n). An incoming beam splits into a refracted (r)

and a re
ected (l) beam.

Ei(r; t) = E
0
i e

ikir�i!t (4.3)

Er(r; t) = E
0
r e

ikrr�i!t (4.4)

El(r; t) = E
0
l e

iklr�i!t (4.5)

where

jkij = ki =
!

c

n0 = kr = jkrj ; jklj = kl =
!

c

n (4.6)

and ki;kr;kl denote the incident, refracted and re
ected wave vector, respectively.

The conditions satis�ed by the E and H �eld are simply deducible from Maxwell's

equations (Fresnel equations). They must hold in both media and demand the parallel

component of E and the normal component ofH to be continuous across the interface.

Furthermore it is necessary to satisfy a phase-matching condition at the boundary for

all 3 wave vectors:

(ki � r)z=0 = (kr � r)z=0 = (kl � r)z=0 (4.7)

Generally this just states the continuity of the parallel component of the wave vectors

kjj across the interface ! This condition can be expressed alternatively in terms of angles
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to the normal on the boundary plane for incident (�), refracted (�) and re
ected (
)

beam.

ki sin(�) = kr sin(�) = kl sin(
) (4.8)

In conjunction with Eq. (4.6) this simply recovers Snell's law:

n0 sin(�) = n0 sin(
) = n sin(�) (4.9)

But whether this simple condition straightforwardly extends to the photonic crystal

case is still a matter of discussion. Nevertheless it is the best available approximation

so far.

4.1.4 A Procedure

Having elaborated the relevant building blocks for predicting refraction properties,

namely the topology of the dispersion relation (full k-space) and the boundary con-

dition (kjj = constant), it is now possible to show how this can be implemented to

investigate ultra-refractive phenomena. I want to present a procedure for extracting

the relationship between the angle of refraction and the angle of incidence. For sim-

plicity this shall be illustrated for the simple case of a homogeneous, isotropic medium

(n = 2) and will recover the well known refraction properties by means of this 'detour'.

1. Calculate the dispersion relations in full k-space.

2. Draw the topological map with contour lines.

3. Extract the contour line of interest, i.e. cut the surface at a speci�c height (/
wavelength).

4. Construct the parallel component of the incident wave vector: jkj = 2�
� and

kjj = jkj sin(�).

5. Intersect the kjj-construction line with the contour line.

6. Take the normal of the contour line at the intersection point.

7. Determine the direction of the slope (gradient points upwards).

8. Scanning the incident angle and repeatedly applying this procedure yields the full

angle-angle relationship.

Attention needs to be drawn to the following. The resulting directions can be somewhat

ambiguous since the kjj-construction line actually intersects twice with a given contour

line. In the homogeneous, isotropic case this does not appear to be a problem. The

direction is intuitively determined. Nevertheless in the photonic crystal case this can

pose a complex problem which has to be overcome by carefully picking the physically

right direction. This ambiguity can be explained by the following argument: Owing to

the symmetry in Maxwell's equations the direction with �k? is also a solution if the
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k?-direction is one. This is the reason for the non-existence of a direct optical diode.

(See appendix C for a case study on a 'brilliant' idea : : : )

As can be seen in Fig. 4.12, applying the procedure to a homogeneous dielectric

medium the classical refraction relation � = arcsin(n0n sin�) is regained. The inverse

case, light traveling from a high index material to a low index material, yields the steep

curve depicted in Fig. 4.12(d). Here the e�ect of total internal re
ection can be nicely

seen. Since there are no corresponding refracted angles for incident angles � � 30Æ

(n = 2), no propagation is supported into the vacuum. All in all this example is a nice

con�rmation of how the procedure outlined above works. In principle this procedure

can also be applied step by step to photonic crystals. However it will be more diÆcult to

obtain refraction relations since the size and especially the shape of the equi-frequency

lines are complex.

Problems The procedure presented above is very intuitive. Nevertheless there re-

main uncertainties about the applicability of this approach to photonic crystals. The

strongest doubts refer to the boundary condition under the assumption of a constant

kjj. This condition actually holds only for a plane wave (outside) coupling to a plane

wave inside the material.

Ei(r; t) = E
0
i e

ikir�i!t �! E
0
r e

ikrr�i!t = Er(r; t)

But in the case of photonic crystals the plane wave hitting the boundary of the crystal

couples to one or more photonic bands inside. The �elds inside are no plane waves but

Bloch modes:

Ei(r; t) = E
0
i e

ikir�i!t �!
X
n

X
k

E
0
r(n;k)unk(r) e

ikr�i!t = Er(r; t)

Therefore the phase matching condition for ki and kr becomes much more complicated

and would have to be solved for every speci�c case separately. This is a virtually

impossible task to realize. Nevertheless the theoretical group velocity approach is

generally assumed to be applicable for lower bands, since they resemble plane waves

more closely than higher bands, due to less terms in the expansion.

The exact evaluation of how well this theory actually holds is still open. Overall a

combination of Di�raction or Scattering methods and group velocity considerations, as

performed by Gralak et al. [GET00] seems most promising. However I did not have

scattering methods at hand and so I was restricted to an analysis in the group-velocity

picture.
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4.2 Reviewing Existing Superprism Work

The work by Kosaka et al. [KKT+98, KKT+99a, KKT+99b] served as a starting point

for me to the topic of photonic crystals and their refraction properties. Initially I

tried to con�rm their results on ultra-refraction (termed 'superprism e�ect' by these

authors) in order to test my own numerical routines. In doing so I encountered several

inconsistencies in their work. Dealing with these problems consumed a signi�cant

amount of time but it also greatly increased my insight in the topic. Therefore I want

to report in detail about puzzling points in the existing superprism work.

4.2.1 Overview

Basically the work by Kosaka et al. is a combination of the above explained group-

velocity approach and experimental tests of predicted refraction properties. The ex-

periment was carried out with (pseudo) 3-dimensional photonic crystals consisting of

alternating layers of amorphous Silicon [n(a-Si) = 3:24] and Silica [n(SiO2) = 1:46].

Each layer of a certain thickness (h = 0:16 �m) represents a 2-dimensional triangular

lattice (lattice constants: a = 0:32 �m or a = 0:4 �m) combined with a hexago-

nal motif (diameter d = 0:4a) of one material embedded in the other (see Fig. 4.13).

The crystals were probed with laser-light of wavelength � = 0:956 �m from a verti-

cal cavity surface-emitting laser (VCSEL). The angle of refraction was determined by

observing the refracted beam inside the crystal, collecting the scattered light with a

CCD-camera viewing the top of the crystal. A schematic experimental con�guration

along with the geometry of the employed crystal is shown in Fig. 4.13. The correspond-

ing band structure and the resulting contour lines for !a
2�c = 0:42 = a

� = 0:40 �m
0:956 �m and

!a
2�c

= 0:33 = a
�
= 0:33 �m

0:956 �m
respectively are depicted in Fig. 4.14. For details please see

[KKT+99c].

The resulting data (see Fig. 4.15) exhibits remarkable features never obtained before

with classical optical materials. Multiple refraction, negative angles and ultra-high

refraction was con�rmed experimentally. All these phenomena promise great potential

for implementations in integrated optics. However the experimental results could only

partially be interpreted theoretically by the authors. In fact only one set of data was

con�rmed to agree with predictions. The simulated curve [solid line in Fig. 4.15(top)]

nicely resembles the measured set of data [dots in Fig. 4.15]. On the other hand the

second data set [circles in Fig. 4.15(bottom)] cannot be �tted properly by a theory

based on the group-velocity approach. The origin for the discrepancy remains still

unexplained except for speculations by the authors about a locally excited surface

mode [MBRJ91].

4.2.2 Critical Analysis

My �rst interest was to implement the geometrical structure of the crystal in Fig. 4.13

in our PWEM program and to test by verifying the band structure diagram of Fig. 4.14.

This e�ort required several 'trial-and-error' attempts since the exact speci�cation of the

crystal was not suÆciently provided in references [KKT+98, KKT+99c].
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Figure 4.13: The photonic crystal employed in the experiments by Kosaka et

al.

Figure 4.14: The band structure diagram (left) and corresponding contour

lines (right) for the crystal in Fig. 4.13 (from [KKT+98])

Band Structure Initially I na��vely assumed their calculations to be based on 2-

dimensional crystals of arranged hexagonal columns. This implied two possible con�g-

urations, either high-index or low-index rods. I performed the band structure calcula-

tions for both. The results are shown in Fig. 4.16. It is interesting to compare them

with the actual 3-dimensional band structure diagram (see below and Fig. 4.17).
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Figure 4.15: Dependence of the propagation angle on the incident angle

observed by Kosaka et al.

Figure 4.16: My calculations of 2-dimensional band-structures for hexagonal

columns (r/a=0.2) in high index (left) and low index (right) for E-(top) and

H-polarization (bottom) respectively.
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The full 3-dimensional crystal structure can be regarded as a hexagonal lattice (a1 =

a2 6= a3; � = 60Æ ; � = 
 = 90Æ ) with a motif formed by the combination of a hexag-

onal disc (r = 0:2a, h = 0:16 �m) with a hexagonal rim (rinner = 0:2a, router =
ap
3
,

h = 0:16 �m) raised by 0:16 �m. Motif and backbone are either one of the di�erent

refractive indices (n = 3:24) and (n = 1:46). The results were checked on this intrinsic

'symmetry'. Furthermore the relative thickness of the layers (h = 0:16 �m) are dif-

ferent for a crystal with a = 0:4 �m and a = 0:3 �m. My simulation also con�rmed,

as claimed by the authors, that this has no signi�cant impact on the band structure.

Therefore the same scale-invariant crystal (a = 1; h = 0:8) can be used in the compu-

tations. The calculated 3-dimensional band structure obtained with a set of 1458 plane

waves in our PWEM program is shown in Fig. 4.17.

Figure 4.17: My calculations for the 3-dimensional band structure for the

crystal described in [KKT+98]

This particular structure of the 3-dimensional crystal even allows the de�nition of po-

larization directions (see Fig. 4.13). They can be labeled TE and TM regarding the

z-axis owing to the fact that its periodicity is di�erent than in the xy-plane. Unfortu-

nately the program I employed does not distinguish polarizations for a 3-dimensional

structure. It only labels the bands according to the band index bottom to top. Never-

theless the polarization for di�erent segments of the bands can be retrieved by means

of the �eld distributions. I simply assumed the polarizations de�ned in the papers

[KKT+98, KKT+99c] to be correct and adopted them.

A closer examination of the band structure in Fig. 4.17 and the one shown in

Fig. 4.14 shows a di�erence in normalized frequency of � 5% ! This discrepancy was

very startling. Because such would impact the refraction properties in a drastical way.
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(a) Alternating layers
: : :

(b) Alternating layers
: : :

(c) : : : to create 3D (d) : : : to create 3D

(e) My calculations for the band structure of a

crystal as described in [KKT+98, KKT+99c]

(f) My calculations for the band structure of a

crystal as depicted in [KKT+98, KKT+99c]
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A dispersion surface shifted in height means that the cut at a constant frequency will

yield di�erent contour lines. Consequently di�erent refraction properties should be

expected theoretically, since the size and shape of the contour line is a very sensitive

parameter in the group-velocity approach.

I checked this discrepancy against possible errors in implementing the crystal be-

cause it proved diÆcult to extract the right geometrical con�guration from the original

papers. It was stated in [KKT+98, KKT+99c] that the diameter of the hexagons is 0:4

times the lattice constant (d = 0:4a). I assumed this diameter to be the outer diameter

of a hexagon. On the other hand the crystal in Fig. 4.13 rather looks like the radius of

the hexagons to be 0:4 times the lattice constant (r = 0:4a)! A comparison of the calcu-

lated band structures (see Fig. 4.14) nevertheless revealed the structure with d = 0:4a

to most closely resemble the diagram presented in the papers [KKT+98, KKT+99c].

Neither slightly modi�ed indices, nor attempts to take account of the inner diameter

of a hexagon in the calculations could remove this o�set. So I decided to investigate

this discrepancy further and analyze the resulting refraction curves.

Contour Lines The calculated dispersion surfaces for the bands number 4,5,6 were

calculated in 2-dimensional k-space, ie.e the 1.BZ. They are depicted in Fig. 4.18. The

edges or somehow jagged appearance is due to the already mentioned labeling of bands

regardless of polarizations.

Figure 4.18: The dispersion surfaces for band #4(left), #5(center) and

#6(right)

First of all I modi�ed the height of the cuts to account for the shift in the bands. This

way it was con�rmed that a cut at a normalized frequency of !a
2�c

= 0:401 yields the

predicted curves in the paper (see Fig. 4.19).

The second step is to extract the refraction relation depending on incident angle.

Therefore the diameter of the contour line when intersecting the free space dispersion

cone at the particular wavelength ought to be known : Rfree = 0:401 � 2�.
It is more diÆcult to extract the contour line of the band(s) cut by this particular

frequency. Basically it is just a matter of �nding the corresponding wave vectors. But

that poses an inverse problem since the bands are expressed as !(k). In order to

'solve' this problem I calculated the bands along star-lines separated by 1Æ in the �rst

quadrant of the 1.BZ (0Æ : : : 90Æ ). The resulting 1-dimensional data could be �tted

with high-order polynomials (8 to 11, depending on the complexity and number of
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Figure 4.19: The right equi-frequency lines at !a
2�c = 0:401

data points), which in turn were solved in the relevant 'radius' region. This strategy is

shown in Fig. 4.20. It was implemented by means of a Maple VI script.

Upon knowledge of the equi-frequency lines the incident angle was scanned. By

doing so and by constructing the normal (i.e. �nding the gradient) to the contour line

at its sectioning point with the construction line (kjj = constant) the refraction relation

in Fig. 4.22 was obtained. This sequence is illustrated and summarized in Fig. 4.21.

Three points need special consideration:

� The propagation direction with respect to the crystal axes has to be chosen. In

our case the � �M direction corresponds to an incident angle = 0Æ (compare

[KKT+98]).

� The normal to the contour line is not uniquely determined. Therefore the di-

rection of the gradient needs to be known (remember: The gradient is pointing

upward!).

� The kjj-construction line intersects at least twice with the equi-frequency line.

Only proper directions traveling into the crystal (kperp > 0) should be selected.

The refraction predicted from the calculations based on these points is shown in Fig. 4.22.

The shape of the curves is in good agreement with the curves predicted by Kosaka at

al. But quite surprisingly the sign of the refraction is just opposite! (compare with

Fig. 4.15). The di�erence simply arises from the fact that the direction of the gradient

stated in the paper is pointing downward. The reason why it �ts the observed data

anyway is yet unexplained. It is certainly not due to a di�erent de�nition of the re-

spective angles since the images in the publication [KKT+99c] show the actual beam

propagation in- and out-side the crystal.



68 Chapter No. IV

� � � � � � � � � � � � 	 
 � � � � � 
 � �

� � � � 
 � � � � � 
 � � � �

� � � � 
 � � � � � 
 � � � �

�

�
�

Figure 4.20: The band structure was calculated along the star-lines and cut

at a particular frequency. The corresponding wave-vectors form a contour line

in the 1.BZ. The orientation of which is shown in the inset.
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Figure 4.21: The procedure to extract refraction properties as explained on

page 58
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Figure 4.22: My simulations for the refraction properties in [KKT+98] for
!a
2�c

= 0:401

It is also disturbing that the refraction relations for !a
2�c = 0:315 (� 0:33 � 4:5% to

account for the shift) yield completely di�erent theoretical results than the ones pre-

sented in [KKT+98] (see dashed line in Fig. 4.15). Although the contour lines are

qualitatively the same (see Fig. 4.23. It is not evident how the theoretical predictions

(dashed line) in Fig. 4.15 were done. The predicted refraction relation starts at � 25Æ .
But this is intuitively not clear regarding the shape of the contour line. The calculated

curve in Fig. 4.23 would at least be able to interpret the data for small angles, but only

if the change in sign is forced. [It remains to note that due to the indetermination of

the polarization in our PWEM the true contour lines were selected by hand across the

points where they seem to cross (see the red contour lines in Fig. 4.23 example)]

This controversial set of data is only shown in [KKT+98] and not in the subsequent

publications.
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Figure 4.23: My simulations for the refraction properties in [KKT+98] for
!a
2�c

= 0:401

All in all the inconsistencies and 'riddles' seemed to grow the more I engaged in digesting

the Japanese work [KKT+98, KKT+99c]. Nevertheless I was motivated by the fact

that the method to calculate refraction relations seemed to work (except for the sign?).

Furthermore I was hoping to �nd some clues about the reasons for the discrepancies in

the work by Kosaka et al. which they attribute to a locally excited surface mode. So I

decided to perform calculations for various scenarios.
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� � # � ' � $ � % � ( �
" � # � � � $ � % � & &

Figure 4.24: The contour lines obtained without taking the 5%-shift of the

band structure into account.

First of all I calculated the contour lines when employing the equi-frequency cuts

through our calculated band structure without compensating the 5% shift. The re-

sulting shapes are shown in Fig. 4.24 and especially the one for !a
2�c = 0:42 looks

alarmingly di�erent than the one at !a
2�c = 0:401.

The calculated refraction relations based on these equi-frequency lines are shown in

Fig. 4.25. Only the curves for !a
2�c = 0:401 in the upper left would actually explain the

experimentally observed data up to small angles of � 8Æ . But altogether these curves
give no deeper insight, except to illustrate that things can get quite complex. This is

particularly so when the equi-frequency line consists of more than one band or when

one band is intersected more than twice by the kjj-construction line. In fact it is unclear
how the intensity would be distributed among the possible paths in such cases. Perhaps

there is also a correlation between the magnitude of the gradient,i.e. group velocity and

the energy 
ux. At least this seems to be tru at the band edges. Furthermore it evident

from the above analysis that even the slightest shift in frequency dramatically changes

the resulting refraction relations.

Eventually neither the curve for a cut at !a
2�c = 0:33 (upper right in Fig. 4.25)

nor a trial for incidence in � �K direction (bottom graphs in Fig. 4.25) brought any

convincing interpretations of the measured data. There would be many parameters in

this case to permute (shift, incident direction, gradient direction, polarizations, etc.).

But it would be very tedious and doubtful if that could eventually explain the measured

data.

In summary the existence of remarkable ultra-refractive e�ects was directly shown

by experimental evidence. Theoretical modeling of the e�ects however was not very

successful. This could of course be partly due to the severe approximations in the

boundary problem.

On the other hand the photonic crystal employed in the Japanese experiments

is not well suited in my opinion. It consists of rather small structures (> 100nm)

appropriate for near-IR laser light sources. But the quality of the aspect-ratio of these

small features is likelyto be poor. Furthermore the (pseudo) 3-dimensional con�guration
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Figure 4.25: The expected refraction relations for the equi-frequency lines

shown in Fig. 4.24.

adds unnecessary complexity to the delicate matter of ultra-refraction. It remains to

establish a link between theoretical approach and the observed phenomena. Therefore

a close interplay between theory and suitable experiment is desirable.

4.3 Simulated Refraction Properties of 2-dimensional Si

Crystals

The previous section showed that it is not really clear how refraction works in photonic

crystals. Indeed it exhibits extremely interesting experimental e�ects but the theoret-

ical explanations lack consistency. It was pointed out that a possible source of error

was the complexity of the employed crystals.

Therefore it is desirable to �rst utilize pure 2-dimensional photonic crystals. Fur-

thermore it is not necessary to use nm-size structured crystal. The scaleability of

Maxwell's equations allows equivalent, but easier experiments employing bigger struc-

tures. For instance 2-dimensional �m-size structures are already highly developed and

posses very high aspect ratios.

4.3.1 Proposed Experiments

In collaboration with Prof. Henry van Driel's research group at the University of

Toronto, in particular Jessica Mondia, Steve Leonard and Hong Wee Tan the plan was

formed to check the theory of the superprism e�ect with straightforward experiments.
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Crystals The available crystals (see Fig. 4.26) were state of the art 2-dimensional

photonic crystals fabricated by the MPI in Halle/Germany [http://www.mpihalle.mpg.-

de/~porous m/] using reactive ion etching techniques. They consist of air columns

forming a triangular lattice in a backbone of Si. They come in slabs with the accessible

side perpendicular to the � �M direction. The slab is supported by thicker parts,

resulting in a comb-like, funny-looking shape since the aspect ratio is enormously high,

i.e. the columns are very deep compared to their diameter.

Figure 4.26: SEM picture of a two-dimensional photonic Si-crystal, fabricated

at MPI, Halle.

Two di�erent �lling fractions were available. One with 44:4% air �lling ( ra = 0:35).

The other one has an optimized �lling fraction for a maximized TE-gap with 64% air

�lling ( r
a
= 0:42). Furthermore there were two di�erent pitches, i.e. lattice constants:

a = 1:5 �m and a = 1:58 �m for every �lling fraction. This makes altogether 4

di�erent con�gurations regarding polarizations. The absolute pitch does not matter in

the band structure calculations because of the scale invariance in Maxwell's equations.

The bands were calculated using �1200 plane waves in the PWEM program. They are

shown in Fig. 4.27.

Light-sources The above described crystals should be well suited for our task to

analyze the refraction properties of photonic crystals. But due to their lattice constants

of a = 1:5 �m and a = 1:58 �m the interesting region in normalized frequency ( !a
2�c

) is

around 2 �m� 4 �m.

But in this wavelength regime no conventional monochromatic light-sources (lasers)

in order to probe them were easy at hand. Eventually it turned out that lasers with

a wavelength of � = 2:39 �m and � = 3:39 �m would be at our disposal at Photonics

Research Ontario (PRO). The bandwidth of these lasers was stated to be � 20nm.

In the band structure diagram these wavelengths correspond to constant frequency

sections at a
� = 0:44; 0:63 for a lattice constant of a = 1:5 �m and a

� = 0:47; 0:66 for

a pitch of a = 1:58 �m respectively.

Applying these cuts to the 4 band structure diagrams in Fig. 4.27 yields a variety

of 12 bands which are actually intersected. Exclusively those bands are relevant for the

following closer examination.
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Figure 4.27: Photonic crystals consisting of air columns (r/a=0.35 [left] and

r/a=0.42 [right]) in a Silicon (n=3.45) backbone. TE (H-polarization) [top]

vs. TM (E-polarization) [bottom]

4.3.2 Expected Phenomena

In order simulate the refraction properties for the proposed experiments the relevant

bands were calculated in the complete 2-dimensional 1.BZ. I will limit the results and

discussions here to 4 important and typical examples. Furthermore a certain bandwidth

(20nm) is included in the following analysis. The red (or magenta) curve and the blue

(or cyan) curve correspond to the red and blue 'edge' of the bandwidth.
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Figure 4.28: Dispersion surface of band # 4 (r=a = 0:42, E-pol)

Ultra-Refraction When the band structure of (r=a = 0:42, E-pol) is cut at 0:44

($ a = 1:5 �m; � = 3:39 �m) its forth band is intersected. The dispersion surface of

this band is shown in Fig. 4.28. In �gures 4.29 and 4.30 the contour lines and resulting

refraction relations are depicted respectively.

Here ultra-refraction in the form of strong refraction is evident. The variation of

0 : : : � 15Æ in incident angle yields refraction angles of 0 : : : 90Æ in a regular manner.

Therefore some sort of refractive index n = sin 15Æ = 0:26 could be matched this

refraction curve. The index is less than 1 since the contour line is (signi�cantly) smaller

than the free space dispersion. This is in some analogy to the discussion by Dowling

and Bowden [DB94] (see page 52) for the 1-dimensional case. The regular behavior of

the refraction curve can be attributed to the shape of the contour line which is almost

circular. Furthermore the curve exhibits very strong dispersion since the spread of

20nm in wavelength splits over angles of up to � 20Æ . This may con�dently be called

'superprism e�ect'.

Figure 4.29: Resulting contour line

for a cut at 0.44 Figure 4.30: Simulated refraction

behavior showing ultra-refraction
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Figure 4.31: Dispersion surface of band # 2 (r=a = 0:42, H-pol)

Negative-Refraction For a normalized frequency cut at 0.47 ($ a = 1:58 �m)

the second band of the con�guration (r=a = 0:42, H-pol) is intersected. Figure 4.31

depicts its surface plot and �gures 4.32, 4.33 its contour lines and refraction relations

respectively.

In this case negative refraction can be observed. The wiggles in the relation are

due to the form of the contour line which deviates from a circular shape. It is also

remarkable that the frequency dispersions changes with angle. In the range of 0 : : : 20Æ

the long wavelength part of the bandwidth is de
ected more, in the range of 50 : : : 70Æ

the short wavelength side. Furthermore there exist almost no dispersion for the distinct

wavelengths in the range of 20 : : : 50Æ . This can be interpreted in a way that the size of

the contour lines is very close to that of the free space dispersion. A contour line with

the exact same radius would of course yield a refractive index of 1. This also accounts

for the strength of refraction in this case: 0 : : : 75Æ ! 0 : : : � 90Æ .

Figure 4.32: Resulting contour line

for a cut at 0.47 Figure 4.33: Simulated refraction

behavior showing negative refrac-

tion
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Figure 4.34: Dispersion surface of band # 7 (r=a = 0:35, H-pol)

Multi-Branching The band # 7 of the constellation (r=a = 0:35, H-pol) is cut at

0.63 ($ a = 1:5 �m). For the dispersion surface see Fig. 4.34, for the contour lines

4.35. The resulting refraction relations are illustrated in Fig. 4.36.

Since the cut intersects three times with the same band multi-branching occurs.

Additionally the gradient for one of the contour lines is opposite to the other two and

therefore light is refracted to negative angles. The frequency dispersion for negative

refraction is also opposite to positive refraction. The behavior of the frequency dis-

persion exclusively depends on the orientation of the gradient and the relative size of

the contour line compared to free space (see Fig. 4.33). The strength of the di�erent

branches can again be attributed to their varying sizes. No prediction (at least in our

approach) can be made about the energy distribution to the distinct branches. The

same applies when intersecting more than one band. Another case for multi-branching

to occur.

Figure 4.35: Resulting contour line

for a cut at 0.63 Figure 4.36: Simulated refraction

behavior showing multi-branching
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Figure 4.37: Again the dispersion surface of band #4 (r=a = 0:42, E-pol)

Beam-Steering Again band #4 of the crystal with (r=a = 0:42, E-pol) is cut but

this time at a normalized frequency of 0.47 ($ a = 1:58 �m). As usual the surface

plot is depicted on the top of the page (Fig. 4.37) and the contour lines as well as

the refraction curves can be found at the bottom of the page in �gures 4.38 and 4.39,

respectively.

Owing to its almost hexagonal shape this curve exhibits beam-steering qualities. In

the range of 0 : : : 10Æ and again at 25 : : : 35Æ the angle of refraction for the red part

of the bandwidth remains constant. Therefore this constellation would be extremely

insensitive to variation in the incident angle. Generally a contour line with straight

domains exhibits these properties. On the other hand if there are corners present in the

contour line than excellent switching can be achieved by slightly varying the incident

angle.

Figure 4.38: Resulting contour line

for a cut at 0.47
Figure 4.39: Simulated refraction

behavior showing beam-steering

properties
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4.4 Conclusions

In summary a review was given on the work done on ultra-refractive e�ects by photonic

crystals. After an intuitive 1-dimensional argument, approaches to tackle the problem

of non-normal, non-monochromatic incidence of light on photonic crystals were pre-

sented. The methods tracing the electromagnetic �eld through a slab of crystal and

its boundaries show beautiful, promising results of anomalous refraction properties.

The group-velocity approach o�ers a deeper understanding of the mechanisms involved

but relies on a weak boundary condition. Furthermore experimental evidence of ultra-

refraction is present. The results could partly be explained by means of the group-

velocity method. This method was also employed for simulating theoretical refraction

relations of purely 2-dimensional crystal in a designated experiment. The predictions

con�rm expectations of extraordinary refraction properties achievable with photonic

crystals. But these refraction phenomena only occur in a very distinct wavelength

range and are subject to greatest precision. Unfortunately the proposed experiments

were never accomplished.

Figure 4.40: A prospect band for superior beam-steering applications

The applications of ultra-refractive e�ects in industry are promising and numerous,

especially in the booming �eld of optical telecommunications. But in order to make

use of the phenomena they have to be set on a �rm basis. This is only possible with

an interplay between experimental and theoretical aspects of this �eld.



Chapter 5

Optical Properties of Colloidal

Crystals

This chapter covers a collaboration with Matthias Soddemann and Prof. Walter Rich-

tering, Kiel (Deptartment of Applied Physical Chemistry of Polymers and Colloids)

(formerly Freiburg). They prepared and experimentally analyzed photonic crystals

based on colloidal particles, as described in section 2. First a brief overview of the �eld

of colloidal crystals is given in section 1. Then I will report on theoretical simulations

based on the methods explained in chapter II for the optical properties of their speci�c

crystals. Results will be shown and discussed. A publication on our combined e�orts

is in preparation.

I wish to thank Dr. Carsten Winnewisser and Prof. J�urgen Schneider from the

Freiburger Materialforschungszentrum FMF who were responsible for this collaboration

to materialize.

5.1 Overview

Basically colloidal particles represent a link between huge molecules and tiny particles.

Typical size scales are shown below in Fig. 5.1.

Figure 5.1: Representative colloidal systems with typical dimension ranges

79
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Photonic crystals made out of colloidal systems attract much attention nowadays. This

is mainly due to their formation process of self-assembling in a 3-dimensional crystal

with excellent long range periodicity. This elegant and fast way of fabrication is superior

to micro-lithography and layer-by-layer methods. Colloidal particles have long been

synthesized (� 1930's), scienti�cally studied and applied in industry. They are available

in a wide range of materials and sizes. This makes colloidal crystals very suitable as

photonic band gap (PBG) materials in the optical and near infrared (NIR) wavelength

domain. The best established systems are silica colloids (opals) and polymer latexes

like PMMA (polymethylmethacrylate) and PS (polystyrene).

However most colloidal materials do not have high dielectric constants. To overcome

this obstacle a common method is to use the colloidal crystals as templates which are

then in turn in�ltrated with higher index material. In this fashion, state of the art

photonic crystals have been manufactured. In the form of inverted opals of Si with a

complete band gap at the optical telecommunication wavelength of 1:5 �m [BCG+00].

Figure 5.2: State of the art photonic crystal: inverted opal in Silicon [BCG+00]

A very important feature of colloidal spheres is that they can be made monodisperse,

i.e. all having the same size. The size and even the intrinsic structure of the spheres

can be adjusted in the chemical synthesis. Some typical kinds, like a solid sphere (with

surface groups), a core shell sphere and a hollow sphere are shown in Fig. 5.3.

The crystallization of monodispersed spheres is possible in various ways. Hard

spheres will self-assembly simply by sedimentation or by hydrodynamic 
ow and phys-

ical con�nement [see Fig. 5.4 (A) and (C)]. The resulting crystal structure is generally

cubic-close-packed (ccp, corresponds to fcc with 74% volume fraction as in naturally

occurring opals) or hexagonal-close-packed (hcp). A phase diagram illustrating crys-

tallization is shown in Fig. 5.5 (A). Charged colloidal spheres arrange themselves by

repulsive electrostatic interactions [Fig. 5.4 (B)] and crystallize preferably in a face-

centered-cubic structure. A body-centered-cubic (bcc) lattice type can be achieved

under the right conditions (Fig. 5.5).

An excellent overview on the synthesis, crystallization and applications of colloidal

systems is given in the article by Y. Xia [XGYL00] where the three shown �gures are

taken from.
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Figure 5.3: Di�erent kinds of monodispersed particles: (A) solid sphere [with

magni�ed surface groups], (B) core shell sphere and (C) hollow sphere

Figure 5.4: Crystallization meth-

ods: (A) Sedimentation, (B) Elec-

trostatic repulsion and (C) Hydro-

dynamic 
ow with physical con�ne-

ment

Figure 5.5: Phase diagrams for

crystallizing hard spheres (top) and

charged particles (bottom)
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5.2 Synthesis and Experimental Characterization

The particular colloidal crystals under study in this work were synthesized and crys-

tallized by M. Soddemann. Basically they comprise highly charged monodispersed

colloidal spheres in aqueous solution. Some of the samples were further �xated by

embedding them in a hydrogel matrix. The images shown in this section are excerpts

from M. Soddemanns Diploma Thesis [Sod98].

Polymerization The colloidal emulsions were prepared following a standard proce-

dure. Polystyrene (PS) latex dispersions were synthesized by means of emulsi�er-free

emulsion polymerization from the monomer styrene. To initiate the polymerization

potassium peroxosulfate was used. The potassium salt of p-styrenesulfonic acid func-

tioned as a stabilizer. The polymerization was allowed to proceed at 80Æ C for 10h.

The resulting size of these PS spheres is determined by the experimental parameters

and can be adjusted to desired values.

Determination of the Particle Size Mainly dynamic light scattering (DLS) by

means of a Krypton ion laser (� = 647 nm) was employed to determine the size of the

PS beads diluted in water. A standard computer program extracted the actual diameter

from the angle dependent data. Furthermore the particle sizes were measured via

transmission electron microscopy (TEM) and digital image analysis of several hundreds

of clearly separated particles (see Fig. 5.6 for a typical image). This procedure con�rms

almost perfectly spherical particles with a diameter of 113 � 6 nm. This is a size

distribution on the order of 6%.

Figure 5.6: Transmission electron microscopy (TEM) image of PS beads in

water [XGYL00]

However the diameter resulting with the DSL method yielded values of 150 � 7 nm.

The discrepancy is not clear. The DSL results seemed to be more trustworthy and were

backed by measurements of a 
uorescence-correlation-spectrometer (FCS).

Crystallization Impurities in the dispersion were removed by dialysis for 1-2 weeks.

Then ultra-pure water was added to the latex. Latex concentrations used in this study

were 1.0 to 6.0 wt.-% (wt.-%= mass fraction � = mPS

mPS+mH2O
). The crystallization

took places in a capillary 
ow cell (0:4 � 5 � 40 mm) where a peristaltic pump slowly

circulated the dispersion added to an ion exchange resin (mixture of both anionic and

cationic ion exchange resins) (see Fig. 5.7).
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Figure 5.7: Schematic apparatus for preparation of colloidal crystals

The crystals were grown in an fcc lattice type from the window of the cell. Their (111)

crystal plane is generally assumed to be oriented parallel to the window. The shear of

the hydrodynamic 
ow further let them grow along the capillary. An fcc lattice is the

preferred con�guration for concentrations of more than 3 wt.-%. Concentrations less

than 1 wt.-% yield a bcc lattice type (compare with Fig. 5.5). However less concentrated

dispersions are very diÆcult to crystallize.

Figure 5.8: Colloidal crystal in

aqueous solution
Figure 5.9: Hydrogel �xated col-

loidal crystal (schematic)

Since these crystals in aqueous solution are unstable it was intended to embed them

in a hydrogel matrix (see �gs. 5.8 and 5.9). In order to achieve this, a mixture

consisting of a monomer (acrylamide), a cross-linker (N,N'-methylenebisacrylamide)

and a UV-photo-initiator (diethoxyacethophenone) was added to the dispersion. After

crystallization the sample cell was exposed to UV-light (� = 254 nm). This led to

polymerization, forming an acrylamid network which stabilized the crystal without

disturbing the periodicity of the particles. Such systems are referred to as polymerized

crystalline colloidal arrays (PCCA) [HA97]. The so �xated colloidal crystals were, and

remained extremely well oriented and were of the physical size of the cell itself.

Optical Measurements The formation of the crystals could be viewed by the naked

eye. They exhibit beautiful iridescence in the visible and appear in angular dependent

reddish to greenish colors on a basically white hue. The exact optical properties were
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measured by means of transmission spectroscopy with a UV/VIS/NIR spectrometer

(Perkin Elmer Lambda 11 & Lambda 2). In order to get angle resolved transmission

data the cell containing the crystal was mounted on a rotation stage. This allowed its

re-orientation around the vertical axis. This is schematically depicted in Fig. 5.10.

Figure 5.10: Schematic setup of angular dependent transmission measure-

ments

5.3 Results And Theoretical Simulations

It is known that the PS spheres with a radius of r � 75 nm arrange themselves in

an fcc lattice type as shown in Fig. 5.11. The volume fraction of PS, i.e. the �lling

fraction can be determined from the known mass fraction � and the density of PS

(%PS = 1:05 g=cm3):

f =
�

%PS

(5.1)

The geometrical lattice �lling fraction of the fcc lattice is given by

f =
16�

3

�
r

a

�3
(5.2)

The values obtained through this geometrical arguments for r=a in a crystal with 6.0

wt-% (from now on referred to as crystal M60) and one with 4.3 wt-% (M43) are 0.151

and 0.135 respectively. This corresponds to lattice constants of 498 nm for M60 and

557 nm for M43.

A typical result of the transmission measurements for the crystals (here M60) is

shown in Fig. 5.13. This scan was recorded under normal incidence on the cell win-

dow, which corresponds to the crystallographic �-L direction. Clearly a well de�ned

minimum is observed in transmission at a wavelength of � 760 nm.

According to classical Bragg - von Laue theory these transmission minima can be

interpreted as di�raction peaks. Classically speaking di�raction from consecutive layers

of spheres in the crystal [in our case the (111)-plane] leads to destructive interference.
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Figure 5.11: The fcc lattice and its

conventional (dashed) and primitive

(solid) unit cell Figure 5.12: 1.BZ of the fcc lattice

with symmetry points
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Figure 5.13: Transmission of M60 at

normal incidence
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Figure 5.14: Transmission of M43�x

at normal incidence

Thus the lattice constant a can alternatively be extracted by applying the quadratic

Bragg equation applicable for cubic crystals:

a
2 =

�
2

4neff sin
2(�)

(h2 + k
2 + l

2); (5.3)

where h; k; l are the Miller indices [(1,1,1) in our case] and neff the mean value of

the refractive indices (water n=1.333, polystyrene n=1.59). The e�ective refractive

index has to be averaged by the volume fraction of the compounds and yields neff =

1:348 and 1:344 for the M60 and M43 crystal respectively.

This directly results in lattice constants of � 490 nm and � 550 nm. The discrep-

ancy of � 2% compared to the geometrically derived lattice constant is well within

the experimental uncertainty limits. The main di�erence certainly stems from the

uncertainties in determining the radius of the spheres.

Further measurements resolved the angular dependency of the transmission through

the sample. It was recorded for angles of 0Æ : : : 55Æ . (An angle of 53Æ is generally

assumed to correspond to the crystallographic �-W axis, since L-�-W embrace an angle

of so much). The results for the sample M60 are plotted in Fig. 5.15 and Fig. 5.16. In
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Figure 5.15: The evolution of the

di�raction peaks with incident an-

gle (plotted as 1 minus transmission,

which is equal to the re
ection in

such a lossless system)
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Figure 5.16: Angular dependency of

the transmission curves

Fig. 5.15 the absorption curves (in this case this corresponds to re
ection curves since

the system is absorptionless and R+T=1) for increasing angles are plotted in the same

diagram. The angular evolution of the di�raction peaks can qualitatively be followed.

For the angular transmission data of the M43�x crystal see Fig. 5.27. A remarkable

shift of the transmission minimum from� 760 nm to � 630 nm is noticeable in Fig. 5.16

when rotating the crystal from 0Æ to 55Æ . Additionally a second dip evolves for angles

greater than 30Æ and merges with the original one.
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Figure 5.17: Extracted qualitative

band gap diagram from Fig. 5.16 for

M60
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Figure 5.18: Extracted qualitative

band gap diagram from Fig. 5.27 for

M43�x

The data obtained in this way was transferred by M. Soddemann to a qualitative band

gap (i.e. band structure) diagram. He measured the size and position of the transmission

gap on its base and plotted it versus the incident angle (see Fig. 5.17).

My �rst task was to verify this band gap diagram with the PWEM program at hand.

The parameters entered were a fcc lattice type consisting of spheres (r=a = 0:151) of
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Figure 5.19: Computed band structures for the M60 colloidal crystal

n=1.59 (PS) in a "backbone" of n=1.33 (H2O). A set of 680 plane-waves was used in

the calculations which should be accurate to around 1%. The resulting band structure

diagram is shown in Fig. 5.19. At �rst glance it does not exhibit any dramatic features

due to the low dielectric contrast. But upon magnifying the relevant part, i.e. the range

from the L to the W point (as well as parts of the corresponding paths to the �-point

to make the picture more interpretable), a general behavior of the bands very much

resembling the one in diagram 5.17 appears (see �g.5.20). At the L-point a pseudo gap

is apparent between the 2nd and 3rd band (band number 1, 2 and 3, 4 are degenerate

respectively) at a value of a=� � 0:65 on the normalized frequency scale. The absolute

position of the pseudo gap depends of course on the lattice constant a. For a lattice

constant with a = 497 nm the stop band is located at � = 765�8 nm. The error is due

to uncertainties in the numerical calculation and the geometrically obtained radius was

employed. This value agrees well to the observed transmission minimum at 760 nm.

This stop band however closes when approaching the W-point, although generally

the degeneracy between the bands is lifted. The center position of the bands at the

W-point is � 0:83 which corresponds to a wavelength of � 598 � 6 nm. This does not

match the observed value of 630 nm.

The similarity in the behavior of the simulated and measured results becomes even

more striking when calculating the 1-dimensional DOS. It is plotted for the correspond-

ing angles in Fig. 5.21. The solid and dashed lines refer to distinct polarization states

(in this case assumed to be the odd and even bands). They are degenerate at the L-

point but they form non-overlapping pseudo-gaps at the W-point. This could explain

the observed gap there. Nevertheless the position is of course unchanged. Furthermore

the light used to probe the samples was not polarized. Moreover does the 1-dimensional



88 Chapter No. V

 ω
a/

2π
c

Colloidal Crystal M60

Γ-L

 

 

0,5

0,6

0,7

0,8

0,9

1,0

L-W

 

 

0,5

0,6

0,7

0,8

0,9

1,0

W-Γ

 

Figure 5.20: Computed band structures for the M60 colloidal crystal

photonic DOS only very qualitatively resemble the real transmission.

Therefore the structure of the colloidal crystals was implemented in the Tranfer-

Matrix program and the actual transmission coeÆcients were calculated. The red and

blue curve represent di�erent polarization states again. They have the same transmis-

sion property at the L-point (since they 'see' the same crystal structure there). For

other crystal directions marginal di�erences occur. As for the W-point a overlapping

transmission minimum for both polarizations is present here. This is probably due to

the many 
at bands in this domain. But again the position of the gap at the W-point

is around 590 nm which is considerably less than observed.
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Figure 5.21: Computed 1-

dimensional photonic DOS for

relevant directions
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Figure 5.22: Simulated transmis-

sion curves for M60 based on the

Transfer-Matrix method
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5.4 Discussion

A solution to this mismatch at the W-point can be provided by looking at the transmis-

sion properties for other crystal axis. For instance the K- and U-point of the 1.BZ are

located closer to the �-point and therefore have their pseudo-gaps at lower frequencies

(the �-K and �-U axes in the 1.BZ are 1/8 of 2�=a shorter than the �-W axis [for

a complete reference about the 1.BZ see appendix A]). When calculating the angu-

lar transmission dependency for the L-K and L-U ranges almost the same behavior is

retained as for the L-W case. But the resulting minima at the K- and U-point are

with a value of � 620 nm much closer to the experimentally observed wavelength of

� 630 nm. Therefore the rotation of the sample altered the crystal direction from

�-L to �-K or �-U in my opinion. This seems plausible since the rotation axis is not

400 500 600 700 800 900
0,0
0,2
0,4
0,6
0,8
1,0

L - Point

Wavelength [nm]

 

 

 

 

Colloidal Crystal M60 (L-K)

 T
ra

ns
m

is
si

on

 

 

 

 

400 500 600 700 800 900

0,0
0,2
0,4
0,6
0,8
1,0

K - Point

 

Figure 5.23: Predicted transmission

curves for the �-L to the �-K direc-

tion (M60)
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Figure 5.24: Predicted transmission

curves for the �-L to the �-U direc-

tion (M60)

uniquely determined by the initial �-L direction. By looking at the 1.BZ this can be

clari�ed. All possible rotation axes lie on the hexagonal plane perpendicular to the

�-L direction. Rotating the 1.BZ by 53:1Æ around an axis through two U- or K-points

yields a W-� direction. On the other hand by rotating 27:3Æ around an axis through

two W-points we get a K-� or U-� direction. No angles are stated in Fig. 5.23 and

Fig. 5.24, because L-�-K and L-�-U embrace an angle of 27:3Æ , whereas the angle for
L-�-W is 53:1Æ .

Moreover we should take into account the di�erence in incident angle on the glass

capillary compared to the actual angle on the colloidal crystal. Applying Snell's law

gives us:

� = arcsin

�
1

n

sin(�)

�
(5.4)
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Inserting a value of � 50Æ (because 50Æ seems to be a symmetry point in Fig. 5.18) for

� and the refractive index of PS (n = 1:59) (the refractive index of the glass would

be in the same range) in eq. (5.4) we get � 29Æ . This is almost the exact angle of

the K-� or U-� axes with the initial �-L direction (27.3Æ )! That seems to con�rm my

speculation.

The great advantage of those numerical simulations, besides interpretation and

veri�cation of experimental results, is the ease to alter parameters. Since there was

no choice in material (e.g. particles with a higher refractive index) and lattice type

(fcc) I tried to maximize the pseudo-gap at the L-point by optimizing the the �lling

fraction, i.e. the ratio r=a for the given con�guration. As mentioned before the size

of the particles can be selected relatively easily in the polymerization process. The

result is shown in Fig. 5.25 and reveals a ration of r=a � 0:28 to be ideal in for

this system. The gap could be increased this way by almost 3 times in size (from

� 1:5% to � 4:2%). Further ideas to increase the gap would be employing non-spherical

objects (ellipsoids) as the motif in the crystal lattice. Unfortunately such systems are

extremely diÆcult to synthesize on a monodispersed basis. Therefore an extension to

polydispersed systems (spheres with di�erent sizes), yielding for instance AB2 lattice

types, seems more feasible in the future [PKA97].
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Figure 5.25: Dependence of the pseudo-gap in the �-L direction for aqueous

colloidal crystals (n0 = 1:33; n1 = 1:59) on the �lling fraction (r/a) of the fcc

lattice

In a second study the e�ect of the hydrogel �xation on the optical properties of the

colloidal crystals were investigated. Therefore two sample (M43 and M43�x, both with

4.3-wt% PS. M43 was �xated by the hydrogel matrix) were prepared and characterized

by M. Soddemann. Their transmission curves are compared in Fig. 5.26 and Fig. 5.27.

It is remarkable that the �xated sample shows much more pronounced peaks. This

can be attributed to a better long range periodicity in the crystal which solely a�ects

the intensity of the peaks. In fact the un�xated crystal M43 seems to 'melt' in the
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Figure 5.26: Angular dependence of

the transmission curves for the un-

�xated crystal M43

400 500 600 700 800 900

0°

15°

30°

45°

55°
M43fix

 T
ra

ns
m

is
si

on

Wavelength [nm]

Figure 5.27: Angular dependence of

the transmission curves for the �x-

ated crystal M43�x

measurement at 55Æ in Fig. 5.26. Within experimental accuracy the position of the peak

was con�rmed to remain the same. With the theoretical simulations it was con�rmed

that the slightly increased refractive index of the backbone (n=1.34) due the in�ltration

with the hydrogel had no signi�cant impact, but is generally a measure for the long

range periodicity. The intensity of the peaks could not be accounted for with the

simulation.

Figure 5.28: Hydrogel �xated colloidal crystal as a sensing device

A highly interesting feature of �xated colloidal crystals in general is the sensitivity

of the hydrogel to environmental changes like temperature or chemical properties like

acidity. Upon a variation of such a parameter the matrix expands or shrinks and

mediates a change in lattice constant. Consequently the optical properties of the crystal

change, i.e. the di�raction peak shifts in wavelength. Such systems could conveniently

be applied as sensing devices [HA97].
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Photonic Crystals in the THz

Frequency Range

Besides theoretical and numerical simulations my interest in photonic crystals focuses

on the experimental side. Quite generally I think of it as a good idea when theory and

experiment go hand in hand. This is especially true in physics.

In the research group of Prof. Hanspeter Helm (Department of molecular and optical

physics) in Freiburg the 'squad' around Dr. Peter Uhd Jepsen, which I was part of, has

great expertise in the creation and detection of THz radiation. The frequency range

between 0.1 : : : 3 THz is generally termed THz regime. THz radiation is usually applied

in Time-Domain Spectroscopy experiments (THz-TDS). With such experiments it is

possible to measure both amplitude and phase of the detected electromagnetic wave.

Coincidentally these features of THz-TDS are invaluable tools to analyze optical

properties of photonic crystals. Ideal photonic crystals possess a periodicity in dielec-

tric constant on the order of the wavelength to be a�ected. Therefore structure sizes

desirable in the THz-regime are on the scale of � 100 �m. This considerably eases

the fabrication compared to structures in the IR or optical region. Nevertheless the

�ndings can be extended to any wavelength due to the scale invariance of Maxwell's

equations.

Furthermore a phase-sensitive detection permits the analysis of the wavelength de-

pendent phase delay and therefore measurements of the phase velocity. This is the

only way to directly probe the bands of a band structure diagram and draw conclu-

sions about their coupling strength [RAM+93].

In section 6.1 I will very brie
y present the experimental requisites of THz-TDS

before showing the outcomes for two speci�c examples in sections 6.2 and 6.3. Of

course both are backed and interpreted by simulations.

Remark: Layered (rectangular or square) bars were termed 'Lincoln Log' and layered

(circular) rods were named 'Woodpile' in my documentation, although both names are

common for both types. Fig. 6.1 shows a schematic drawing of this kind of crystal

structures. This is just for clarity reasons to point out the di�erence and none of

these depicted structures were actually used. Both possibilities, a Lincoln-Log and a

93
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Woodpile structure were always taken into account in the subsequent simulations in

this chapter, but never showed signi�cant di�erences.

Figure 6.1: My terminology schematically: Woodpile (left) and Lincoln-Log

(right) structures [Hau94]

6.1 Experimental Setup

Experiments involving THz radiation became some sort of standard in our research

group over the past years. Therefore I will not go into too much detail here.

The �eld was introduced by Grischkowsky [Gri93] and co-workers in 1989. A typical

experimental setup, as employed in our experiments is shown in Fig. 6.2.
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Figure 6.2: Outline of a classical setup of a THz-TDS experiment c
P. Uhd Jepsen

On the lower right corner of Fig. 6.2 a femtosecond (fs)-laser beam is incident on a beam-

splitter. In the conducted experiments the fs-laser beam was produced by a home-built

self-modelocked Ti:Sapphire system. Pulse duration was � 40 fs with an average power

of � 100 mW at a repetition rate of 80 MHz. After the beamsplitter one portion of the

beam (emitter-beam) is then focused onto a photo-conductive THz emitter, consisting

of a semiconductor material (GaAs) with two conductive paths separated by 50 �m. A
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bias (40 V) is applied to the antenna so the static electric �eld between the electrodes

accelerates free charges created by the focused fs-pulse in between. The accelerated

electrons function as a radiating dipole and emit a single-cycle THz pulse of less than 1

ps duration. The beam of THz pulses is widened and collimated by a spherical Si-lens

atop of the emitter and a paraboloidal mirror respectively. A subsequent paraboloidal

mirror focuses the beam onto the sample. The same optical elements (inverse order

now) guide and focus the beam after the sample onto a photo-conductive detector.

This detector functions according to the same principle as the emitter. Except that no

bias is applied here but the E-�eld of the THz pulse is responsible for the transport

of free carriers towards the electrodes on the semiconductor (SiliconOnSapphire SOS)

substrate. The free carriers are again created by means of focusing the second portion

of the fs-beam onto the detector. It is crucial to ensure a spatial and temporal overlap

of the two pulses on the detector. By scanning the delay line in the detector-beam the

temporal shape of the single-cycle THz pulse is recorded. The THz pulse is ensured

to travel in a dry Nitrogen atmosphere, since water vapor in air considerably absorbs

THz radiation.

The information about the sample contained in the pulse can be extracted by

Fourier-transforming it from time- to frequency-space. By comparison to the spec-

trum of the original pulse this reveals the spectral amplitude and phase behavior in

transmission of the sample. A typical free space THz pulse along with its corresponding

spectrum is shown in Fig. 6.3.

Figure 6.3: Extracting the amplitude and phase of the electromagnetic �eld

via Fourier-transformation [Win99]

The phase-recovering Fourier-transformation is usually performed with a Turbo Pascal

program written by P. Uhd Jepsen. This yields directly the frequency dependent ab-

sorption coeÆcient �(!) and index of refraction n(!). As is the general case with FT

spectroscopy the resolution of the spectrum is determined by the scan length and the

maximal detectable frequency is determined by the step size.

6.2 Alumina 'Woodpile' Structure

In the scope of his Ph.D. thesis C Winnewisser characterized transmission properties

of frequency selective surfaces or dichroic �lters, sometimes simply called 'strainers'.
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These are thin slabs of 2-dimensional periodically (in the slab plane) structures (e.g.

holes), which serve as band-pass �lters in the THz-frequency range. Their theoretical

treatment is based on a waveguide interpretation. Although their structure is related

to 2-dimensional photonic crystals, there is a fundamental di�erence in the fact that

dichroic �lters do not possess periodicity of the dielectric constant in propagation di-

rection.

Figure 6.4: Dichroic �lters characterized by C. Winnewisser [Win99]

To extend his investigations to 3-dimensional structures C. Winnewisser collaborated

with M. Stuke from the MPI in G�ottingen. M. Stuke and his co-workers succeeded

to grow 3-dimensional micro-structures by Laser Chemical Vapor Deposition LCVD

[LS95]. In a vapor cell containing the precursors and mounted on a computer-controlled

xyz-translation stage, two laser beams were focused. At the combined focus Alumina

(Al2O3) solidi�ed from the gas phase. The growth of the micro-structure could be

guided in a controlled way. In this fashion crystals consisting of layers of Alumina rods

(diameter: 40 �m) displaced by 133 �m were fabricated. The second layer of rods was

rotated by 90Æ and centered between two rods of the �rst layer. A drawing is shown in

Fig. 6.6.

Figure 6.5: The experimental con�guration (left) and an image of the analyzed

photonic crystal (right) [Win99]
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The experimental con�guration is depicted in Fig. 6.5. An aperture (A) was used in

order to limit the THz beam to the size of the crystal (3 mm). However the crystal

was very small and could not be positioned closely enough to the aperture due to its

mounting on a socket (P).

Figure 6.6: Povray image of the

Alumina woodpile structure under

study
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Figure 6.7: The experimentally

recorded transmission spectrum

The resulting transmission spectra is shown in Fig. 6.7. The overall transmission was

very low and only a broad smeared minimum (�10dB dip) is revealed at around 1

THz. At the time of the experiment this was not considered a convincing photonic

band gap. Moreover did Prof. Stuke claim a band gap around 2 THz in a science-paper

[WLM+97]. Due to this unclarities and lacking theoretical support further experiments

were discarded.

Unfortunately these experiments were long past when I gained experience in the-

oretically simulating optical properties of photonic crystals. Nevertheless I imple-

mented the above described woodpile structure to the PWEM and Transfer-Matrix

method. From a crystallographic point of view the structure is built from cross-like

shapes in a body-centered-tetragonal (bct) lattice type. That is because the separa-

tion in x- and y-direction (133 �m) is smaller than the lattice constant in z-direction

(4 � 40�m = 160 �m). The conventional and primitive unit cell for the bct-lattice

(see Fig. 6.8) along with its corresponding 1.BZ (see Fig. 6.9), which is basically a

compressed fcc BZ are shown below.

The band structure calculations were performed with a set of 1458 plane-waves and

yielded the diagram depicted in Fig. 6.10. The refractive index of Alumina at THz

frequencies was assumed to be the average (n=3.25) of two possible indices (n=3.08

and n=3.42) for the ordinary and extraordinary crystal axis. This seems appropriate

since the LCVDed rods were randomly oriented Al2O3 crystals. A rather big (� 15%)

complete band gap is found to be centered at 0.96 THz. The calculation of the complete

photonic DOS (top fraction in Fig. 6.11 con�rms this �nding).
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Figure 6.8: A body-centered-

tetragonal (bct) unit cell
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Figure 6.9: The 1.BZ of the

bct-lattice with relevant symmetry

points

Figure 6.10: Calculated band structure diagram for the Alumina woodpile

structure
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Figure 6.11: Total (top) and projected (on �-H) photonic density of states
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Figure 6.12: The transmission spectra for two distinct polarization states as

obtained by the Transfer-Matrix method
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The 1-dimensional photonic DOS in �-H direction is plotted in Fig. 6.11 (solid line),

since this was the direction in which the crystal was probed. The band gap in this

particular direction is much larger (rel. size � 40%) and centered at 1.05 THz . Very

good agreement is evident by comparing these values to the experimentally observed

gap.

Finally the actual transmission curves in �-H direction are calculated by means of

the Transfer-Matrix method (see Fig. 6.12). The large band gap centered around 1

THz is re-con�rmed. Furthermore the overall transmission behavior strongly resembles

the measured curve. Please note that the numerical accuracy for higher frequencies

above the fundamental gap is decreasing.

In conclusion it was exciting to con�rm these results measured by C. Winnewisser

and give them the theoretical support they deserve. Unfortunately these experiments

were not carried on any further but may be pursued in the future in Freiburg. The

combination of the LCVD technique to fabricate photonic crystals of desired structures

and the THz-TDS to characterize and probe them seems very promising.

6.3 Rapid Prototyped PE Structures

In the progress of my thesis I decided to conduct experiments investigating refraction

properties of photonic crystals myself. The advantages of the existing THz-TDS utili-

ties were already pointed out. In order to get angle-resolved measurements a slightly

modi�ed version of the THz spectrometer was built. A schematic drawing of it is

shown in Fig. 6.13. The modi�cations to the original setup comprise the usage of just

one pair of paraboloidal mirrors, which focus the THz beam onto the photonic crystal

slab. Furthermore the detector mount was re-designed to permit position dependent

measurements by translating it laterally at the immediate backside of the sample. It

was intended to mount the entity of sample and detection system on a rotation stage

in order to vary the incident angle on the photonic crystal. Unfortunately the limited

time did not permit to accomplish this last step.
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Figure 6.13: The slightly modi�ed THz-TDS setup to investigate superprism

e�ects c
P. Uhd Jepsen
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Suitable crystals for the THz frequency regime can quite easily be fabricated mechan-

ically. But our initial plan to drill ordered holes in materials such as HDPE or TPX

failed since the required precision (r = 100 �m; a = 270 �m! f � 50% [optimized for

TE-gap in triangular lattice]) could not be achieved. Further plans to arrange �bers,

possible with a core structure (e.g. being hollow or layered) or having non-spherical

cross-section (e.g. hollow square �bers), were postponed for the bene�t of rapid proto-

typed 3-dimensional structures. These structure are fabricated by R. Landers at the

Freiburger Materialforschungszentrum FMF on a 3D plotting device. The 3D plot-

ter is shown in action in Fig. 6.14. A heated reservoir containing the liquid polymer

is mounted to a computer controlled xyz-translation stage. The polymer emanates

through a nozzle into a tank of glycerin kept a certain constant temperature in order

to control the solidifying process of the polymer. By moving the nozzle (and the reser-

voir) 3-dimensional structures can be written. With this method layered structures of

polymer skeins (r = 230 �m) in a cubic lattice (a = 900 �m) were grown. We used

polyethylen PE (n=1.5) as the polymer material in this study .

Figure 6.14: The 3D plotter in action (left) and a schematic drawing (right)

Fig. 6.1 shows a schematic drawing of this woodpile structure. The possibility of a

Lincoln Log structure was also taken into account for the numerical simulations but

showed no signi�cant di�erences.

Figure 6.15: A photograph of the PE woodpile structure
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A cubic lattice consisting of cross-like structures of PE (n=1.54) was implemented for

the calculations. The space lattice and 1.BZ of the cubic lattice is shown in Fig. 6.16.

Results obtained with the PWEM, i.e. band structure diagram and photonic DOS are

plotted in Fig. 6.17 and Fig. 6.18 respectively. Due to the low dielectric contrast only

pseudo-gaps for the respective crystal axes are present.

Figure 6.16: Simple cubic space lattice (left) and corresponding 1.BZ (right)

Figure 6.17: Band structure diagram for the PE woodpile crystal

The experiments conducted were not carried out underN2 atmosphere. Therefore water

absorption lines from water vapor in air are present in the reference pulse spectrum.

The temporal shape and spectrum of reference and sample pulse are plotted in Fig. 6.19.

The intensity of the pulse probing the photonic crystal slab is overall appreciably lower

than that of the free pulse. This is mainly due to the lack of a Si-lens focusing the THz

pulse onto the detector.
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Figure 6.18: Calculated total (top) and 1-dimensional (bottom) photonic DOS

for the PE structure
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Figure 6.19: Reference pulse in air and the corresponding spectrum with the

rotational water absorption lines in the top part. Bottom fraction shows the

(magni�ed) pulse after probing the photonic crystal slab and the corresponding

spectrum (same scale as free spectrum)
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The resulting relative transmission spectrum for the �-X direction of the crystal exhibits

a clear gap at � 0:26 THz (see Fig. 6.20[center]). The simulated transmission curve

by the Tranfer-Matrix method is also shown in Fig. 6.20[top]. It agrees well with

the features of the measured curve. Only the actual intensity distribution can not

be accounted for. We could attribute this to a possible absorption in the material

induced be the plotting mechanism in glycerin, since bulk PE shows no absorption.

But probably a non-perfect periodicity and low aspect ratio of the crystal pose more

important factors negatively a�ecting the transmission.
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Figure 6.20: The �nal results to date for the PE photonic crystal: simulated

(top) and measured (centered) transmission. The bottom part shows the ex-

tracted index

The most exciting feature however is shown in Fig. 6.20[bottom]. Here the resulting

e�ective index of refraction is plotted, extracted from the recorded phase information

(�) and the known thickness of the slab (L).

neff(!) =
c �

!L

+ 1; (6.1)

It is evident that the transmission minimum corresponds to an increase in refractive

index, i.e. decrease in phase velocity: vphase = c=neff . In principle the band structure

could also be recovered with this sort of analysis via:

k(!) =
!n(!)

c

(6.2)

and be compared to the theoretically calculated one. In this fashion uncoupled bands

can be identi�ed [RAM+93].
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However the features we observed in this recovered band structure diagram are not

very strong. Re�ned measurements would be required to increase the resolution.

In conclusion it has been shown that these rapid prototyped structures can well be

applied as photonic crystals in the THz range. Additional, more sophisticated crystals

could be fabricated and employed. For instance mixing a high index powder to the

liquid PE when it is plotted should increase the dielectric contrast of our crystals.

Thus we expect more pronounced features. Furthermore the strand size and lattice

constant can be reduced in order to create band gaps at higher frequencies.

If the quality of these structures, i.e. the long range periodicity can be improved,

then even measurements investigating the refraction properties of these crystals should

be possible with THz-TDS.
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Chapter 7

Conclusion

This thesis covers a broad range of numerical simulations and experimental analysis of

optical properties of photonic crystals.

A general outline of the topic photonic crystals was �rst presented in order to estab-

lish a �rm basis of the theoretical background. It is my hope that this chapter serves

as an educational introduction to the topic of photonic crystals. In the second part I

describe my e�orts to gain expertise in programming computer codes for simulations

and to perceive the fundamental coherences in the di�erent aspects of photonic crystals.

Chapter III serves as a map of the photonic crystal landscape easing the orientation and

the identi�cation of basic parameters and dependencies which govern the properties of

photonic crystals.

Ultra-refractive e�ects are the topic of chapter IV. This study was exclusively carried

out at the University of Toronto in the research group of Prof. Sajeev John. Our initial

attempt to verify existing superprism work (by H. Kosaka, NEC-Laboratories, Japan)

was only partially successful. However the investigation of refraction properties for 2-

dimensional crystals led us to predict remarkable features and design novel experiments.

Our predicted results have yet to be con�rmed. Chapter V reports my theoretical

simulations of angular dependent transmission characteristics of colloidal crystals. My

�ndings con�rm the measurements carried out at in the group of Prof. W. Richtering,

department of physic chemistry in Kiel (formerly Freiburg) very well. Chapter VI

reports experiments I carried out in the THz frequency range. These results were

interpreted in theoretical models. Similar simulations were applied to previous data

obtained in Freiburg on a 3-dimensional photonic crystal. This crystal was fabricated

at the MPI G�ottingen by Prof. M. Stuke from laser-assisted chemical vapor deposition

(LCVD) of Alumina. There is good agreement between the experimental and numerical

�ndings for all these experiments.

All in all this has been a highly instructive year for me and I am very grateful to

all the people I could interact with.
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Appendix A

3-dimensional Bravais Lattices

This appendix shows real and inverse space con�gurations of important 3-dimensional

Bravais lattices with the speci�cations of conventional and primitive unit cell, i.e. the

1.BZ. These speci�cations are crucial for implementing any crystal structure to the

computer programs. Therefore they are reproduced from the original Landolt-Brnstein

III/13a,c appendix here:
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Figure A.1: simple cubic (sc) and simple tetragonal (st)
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Figure A.2: body centered cubic (bcc)
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Figure A.3: face centered cubic (fcc)
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Figure A.4: hexagonal close packed (hcp)
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Figure A.5: body centered tetragonal (bct)
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Figure A.6: face centered tetragonal (bct)
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Figure A.7: rhombohedral
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Figure A.8: rhombohedral
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Figure A.9: base centered orthorhombic



Appendix B

Sample Main.cc Program

/*

* File : main.cc

* Created : Mit 9.Aug. 2000

* Author : Anton OEttl

* Short Desc. : PBG Calculations for 3D Lincoln log

*/

#include <string> #include <vector> #include <list> #include

<algorithm> #include <stdio.h> #include <NL/Exceptions.hh>

#include <NL/Util/PLOG.hh> #include <PBG/Crystal/BCTetragon.hh>

#include <PBG/Shape/WoodPile.hh> #include <PBG/SRDielectric2.hh>

#include <PBG/PW_3D_Real.hh> #include <PBG/BandStructure.hh>

#include <PBG/OutputBands.hh>

using namespace std; using namespace NL::EXCEPTIONS; using

namespace PBG; using namespace PBG::CRYSTAL; using namespace

PBG::SHAPE; using namespace PBG::DIELECTRIC; using namespace

PBG::PLANE_WAVES;

//#define OUTPUT_FIELD

#define OUTPUT_BANDS

//#define OUTPUT_DOS

int main(){

plog.attach("log_file");

typedef SRDielectric2<3> dielectric_t;

typedef BandStructure<3,Real,dielectric_t::SYMMETRY>

band_structure_t;

typedef PW_3D_Real plane_waves_t;

typedef plane_waves_t::kvector_t kvector_t;

typedef BCTetragon crystal_t;

typedef crystal_t::position_t position_t;
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typedef WoodPile shape_t;

try {

// Real const thick = 0.1;

// The Crystal

crystal_t crystal(1.0,1.204);

// Output band structures along the following paths

vector<char *> path;

path.push_back("G");path.push_back("K");

path.push_back("T");path.push_back("H");

path.push_back("G");path.push_back("O");path.push_back("L");

path.push_back("K");path.push_back("W");path.push_back("X");

// Make sure the symmetry points are valid for this crystal

for(unsigned int i = 0 ; i < path.size() ; i++){

crystal.get_symm_point(path[i]);

}

// The Shape

shape_t shape(1.0,0.301);

// The dielectric

Real eb = 1;

Real e1 = 3.25*3.25;

dielectric_t dielectric(&crystal,&shape,eb,e1);

// Visualization

#if 0

Real min[3] = {-2,-2,0};

Real max[3] = {2,2,1.8};

int const N[3] = {100,100,13};

char file[12] = "crystal.ptv";

dielectric.plot_mtv(file,min,max,N);

//exit(0);

#endif

// Planewaves

int n[3] = {2,2,2};

plane_waves_t pw(crystal,n);

plog << pw.get_size() << " plane waves\n";

cerr << pw.get_size() << " plane waves\n";

int const FFT_M[3] = {256,256,256};
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int const FFT_EPCO[3] = {1,1,1};

// Set up the band structure engine

band_structure_t band_structure(dielectric,pw,FFT_M,FFT_EPCO);

#ifdef OUTPUT_BANDS

{

int const Nk = 29;

int const bands = 20;

OutputBands<band_structure_t> out_bands(band_structure,bands);

out_bands.output_path(path,Nk);

}

#endif // #ifdef OUTPUT_BANDS

}catch(Exception &E){

cerr << E.what();

}catch(std::exception &E){

cerr << E.what();

}catch(...){

cerr << "strange exception \n";

}

};
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Appendix C

Failed Design of an Optical Diode

Figure C.1: Crystal Structure

Figure C.2: Band Structure
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