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Ultracold atoms are emerging as an important
platform for precision sensing and measurement,
quantum information science, and simulations of
condensed-matter phenomena. Microscopic imag-
ing is a powerful tool for measuring cold-atom
systems, enabling the readout of ultracold atomic
simulators1,2 and registers3, the characterization
of inhomogeneous environments4, and the de-
termination of spatially varying thermodynamic
quantities5–8. Cold-atom microscopy has recently
been demonstrated with imaging resolution suffi-
cient to detect and address single9 or multiple10

atoms at individual optical-lattice sites with ei-
ther micron-11,12 or sub-micron-scale1,2,13,14 lattice
spacing. However, such methods, which rely either
on the fluorescence1,2,9,11–13 or ionization10,14 of
atoms, destroy the quantum states being measured
and have limited dynamic range. Here we demon-
strate magnetic-resonance imaging of atomic gases
in optical lattices, obtained by dispersively coupling
atoms to a high-finesse optical cavity. We achieve
state-sensitive, single-lattice-site images with high
dynamic range. We also apply this technique to
measure the nonequilibrium transport dynamics of
the gas.

The sensitivity of optical cavities has been used
to make nondestructive15, state-sensitive16, and
high-dynamic-range17 measurements of atomic gases,
while magnetic resonance has been used to selec-
tively address the spin states of single atoms in single
optical-lattice sites9,18. In this experiment we use
light in a high-finesse optical cavity, together with
radio-frequency (rf) radiation and an inhomogeneous

magnetic field, to take real-time magnetic-resonance
images (MRI) of atomic spins in an optical lattice.
We obtain a spatial resolution of 150 nm, far below
the 425 nm spacing of the lattice sites. We ob-
tain a number-counting sensitivity of ±10 for up to
1000 atoms in each site or ±2.5 for up to 70 atoms,
both well below the level of Poissonian atom-number
fluctuations. Furthermore, the MRI is minimally
destructive of the atoms’ internal states, allowing
for the single-site observation of spatially dependent
spin dynamics. We use the technique to measure
the transport dynamics of an initially localized gas
via resonant quantum tunnelling between lattice
sites, as the atoms undergo first ballistic and then
interaction-inhibited transport. We also demonstrate
the ability to address the spins of large numbers of
atoms at selected lattice sites, enabling new studies
of magnetism, transport, cavity spin optodynamics19,
and cavity optomechanics20–22.

In contrast to traditional MRI, which measures
transverse magnetisation at the Larmor precession fre-
quency, here we use the cavity to perform a quantum-
non-demolition measurement of the static longitudi-
nal magnetisation23 by applying a magnetic bias field
along the cavity axis k̂ (Fig. 1). To resolve the atoms
spatially we apply a strong field gradient B′ along the
dimension to be imaged. For the data presented here
we image along the cavity axis, although any axis can
be imaged by applying the appropriate gradient. We
note especially that 3D images can be taken by imag-
ing along a suitable number of axes and applying to-
mographic reconstruction24.

For a sufficiently large detuning ∆ca between the
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Fig. 1: An ensemble of 87Rb atoms opti-
cally trapped within a vertically oriented high-
finesse Fabry-Perot cavity. Copper wires (orange,
with current direction indicated) embedded within a
100-µm-thick silicon substrate (gray), together with
an external bias coil, produce both a strong vertical
magnetic-field gradient (|B| contours shown) and a
vertical bias field near the atoms. Inset: Atoms (red)
are trapped at the antinodes of a standing-wave optical
lattice (yellow) with 425 nm lattice spacing. Circularly
polarized cavity probe light (pink), detuned several gi-
gahertz from the D2 line, acquires a dispersive phase
shift that is sensitive to the atom spin projection along
the cavity axis.

cavity resonance frequency and the atomic optical res-
onance, the absorption of cavity light by the atoms
is negligible, and the light-atom interaction may be
described by a real-valued index of refraction. This
index causes the cavity resonance frequency ωc to be
shifted from its empty-cavity value ω0. Because the
atoms are circularly birefringent, the resonance fre-
quency of circularly polarized light is shifted by an
amount ∆N , which depends on the atom density ρ(r)
and the density s(r) of the dimensionless atomic spin
(Supplementary Information):

∆N ≡ ωc − ω0 =

∫
g(r)

[
ρ(r)± Cs(r) · k̂

]
d3r. (1)

Here g(r) is the scalar dispersive atom-cavity coupling
parameter at position r, taking into account the spa-
tially varying intensity of the cavity mode. The ± cor-
responds to σ± light polarizations, while C is derived
from a sum over probability amplitudes and relative
detunings from the atomic excited hyperfine states.
For 87Rb atoms with hyperfine spin F = 2 and probe
light detuned by several gigahertz from the D2 atomic

resonance, C ' 1/4.
We invert the local magnetisation via adiabatic

passage using a chirped rf field. We use a linear chirp,
with detuning from the magnetic resonance at posi-
tion z given at time t by δ = ω̇rft−µB′z/~, where µ/~
is the atomic gyromagnetic ratio. The radially inte-
grated density sk(z) of the dimensionless atomic spin
can be extracted from the time derivative of the cavity
frequency. For narrow magnetic resonance, where the
spins at z flip completely as the rf is swept from just
below to just above resonance, the spin density is:

sk(z) = ∓ 1

2Cḡ(z)

µB′

~ω̇rf

dωc
dt

∣∣∣∣
t=
µB′z
~ω̇rf

. (2)

Here ḡ is the density-weighted radial average of the
cavity coupling at z. We neglect the small radial vari-
ation of the magnetic field across the gas. This for-
mula is easily refined to account for the finite frequency
width of the magnetic resonance (Supplementary In-
formation).

Experiments are conducted using a Fabry-Perot
optical cavity integrated onto a microfabricated atom-
chip device22. The chip is used for sample preparation,
delivering atomic gases of up to 5000 atoms, spin po-
larized in the |F,mF 〉 = |2, 2〉 hyperfine state, at tem-
peratures of 1 to 3 µK into the optical lattice. Chip
wires are then used to apply strong magnetic field gra-
dients, allowing us to resolve and address individual
lattice sites.

The optical cavity is driven with two different
wavelengths of light. Light at a wavelength of 850 nm
establishes a far-off-resonant optical lattice potential.
A cavity probe beam, detuned 14 to 17 GHz to the
red of the D2 atomic resonance at a wavelength of
780 nm, measures atom number and spin densities
as described above. The atoms are loaded into a few
(between 2 and 5) adjacent lattice sites, centred on a
site that overlaps with an antinode of the probe field.

To measure the cavity shift we detect the photon
flux of σ+-polarized probe light transmitted through
the cavity. A feedback loop tunes the probe frequency
ωp, maintaining the flux at a constant value γ̄ equal to
a fixed fraction of the incident photon flux. The probe
frequency is thus locked at a fixed detuning ∆pc from
cavity resonance, the frequency of which is determined
by ωc = ωp −∆pc. Variations in the cavity resonance
frequency faster than the 20 kHz feedback bandwidth
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Fig. 2: Single-shot MRI of atoms in an optical lattice. For this image, ∆ca/2π = −14 GHz with
1 × 107 photons/s exiting the cavity, and 1800 atoms initially in the |F,mF 〉 = |2, 2〉 state. (A) The shift
∆N ≡ ωc − ω0 of the cavity from its empty resonance frequency (red line, left axis), showing steps as the rf
(blue line, right axis) is chirped from high to low. As the rf is swept back, the detuning recovers its initial
value with 85% each-way fidelity. (B) Atomic density as calculated from the time derivative of ∆N , both
uncorrected (red solid line) and corrected (yellow dotted line) for spatially varying sensitivity (probe and trap
antinodes are overlapped at site 7). The peak widths (200 nm FWHM) are given by the convolution of the
imaging resolution (150 nm), the atom-distribution width (100 nm), and a low-pass analysis filter (90 nm).
The MRI has an 80 atom/µm offset due to deterministic atom loss (dotted line). (C) The imaging resolution
is given by the ratio of the 14 kHz magnetic-resonance width to the 114 kHz/µm magnetic-field gradient. The
magnetic-resonance width is measured by sweeping over resonance in a uniform bias field (red solid line) and
fitting to adiabatic-passage theory (blue dashed line).

can be assessed by using the residual deviation of the
instantaneous photon flux γ from γ̄.

Fig. 2 shows a typical single-shot image of a spin-
polarized atomic gas taken with a linear rf chirp. As
the rf is swept through the resonance of each lattice
site, atoms are flipped from the |2, 2〉 to the |2,−2〉
state, causing a jump in the cavity resonance fre-
quency. The atom density is obtained by calculating
sk(z)/2 using Eq. (2). We account for the thermal
radial and axial distribution of atoms within each
lattice site in determining ḡ(z). We also account
for the difference between the trap and probe light
wavelengths, although this latter correction is minor
for lattice sites near the common antinode of the
two cavity modes. MRIs may also be averaged (see
Fig. 4), although shot-to-shot variations in the bias
field cause broadening of the averaged images. The

flatness of the slope of the cavity shift between spin
flips verifies our ability to address single lattice sites
(see Supplementary Information).

The spatial resolution with which we can image the
spins is 150 nm (full width at half-maximum). The
resolution is proportional to the ratio of the magnetic-
resonance width (14 kHz, see Fig. 2c) to the field gradi-
ent (114 kHz/µm). The minimum resolution is limited
by two considerations. First, the Rabi frequency must
be sufficiently high that the spins are inverted adiabat-
ically. Secondly, the maximum magnetic-field gradient
is limited by transverse field curvatures, which expel
atoms from the optical trap (see Supplementary Infor-
mation).

The atomic magnetisation is largely preserved dur-
ing the imaging process and can be recovered by re-
versing the rf chirp, as shown in Fig. 2. The magneti-
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Fig. 3: Single-shot measurement of atom num-
ber in a single lattice site. The rf sweep (blue,
left axis, solid line at full amplitude, dashed line at
zero amplitude) is halted for a measurement period
(shaded area), then swept across the lattice site of in-
terest, before halting and measuring again. The atom
number is calculated from the cavity shift (orange,
right axis) after correcting for deterministic atom loss
(red, right axis, corrected about t = 9.5 ms). Here
∆ca/2π = −14 GHz, corresponding to 122 atoms/MHz
of cavity shift. The inset shows the Allan deviation of
the cavity shift after correcting for atom loss, using the
probe frequency only (blue circles) and corrected using
the instantaneous cavity transmission (green squares).
The dotted line is the expected deviation due to pho-
ton shot noise. The deviation on the probe frequency
measurement at short times is below the shot-noise ex-
pectation due to a 20 kHz electronic filter. The 60 kHz
Allan deviation for τ = 2.2 ms corresponds to a sensi-
tivity of 10 atoms.

sation is slightly diminished due to radiation pressure
fluctuations caused by the probe light20, which reduce
the trapping lifetime to 120 ms, and due to spin deco-
herence and gradient-induced loss associated with ex-
ecuting the spin flips. Together, these processes result
in 85% of the magnetisation being preserved during
the image. Less destructive imaging could be achieved
at the expense of reduced signal-to-noise ratio or spa-
tial resolution, e.g. by decreasing γ̄, increasing the rf

drive strength, or decreasing B′.
Precise measurements of the longitudinal spin in a

single lattice site can be taken by measuring the cavity
resonance frequency before and after the spins in a sin-
gle site are inverted (Fig. 3). The resonance frequency
is first measured for a time τ with the rf off. The rf
is then adiabatically turned on (125 µs linear ramp-
on) at a frequency 20 kHz above the spin-resonance
frequency, chirped to 20 kHz below the spin-resonance
frequency, and finally adiabatically ramped off. Fi-
nally, ∆N is again measured, and the total projection
Sk of the site’s dimensionless spin is calculated using
Sk = ∆ωc/2Cḡ, where ∆ωc is the change in the cavity
resonance frequency.

For small τ , the precision of the single-site mea-
surement is limited by the photon shot noise on the
cavity resonance measurement to δωc = |dωc/dγ| ×√
γ̄/ετ , where ε is the photodetection quantum effi-

ciency and |dωc/dγ| is the resonance frequency mea-
surement sensitivity, ' 11 for our system (see Supple-
mentary Information). For τ above 1 ms, a measure-
ment of the Allan deviation (Fig. 3) of ωc indicates that
photon shot noise is superseded by technical noise, e.g.
variations of the laser frequency or of ω0, yielding a fre-
quency uncertainty of 60 kHz for τ = 2.2 ms. With
∆ca = −14 GHz, the atom number in a single lat-
tice site is thus determined with an rms uncertainty
δN = 10. This sensitivity should be sufficient to ob-
serve atom-number differences between lattice sites25

below the limit of Poissonian statistics (δN ∼ 30 for
N ∼ 1000), while maintaining the probed gas for fur-
ther experiments. We have also measured populations
to δN = 2.5, by using ∆ca = −2.0 GHz, although at
this detuning the dynamic range of our measurement is
limited to N . 70 within each site. Systematic uncer-
tainties (Supplementary Information) affect the accu-
racy of the single-site measurement on the few-percent
level but do not significantly impact the measurement
precision.

We use the MRI to probe the transport dynamics
of an atomic gas in an optical lattice under the effects
of atomic interactions. Here we begin with atoms lo-
calized to a few lattice sites and use the MRI to image
the initial stages of their expansion. We prepare a non-
degenerate spin-polarized sample at 380 nK, with an
initial width of 380 nm. We allow the gas to evolve for
variable time t in a shallow optical lattice, which has a
potential depth of 10.1 Er, where Er = h×3.17 kHz is
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Fig. 4: Atom transport in an optical lattice as measured using cavity-aided MRI. 87Rb atoms at
380 nK tunnel resonantly in a 10.1 Er lattice with tunnelling matrix element J = ~ × 380 s−1. Left: After
allowing the atoms to evolve for a fixed time (t = 0.2, 1.1, 3.0 ~/J shown), we take an MRI, corrected for
spatially varying sensitivity. For each evolution time, 15 MRIs are averaged together (red line, right axis), and
these are integrated to obtain the atom number distribution among lattice sites (yellow bars, left axis, orange
region indicates 68% certainty as obtained from Allan deviation). Each distribution is then fit to a gaussian
envelope. Right: Position variance σ2 of the gaussian envelope fit, expressed in units of square lattice spacing,
as a function of transport time, expressed in units of inverse tunnelling rate. At early times (t < 2~/J), the
data (green circles, error bars denote 68% certainty from fits) agree with no-free-parameter ballistic tunnelling
theory (blue line).

the rubidium recoil energy at a wavelength of 850 nm.
The lattice depth is then raised to take the MRI. The
gravitational force is compensated by applying a weak
levitating magnetic field gradient (µB′/h = 454 Hz per
lattice constant) during transport. The experiment is
repeated 15 times at each of several different values
of t, and the MRIs for each hold time are averaged
together, after correcting for shot-to-shot variations of
the bias field (Fig. 4).

The position variance of the atomic distribution
grows due to quantum tunnelling. At early times
(t ≤ 4 ms) the growth matches the ballistic expansion
of non-interacting atoms in the lattice, for an ini-
tial atomic axial distribution given by an incoherent
mixture of single-site Wannier states. At later times
the expansion slows dramatically. Previous experi-
ments have observed self trapping in Bose-Einstein
condensates26. The behavior we observe agrees qual-
itatively with our simulations of interaction-induced
self-trapping in a nondegenerate gas, enabled in this
experiment by high atom density.

Using dispersive optical measurement, cavity
enhancement, and magnetic resonance, we have
demonstrated a spin-sensitive technique for imaging

atomic gases with a spatial resolution of 150 nm. The
single-shot atom number sensitivity is as small as 2.5
within a single lattice site, low enough to observe
sub-Poissonian statistics of atom-number differences
between sites with more than 10 atoms. Extending
this technique to single-spin and single-atom counting
should be possible by reducing technical measure-
ment noise and increasing the experimental photon
detection efficiency, currently limited by cavity losses.

The ability to control and to read out spins in sin-
gle lattice sites provides new tools to engineer and
study atomic gases at a microscopic level. Here we
have measured the initial dynamics of bosonic atom
transport in a 1D lattice with single-site resolution.
Other experiments could include the observation of
cavity-mediated long-range interactions between inde-
pendently prepared spin populations or the observa-
tion of individual magnetic domains for antiferromag-
netically ordered systems. Finally, because our disper-
sive measurement can be made minimally destructive,
the method could be used to provide realtime feed-
back to spin projections of individual lattice sites for
studies of quantum measurement and control27, and
for applications to atomic magnetometry.
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Supplementary Information

Atom cooling and optics. The experimental procedure is similar to that of Ref.

22. We begin with a magneto-optical trap of 87Rb, loaded from a background vapor.

After polarization-gradient cooling and optical pumping to the |F,mF 〉 = |2, 2〉
state, 107 atoms are loaded at ≈ 20 µK into a magnetic trap created using wires

on the atom chip. Evaporative cooling and magnetic transport is then used to

create a 4× 0.4× 0.4 µm cloud, located within the Fabry-Perot optical cavity. The

optical lattice is then ramped on and the magnetic trap ramped off. After a final

stage of evaporative cooling within the optical lattice, we end with 1500 to 5000

atoms at 1 to 3 µK, in two to five lattice sites of a 410 Er-deep lattice. The

cavity mirrors (Research Electro-Optics, Inc.) are spaced by 250 µm and have

5 cm radii of curvature, giving gmax/2π = 11 kHz when ∆ca/2π = 10 GHz. The

mirrors have a finesse of 160,000 at 780 nm, yielding resonances with half-linewidth

κ/2π = 1.8 MHz. Both the trap and probe lasers drive TEM00 modes of the cavity.

Each of these spatially gaussian modes has a minimum 1/e2 diameter of ∼ 50 µm.

The probe laser is locked in tandem with the lattice laser to a separate, thermally and

mechanically stabilized confocal Fabry-Pérot transfer cavity, with 30 kHz relative

RMS noise in a 2 MHz bandwidth.

The probe intensity is stabilized to a constant value before entering the science

cavity. To measure the science cavity resonance, the photon flux leaving the cavity

is stabilized to γ̄ by feedback to the probe frequency via an acousto-optic modulator,

maintaining a constant detuning ∆pc from cavity resonance. For typical operating

parameters, γ̄ ∼ 106 s−1. The feedback loop is integral, with a 8 µs time constant.

The instantaneous value of the cavity resonance frequency is calculated using ωc =

ωXC+ωAOM−∆pc+(γ̄−γ)(∆2
pc+κ

2)/2∆pcγ̄. Here ωXC is the frequency of the probe

laser locked to the transfer cavity and ωAOM is the frequency feeding the acousto-

optic modulator. ∆pc/2π is typically chosen to be −2.1 MHz. The sensitivity of the

cavity resonance measurement to the transmitted photon flux is determined from

the Lorentzian cavity transmission lineshape, and is dωc/dγ = (∆2
pc + κ2)/2∆pcγ.

Cavity-aided spin measurement. For circularly polarized light, with detuning

from atomic resonance ∆pa much greater than the atomic natural linewidth, and

with all atoms in the same hyperfine manifold, the value of the atomic index of

refraction nr depends on the densities ρm(r) of atoms in each magnetic sublevel m

i



asS1,S2:

nr ' 1− |d12|
2

2~ε0

∑
m,F ′

ρm(r)
|V (F,m|F ′,m±1)|2

~ωp − EF ′ + EF
. (1)

Here d12 is the atomic transition dipole matrix element and the ± corresponds

to σ± light. V (F,m|F ′,m±1) describes the transition probability amplitude from

|F,m〉 → |F ′,m± 1〉 using σ± light, and EF ′ and EF are the energies of the excited

and ground hyperfine states, respectively. If ∆pa is large compared to the excited-

state hyperfine splitting, we can replace ~ωp − EF ′ + EF ' ∆pa. The sum over

hyperfine states in Supplementary Eqn. (1) now becomes (ξ+υm)/∆pa, i.e. a scalar

and a vector dependence on the spin density, with negligible tensor contribution.

For F = 2 rubidium-87, ξ = 2/3 and υ = 1/6.

The resonance frequency of a cavity mode, of volume V0, is shifted by an intra-

cavity refractive medium by

ωc =
ω0

ĪV0

∫
I(r)

nr(r)
d3r, (2)

where I(r) is the intensity of the cavity mode at position r with average value Ī

and the integral is evaluated with ∆pa = ∆ca. For nr near unity, Supplementary

Eqn. (2) becomes Article Eqn. (1), writing the dispersive cavity-coupling parameter

g(r) ≡ |d12|
2ξω0I(r)

2~ε0∆caV0Ī
, (3)

together with C ≡ υ/ξ.
To calculate the radially averaged coupling parameter ḡ, we begin with the

spatial dependence of

g(r) = gmax exp(−r2/r20) cos(kp(z − z0))2,

where gmax is the value of g(r) at a location of maximum probe intensity, and r0 is

the 1/e2 radius of the probe intensity. We now average this coupling over the spin-

density distribution. We assume that the spin density in a lattice site is proportional

to the atomic density in that site, and write the atomic density using Boltzmann

statistics for the transverse dimension r, giving ρ(r, z) = ρz(z)× exp(−Ur(r)/kBT ),

where Ur = U0(1 − exp(−r2/r20)) is the transverse trap potential. The atoms are

cold enough that we can approximate Ur/U0 ≈ r2/r20. We now calculate ḡ using the

atom-density-weighted transverse average of g(r), giving

ḡ =

∫
rg(r)na(r, z)dr∫
rna(r, z)dr

= gmax
U0

kBT + U0
cos2(kp(z − z0)),
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where kBT is the thermal energy of the transverse degrees of freedom.

The wavelength difference between the trap and probe fields causes a spatially

modulated overlap between the atoms, trapped at the antinodes of the lattice, and

the antinodes of the probe field, with an overlap period of 11 lattice sites22. To

avoid amplifying noise at the probe nodes, we can further average the correc-

tion over the axial distribution in a single lattice site. For cold atoms in a tight

confining potential, the distribution can be calculated using Bose-Einstein statis-

tics for an harmonic oscillator, giving ρz(z) = ρ0 exp[−mωzz2/(nth + 1/2)~], where

nth = [exp(~ωz/kBT )−1]−1 is the thermal occupation of the axial mode. Averaging

over the distribution in a single site gives

ḡ

gmax
=

1

2

U0

kBT+ U0

[
1 + e

−(nth+1/2)~ωz

U0(kt/kp)
2 cos(2kd(z−z0))

]
. (4)

Here ωz is the axial frequency in each site, nth is the thermal occupation of the

axial mode, kt and kp are the trap and probe wavenumbers, kd = kt − kp, and z0 is

the location of the lattice site which overlaps with the probe antinode. For typical

experimental parameters, U0/h = 1.28 MHz, ωz/2π = 135 kHz, and U0/kBT ≈ 20.

The atoms begin with nth = 0.15. This phonon number grows due to optomechanical

heating of the atoms to approximately 0.5 (as measured from the MRI peak width –

although this calculation does not take into account motional narrowing of the MRI

peaks). These parameters give a ḡ(z) that oscillates sinusoidally from approximately

5% to 95% between positions where the optical lattice site is overlapped with a node

or an antinode of the probe field. Note that the technique is thus sensitive to atoms

at all lattice sites, although atoms at the node are measured with a signal-to-noise

that is 20 times smaller than those at the antinode.

Spin addressing. Under adiabatic-passage theoryS3, the expectation value of the

spin-projection operator Ŝz of a two-level spin system, with energy splitting ~Ω and

detuning δ of the rf from magnetic resonance, is

〈Ŝz(δ)〉 =
δ√

δ2 + Ω2/4
〈Ŝz〉0, (5)

where 〈Ŝz〉0 is the spin projection when δ/Ω → ∞. As the rf is chirped, with

δ = ω̇rft− µB(z)/~, the time-derivative of the cavity resonance obeys:

dωc
dt

=
d∆N

dt
= ±C

∫
ω̇rfΩ

2/4

[δ(t, z)2 + Ω2/4]3/2
sk(z)ḡ(z)dz, (6)

iii
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Fig. 1: Calculations of the dressed Zeeman spectrum of F=2 87Rb about rf res-
onance, as a function of Larmor frequency. Calculations are for a bias field of
µB/h = 13 MHz. (a) Dressing with µB⊥/h = 0 Hz. An rf sweep from low to high
frequency takes a gas starting in |F,mF 〉 = |2, 2〉 to |2,−2〉 along the upper set of
crossings, with a crossing every 50 kHz. Sweeps from high to low frequency take
the |2, 2〉 state to the |2,−2〉 state through only one avoided crossing. (b) Dressing
with µB⊥/h = 120 kHz. Crossings between states of ∆mF = 1 are split by µB⊥/2,
while the lower crossing between |2, 2〉 and |2,−2〉 is split by only a small energy
difference.

where sk(z) is the initial one-dimensional spin density (at t = −∞). In the limit that

~Ω is small compared to µB′sk/(dsk/dz), the detuning-dependent term in Supple-

mentary Eqn. (6) becomes a delta function with magnitude 2~ω̇rf/µB
′. Evaluating

the integral with the delta function gives the result of Article Eqn. (2). When Ω is

not small, the integral in Supplementary Eqn. (6) acts as a point-spread function

for the image, with full-width at half-maximum = 1.23 ~Ω/µB′. We extract Ω in

our system by fitting a sweep over magnetic resonance, at constant bias field, to

Supplementary Eqn. (5), as shown in Fig. 2(c).

Due to the quadratic Zeeman shiftS4 present in F = 2 87Rb, the energy split-

ting Ω depends on the initial state of the atoms and the direction of the rf sweep.

Beginning in the |F,mF 〉 = |2, 2〉 state, and chirping the rf from low to high fre-

quency, the spin encounters a series of four broad resonances (cf. Supplementary

Fig. 1), where states of ∆mF = 1 cross, each of width µB⊥/2, where B⊥ is the

effective transverse field in the rotating wave approximation. These resonances are

separated by twice the quadratic Zeeman shift, equal to 25 kHz at our operating

bias field of 13 MHz. In order to avoid these resonances, we instead chirp the rf from

high to low frequency. In this mode, only one crossing exists, between the initial
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|2, 2〉 and the final |2,−2〉 state. Because the connection between these states relies

on a four-photon transition, it is much narrower, with Ω/2π = 14 kHz achieved

using µB⊥/h = 200 kHz at a 13 MHz bias field.

To produce B′, we run current in opposite directions along two parallel chip

wires, which are oriented transverse to the cavity axis and each separated from

the atoms by approximately 160 µm (see Fig. 1). With ≈ 1 A in each wire, a field,

oriented along the cavity axis, is created with axial gradient µB′/h = 113.5 kHz/µm.

By adding a bias field along the cavity axis, we tune the mean field seen by the atoms

between 10 and 13 MHz. The rf for adiabatic passage is added through a bias tee

on one of the chip wires.

Single-site addressability. We are able to manipulate spins at a single lattice

site, with a . 6% contamination of the magnetization at adjacent lattice sites.

We demonstrate this by measuring the time derivative of the cavity shift as the

rf is swept between adjacent lattice sites, after correcting for atom loss. The time

derivative is a direct measure of the rate of change in magnetization per unit time

(cf. Eqn. (2)), and a small derivative indicates that few spins are being perturbed

when the rf is between lattice sites.

Supplementary Fig. 2 shows our measurement of addressability. Comparing the

ratio of the between-site time derivative to the on-site time derivative, we obtain an

upper limit for the amount by which spins at neighboring lattice sites are affected by

the rf. Measuring before the rf is swept over the most-occupied site, we measure a

slope that is 2% of the peak (average over 10 shots, statistical uncertainty is ±2%).

Measuring after the sweep over this lattice site, the slope is 6%, but this increase

can be attributed to decoherence of spins which were incompletely inverted during

the sweep.

Note that this measurement gives an upper limit on the addressability, and the

contamination is likely less than 6%. Because the change in magnetization of neigh-

boring lattice sites is due primarily to dressing of the spins by the rf, adiabatically

turning the rf on or off should reverse much of the change in spin.

Due to fluctuations in the magnetic bias field (on the order of 6 kHz), the deter-

ministic addressibility may be degraded. This effect can be compensated for either

by post-selection or by first measuring the bias field with an rf sweep.

Spatial resolution. The spatial resolution of the MRI is limited by the strength

of the rf field used to invert the atomic spins and by the magnetic field gradient B′
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Fig. 2: Measurement of single-site addressability. The rate of spin inversion is
proportional to the time derivative of the cavity shift (single-shot time derivative
shown in red solid line). An upper limit on the extent to which spins in neighboring
sites are perturbed by addressing a single site is given by the ratio of the time-
derivative between sites to the time-derivative on resonance. The times we used to
measure the derivative both on and off resonance are denoted by the shaded regions.

used to differentiate neighboring lattice sites. Letting the energy ~Ω characterize the

rf-induced level splitting between opposite spin projections, the spatial resolution

(full-width at half-maximum) is limited to 1.23 ~Ω/µB′. The minimum value of

the coupling rate Ω is limited by the requirement for adiabatic passage between

opposite spin states (Ω2 � |ω̇rf |) and by the requirement that the rf be swept

across resonance in a time short compared to the transverse-spin-coherence time,

measured to be 2 ms for our system. In practice, we find that using Ω/2π =

14 kHz and ω̇rf/2π = −50 kHz/ms maintains a 95% spin coherence during the

sweep. Meanwhile, the maximum value of B′ is around 1.7 kG/cm, separating

neighboring sites by 50 kHz. This value is limited by the transverse magnetic-field

curvature, having value ∼ B′2/B, associated with applying the gradient. If the

gradient is too large, this curvature will eject mF= − 2 atoms from the resulting

hybrid optical-magnetic trap.

Atom counting. Systematic uncertainties limit the accuracy (but not the pre-

cision) of single-site atom number measurements. These uncertainties arise from
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uncertainty in ∆ca (measured to within 50 MHz), variation in ḡ due to temperature

uncertainty (measured by time-of-flight methods to within 10%), and impure initial

spin preparation (purity uncertainty 1%) due to either an atomic spin mixture or a

bias field not exactly parallel to the cavity axis.

The numbers measured via the MRI technique were verified using two indepen-

dent methods. First, we have used time-of-flight absorption imaging to verify the

total atom number in the optical lattice. Second, we have compared the total atom

number by using the scalar cavity shift from its empty resonance. This latter test is

equivalent to verifying that the shift with all spins in the |2, 2〉 state is
(
1+2C
1−2C

)
= 3

times larger than with all spins flipped to their |2,−2〉 state.

Number sensitivity. The number-counting sensitivity is technically limited by

fluctuations in the measured empty cavity resonance frequency, detection efficiency,

and atom loss. The dominant of these three effects is technical variation in the

measured empty cavity frequency, due to acoustic vibrations of the cavity mirrors.

Were this noise absent, the number-counting sensitivity would be limited by the

atomic loss rate, which is due to radiation pressure fluctuations in the probe light.

The average loss is deterministic, and its effects can be corrected (cf. Supplementary

Fig. 4). However, fluctuations in the loss rate (consistent with fluctuations due from

atomic shot noise) cause an uncertainty in this correction, and therefore limit the

minimum counting uncertainty.

The atom counting uncertainty limits due to probe shot noise, atom loss, and

technical fluctuations are shown in Supplementary Fig. 3. Single-atom sensitivity

would be obtained with near-unity detection efficiency and reduced empty-cavity

resonance noise.

An example single-well counting measurement, with 60 atoms in a single lattice

site, is shown in Supplementary Fig. 4. The atom-counting sensitivity is ±2.4, using

a 500 µs integration time.

Transport. To execute the transport experiment, we begin with atoms loaded

into only a few lattice sites, with the atom distribution having a gaussian envelope

of rms width σ0 = 380 nm. The atoms begin in a relatively deep optical lattice, with

U0 = 84 Er. The lattice depth is then lowered to 10.1 Er, and a weak field gradient

(µB′/h = 454 Hz per lattice constant) is turned on to cancel gravity. The atoms are

allowed to tunnel for a time t, after which the gradient is raised to prevent resonant

tunneling, and the lattice depth is raised to 410 Er. At this point, the strong field
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Fig. 3: Atom-counting sensitivity at ∆ca = −2 GHz, with 200 atoms. At low
integration times the sensitivity is limited by shot noise (dashed blue line). At near-
unity detection efficiency, this limit would be ∼ 3 times smaller (solid blue line).
At long integration times, the sensitivity is limited by technical fluctuations of the
empty cavity resonance frequency (dotted red line). At even longer integration times
the counting sensitivity would be limited by fluctuations (green chain) in the average
atom loss rate. The measured counting sensitivity is also shown (black dots). Both
scales are logarithmic.

gradient necessary for the MRI is applied, and an image is taken.

For resonantly tunneling non-interacting atoms we expect the position variance

of the atom distribution to grow according to σ2bal = σ20 + (aJt/~)2, where a is the

lattice constant. For the no-free-parameter fit of Fig. 4, we determine σ0 by taking

an MRI without ever lowering the lattice. We confirm this initial width by com-

paring the cavity shift as a function of the centre position of the atom distribution,

effectively measuring the spatially varying position sensitivity of ḡ (cf. Ref. 22).

These two measurements of σ0 agree to within the 15 nm statistical uncertainty of

the latter method.
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Fig. 4: Single-site measurement at ∆ca = −2 GHz, with ≈ 200 total atoms. Mea-
surement is taken by integrating the cavity shift, corrected for number loss (red
line, normalized to the atom number at time 0), for 500 µs before and after flipping
the spins in a single site (integration times shaded). Here the spins are flipped from
|2,−2〉 to |2, 2〉 to minimize the initial loss. The measurement yields 61.2±2.4 atoms
in the site at the time of the spin flip. Also shown is the uncorrected shift (orange
line).
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